Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of Cu(OH)2, recently redetermined at room temperature by Oswald, Reller, Schmalle & Dubler [Acta Cryst. (1990), C46, 2279–2284], is shown to satisfy the structural criteria for ferroelectricity. The Cu2+ ion at 295 K is displaced 0.131 Å from the most likely paraelectric atomic arrangement, allowing the prediction to be made that the ferroelectric Curie temperature is Tc = 343 K. This prediction is in excellent agreement with an earlier report of a reversible structural transition at 325–335 K in Cu(OH)2. The presence of a λ-shaped anomaly in the heat capacity at about 335 K has been confirmed, and a dielectric anomaly is also observed at similar temperatures over a wide frequency range; the frequency dependence is dispersive, owing at least partly to ionic conductivity. The prediction is hence verified, and Cu(OH)2 is demonstrated experimentally to be a new ferroelectric.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds