Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The ZnII center in the dicationic complex of the title com­pound, [Zn(C10H7N3S)3](NO3)2·0.5C2H5OH·H2O, is in a dis­torted octa­hedral environment with imperfect noncrystallographic C3 symmetry. Each 2-(1,3-thia­zol-2-yl)-1H-benz­imidazole ligand coordinates in a bidentate manner, with the Zn—N(imidazole) bond lengths approximately 0.14 Å shorter than the Zn—N(thia­zole) bond lengths. Charge-assisted hydrogen bonds connect cations, anions and water mol­ecules. A lattice void is occupied by an ethanol solvent mol­ecule disordered about a crystallographic inversion center and π-stacking is observed between one type of symmetry-related benzene rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112051372/gz3218sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112051372/gz3218Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112051372/gz3218Isup3.cml
Supplementary material

CCDC reference: 925751

Comment top

The role of metals in pathological processes has been discussed in the literature and interest in metal chelators with potential biological applications has increased significantly (Gaeta & Hider, 2005; López-Gresa et al., 2002; Liu & Hider, 2002; Zatta et al., 2009). Thiabendazole [4-(1H-1,3-benzodiazol-2-yl)-1,3-thiazole, TBZ] is an antiparasitic drug and has been widely used for plant disease control based on its metal-chelating properties (Miller et al., 1973). Copper and zinc complexes of TBZ have been synthesized (Devereux et al., 2007; Grevy et al., 2002; Miller et al., 1973) but the X-ray crystallographic analysis of Zn-TBZ has not been reported.

Metal complexes of TBZ in the literature are mono- or bis-chelates, whereas tris-chelates were only reported for CoII, NiII and CdII (Grevy et al., 2002), hereafter referred to as Co-TBZ, Ni-TBZ and Cd-TBZ, respectively. The versatility of the TBZ ligand stems from its ability to be positively or negatively charged due to the imidazole group and to stabilize neutral, cationic or anionic complexes (Devereux et al., 2007).

The ZnII ion in the doubly cationic title complex tris[2-(1,3-thiazol-2-yl)-1H-benzimidazole]zinc(II) dinitrate ethanol hemisolvate monohydrate, (I) (Fig. 1), is in a distorted octahedral environment with approximate C3 symmetry, similar to Ni-TBZ and Cd-TBZ, and unlike Co-TBZ, in which only C1 local symmetry is observed.

It is worth noting that the structure of Co-TBZ contains an ethanol solvent molecule, whereas the Cd-TBZ and Co-TBZ structures are free of solvent. Thus, the fact that (I) does not include a threefold crystal symmetry is due to distortions caused by intermolecular interactions with the solvent, resulting in a small misfit of the three chelating molecules.

In the title Zn-TBZ complex, the dihedral angles formed by the planes of the imidazole rings are 11.37 (10), 3.33 (7) and 8.83 (9)°, while the N1—C9—C10—N14 torsion angles are 5.2 (2), 2,1(2) and 7.1 (2)° for the unprimed, primed and double-primed ligands, respectively. The contrasting values for the unprimed ligand can be attributed to a distortion in its imidazole ring, which assumes a bent conformation distinct from the other two ligands, for which the corresponding ring is observed in a twist conformation.

In accordance with the M—N bond lengths observed in the CdII complex, the ZnII–cation interaction is stronger with the imidazole (imid) than with the thiazole (thiaz) N atoms (Table 1). The bond lengths in Zn-TBZ compare quite well with the Ni—Nimid bond lengths [2.086 (4) Å] but are considerably longer than the Ni—Nthiaz bond lengths [2.120 (4) Å]. In both Ni-TBZ and Co-TBZ, the M—N bond lengths are nearly equal, differing by about 0.03 Å, whereas Zn-TBZ shows a difference of approximately 0.14 Å, on average. From an electronic point of view, the better shielding provided by the completely filled d orbitals of ZnII allows for a bigger M—N bond length. However, the fact that the ZnII—Nimid bond length is smaller than CoII—Nimid indicates an increase in the covalent bonding character in Zn-TBZ. In addition, the longest ZnII—Nthiaz bond amongst the other reported transition metals is due to a steric effect which stems from ligand repulsion, resulting in a pure ionic interaction. For comparison, the ZnII—N bond lengths in tris(ethylenediamine)zinc(II) dinitrate (Neill et al., 1997) are 2.193 (2) Å, which reinforces this point of view.

The average value of the N1—Zn—N14 bite angle in the three ligands is 77.0 (2)° in Zn-TBZ, the corresponding angles in the counterparts being very close to this value. For instance, the corresponding values in Ni-TBZ and Co-TBZ are 79.3 (2) and 77.2 (3)°, respectively, contrasting with the angle of 72.9 (2)° in Cd-TBZ, an indication that these angles are dictated by the cation radii. These acute angles have consequences on the distortion of the coordination from the ideal octahedral, as demonstrated by the nonlinearity of the metal angles N1'—Zn—N14, which in turn are close to the average value of 164.2 (2)° in Zn-TBZ, and also close to the corresponding values in Co-TBZ. On the other hand, this average is smaller than the value calculated for Ni-TBZ [170.9 (2)°] but much larger than that observed in Cd-TBZ [154.6 (2)°]. The twisted conformation of the ligands might be a reasonable explanation for the small value in the latter compound, as can be argued from the N1—C9—C10—N14 torsion angles which have an average value of -4.8 (6)° in (I) compared with a value of 13.1 (9)° in Cd-TBZ. Selected bond lengths and angles are listed in Table 1.

The stabilization of the crystal packing of (I) (Fig. 2), promoted by electrostatic interaction, takes place through charge-assisted hydrogen bonds between the imidazole amine groups and the nitrate counter-ions, with the aid of a water molecule that bridges this interaction by acting as an acceptor for the amine group in the strong N8'—H8'···O1S hydrogen bond, and donating to both crystallographically independent nitrate anions in the strong O1S—H1SA···O3S3 and O1S—H1SB···O2S2 hydrogen bonds. Similarly, in Co-TBZ but not in Cd-TBZ or Ni-TBZ, a water molecule forms a strong hydrogen bond to one amine group as acceptor and two strong hydrogen bonds to both independent chloride anions, the other two amine groups donate a H atom in the hydrogen bonds to the counter-ions. In Co-TBZ and Zn-TBZ, it is plausible that the small volume of the counter-ion compared to the complex increases the importance of this water molecule for the crystal packing. In the case of Ni-TBZ, a water channel mediates these interactions but only the chloride counter-ions bond to the amine group. In Cd-TBZ, the nitrate anion accepts a strong hydrogen bond from the amine group and further interacts with the thiol group with an O···S distance of 3.07 (2) Å; a similar interaction is observed in Ni-TBZ with an Owater···S distance of 3.10 (3) Å. In the Zn-TBZ structure, one nitrate anion forms a strong N8i—H8i···O43 hydrogen bond [symmetry code: (i) -x+2, -y+1, -z+2] and interacts with the thiol S12 and S12' groups; the O···S distances are 2.970 (2) and 3.290 (2) Å, respectively. The other nitrate ion in Zn-TBZ accepts the bifurcated N8"ii—H8"ii···O3S2 and N8"ii—H8"ii···O4S2 hydrogen bonds [symmetry code: (ii) -x+1, -y+1, -z+1], in which the donor is the amine group of the symmetry-related molecule across the inversion center at (1/2, 1/2, 1/2). This symmetry operation describes the benzimidazole benzene ring (C2"–C7") alignment which gives rise to π-stacking interactions, with a plane-to-plane distance of 3.494 (2) Å and a centroid–centroid distance of 3.5625 (11) Å. In the vicinity of the inversion center at (0,1/2,0), the structure shows a void of relatively large volume filled by an ethanol solvent molecule, which was modeled as disordered over two sites with the center of symmetry at the mid-point of the C—C bond. The ethanol molecule forms short O1S4—H···S12 and O1S4—H···π contacts with atom C13 of the same thiazole ring. Hydrogen-bond interactions are listed in Table 2.

Related literature top

For related literature, see: Devereux et al. (2007); Gaeta & Hider (2005); Grevy et al. (2002); López-Gresa, Ortiz, Perelló, Latorre, Liu-González, García-Granda, Pérez-Priede & Cantón (2002); Liu & Hider (2002); Miller et al. (1973); Neill et al. (1997); Zatta et al. (2009).

Experimental top

2-(1,3-Thiazol-2-yl)-1H-benzimidazole (0.40 g, 2 mmol) was dissolved in absolute ethanol (25 ml), followed by heating and stirring until total dissolution was achieved. To this solution, a freshly prepared aqueous solution of Zn(NO3)2.6H2O (0.29 g, 1 mmol) in deionized water (5 ml) was added. The reaction mixture was allowed to cool and left to stand at room temperature. After two weeks, the resulting solution was filtered using a vacuum, washed with small portions of cold ethanol and dried in a desiccator over concentrated sulfuric acid to furnish colorless single crystals of (I) suitable for X-ray diffraction data collection.

Refinement top

All H atoms were placed in calculated positions, except for those of the water molecule, which were located in a Fourier map (C—H = 0.95–0.99 Å, N—H = 0.88 Å, O—H = 0.84 Å and water O—H = 0.95 Å). Their refinement was performed using isotropic displacement parameters with riding constraints on the parent atoms, i.e. Uiso(H) = 1.2Ueq(C), 1.5Ueq(N,Cmethyl) or 1.5 Ueq(O). An ethanol solvent molecule disordered about the crystallographic inversion center was refined over two sites with fixed occupancies of 0.5 (an occupancy-free variable refined to approximately 0.49), with methylene and methyl atoms restrained to the same site and refined with equal atomic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radii. The ethanol solvent site occupation is 50%.
[Figure 2] Fig. 2. A packing diagram illustrating as dashed lines the hydrogen-bond and short-contact interactions listed in Table 2. The a, b and c crystallographic axes are shown (red, yellow and blue, respectively, in the electronic version of the paper) and unit-cell is outlined. [Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.]
Tris[2-(1,3-thiazol-2-yl-κN)-1H-benzimidazole- κN3]zinc(II) dinitrate ethanol hemisolvate monohydrate top
Crystal data top
[Zn(C10H7N3S)3](NO3)2·0.5C2H6O·H2OZ = 2
Mr = 834.23F(000) = 854
Triclinic, P1Dx = 1.598 Mg m3
a = 10.4687 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8659 (3) ÅCell parameters from 9152 reflections
c = 13.8539 (3) Åθ = 2.5–33.7°
α = 83.280 (1)°µ = 0.96 mm1
β = 84.374 (1)°T = 100 K
γ = 69.611 (1)°Rectangular, white
V = 1733.76 (7) Å30.21 × 0.18 × 0.10 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
12621 independent reflections
Radiation source: fine-focus sealed tube10491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.3333 pixels mm-1θmax = 32.6°, θmin = 1.5°
Bruker APEX CCD area–detector scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
k = 1919
Tmin = 0.711, Tmax = 0.747l = 2020
161151 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.7321P]
where P = (Fo2 + 2Fc2)/3
12621 reflections(Δ/σ)max = 0.002
495 parametersΔρmax = 1.75 e Å3
4 restraintsΔρmin = 1.13 e Å3
Crystal data top
[Zn(C10H7N3S)3](NO3)2·0.5C2H6O·H2Oγ = 69.611 (1)°
Mr = 834.23V = 1733.76 (7) Å3
Triclinic, P1Z = 2
a = 10.4687 (2) ÅMo Kα radiation
b = 12.8659 (3) ŵ = 0.96 mm1
c = 13.8539 (3) ÅT = 100 K
α = 83.280 (1)°0.21 × 0.18 × 0.10 mm
β = 84.374 (1)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
12621 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
10491 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.747Rint = 0.055
161151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.75 e Å3
12621 reflectionsΔρmin = 1.13 e Å3
495 parameters
Special details top

Experimental. IR (KBr, νmax): 3498, 1593, 1518 cm-1.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.650065 (17)0.713345 (14)0.720641 (12)0.01670 (5)
N10.81812 (13)0.76592 (10)0.68447 (9)0.0170 (2)
C20.89939 (15)0.78120 (12)0.60221 (11)0.0177 (2)
C30.90836 (16)0.74916 (13)0.50824 (11)0.0216 (3)
H30.85640.70680.49190.026*
C40.99607 (17)0.78157 (15)0.43968 (12)0.0257 (3)
H41.00310.76190.37490.031*
C51.07479 (17)0.84270 (15)0.46361 (13)0.0274 (3)
H51.13270.86430.41440.033*
C61.06994 (17)0.87225 (14)0.55738 (13)0.0250 (3)
H61.12470.91210.57410.03*
C70.98065 (15)0.84052 (12)0.62581 (11)0.0196 (3)
N80.94791 (13)0.85871 (11)0.72299 (10)0.0201 (2)
H80.98410.89270.75820.024*
C90.84996 (15)0.81459 (12)0.75353 (11)0.0175 (2)
C100.77614 (15)0.82169 (12)0.84799 (11)0.0186 (2)
C110.79240 (17)0.86646 (14)0.92835 (12)0.0236 (3)
H110.86320.89490.93510.028*
S120.66589 (5)0.86360 (4)1.01507 (3)0.02700 (9)
C130.60027 (18)0.80074 (14)0.94021 (11)0.0242 (3)
H130.5220.78010.95860.029*
N140.66717 (14)0.78356 (11)0.85555 (9)0.0206 (2)
N1'0.74793 (14)0.54521 (11)0.76719 (9)0.0207 (2)
C2'0.87917 (17)0.46771 (13)0.76393 (11)0.0224 (3)
C3'1.00093 (18)0.47619 (14)0.71928 (13)0.0266 (3)
H3'1.00410.54260.68290.032*
C4'1.1172 (2)0.38260 (16)0.73076 (14)0.0337 (4)
H4'1.20210.3850.70130.04*
C5'1.1123 (2)0.28435 (16)0.78496 (13)0.0338 (4)
H5'1.19460.22270.7920.041*
C6'0.9925 (2)0.27442 (15)0.82805 (13)0.0324 (4)
H6'0.98970.20770.86410.039*
C7'0.87617 (19)0.36730 (13)0.81584 (11)0.0247 (3)
N8'0.74185 (17)0.38673 (12)0.84948 (10)0.0264 (3)
H8'0.70930.33890.88450.032*
C9'0.67022 (17)0.49249 (13)0.81864 (11)0.0210 (3)
C10'0.52457 (18)0.55076 (14)0.83689 (11)0.0240 (3)
C11'0.4259 (2)0.51376 (17)0.88434 (13)0.0320 (4)
H11'0.44040.44020.91320.038*
S12'0.27120 (5)0.62096 (5)0.88396 (4)0.03583 (11)
C13'0.34792 (18)0.70680 (16)0.82068 (13)0.0283 (3)
H13'0.29910.78260.80140.034*
N14'0.47922 (14)0.66098 (12)0.80034 (10)0.0228 (3)
N1"0.60160 (13)0.69057 (10)0.58138 (9)0.0169 (2)
C2"0.63264 (15)0.60702 (12)0.51902 (11)0.0179 (2)
C3"0.73247 (16)0.50108 (13)0.52188 (12)0.0222 (3)
H3"0.79440.47510.57220.027*
C4"0.73710 (18)0.43571 (14)0.44816 (12)0.0261 (3)
H4"0.80470.36370.44770.031*
C5"0.64501 (18)0.47263 (15)0.37415 (13)0.0283 (3)
H5"0.65040.42430.32590.034*
C6"0.54652 (18)0.57753 (15)0.36955 (12)0.0267 (3)
H6"0.48420.60290.31940.032*
C7"0.54406 (15)0.64367 (13)0.44270 (11)0.0203 (3)
N8"0.46086 (13)0.75061 (11)0.46039 (9)0.0208 (2)
H8"0.39470.79490.42470.025*
C9"0.50020 (14)0.77422 (12)0.54255 (10)0.0173 (2)
C10"0.44303 (15)0.87821 (12)0.58813 (11)0.0178 (2)
C11"0.35207 (16)0.97777 (13)0.55508 (12)0.0215 (3)
H11"0.31010.99260.49480.026*
S12"0.32525 (4)1.07175 (3)0.63897 (3)0.02605 (9)
C13"0.43819 (16)0.97309 (13)0.71227 (12)0.0229 (3)
H13"0.46020.98760.77310.027*
N14"0.49146 (13)0.87626 (10)0.67743 (9)0.0187 (2)
N1S30.88074 (17)0.03855 (14)1.12562 (12)0.0323 (3)
O2S30.80012 (17)0.00524 (15)1.10405 (12)0.0433 (4)
O3S30.89890 (15)0.11878 (14)1.07391 (12)0.0409 (3)
O4S30.9450 (3)0.00303 (17)1.20036 (16)0.0708 (7)
N1S20.65538 (16)0.12010 (12)0.74430 (11)0.0270 (3)
O2S20.61448 (19)0.08894 (14)0.82637 (10)0.0425 (4)
O3S20.67613 (18)0.21120 (12)0.73090 (11)0.0410 (3)
O4S20.67185 (14)0.06376 (11)0.67274 (9)0.0303 (3)
O1S0.67494 (15)0.21794 (11)0.95268 (9)0.0300 (3)
H1SA0.7472 (19)0.1708 (19)0.9904 (17)0.045*
H1SB0.669 (3)0.1715 (19)0.9065 (15)0.045*
O1S40.8216 (3)0.5703 (3)1.0508 (2)0.0413 (7)0.5
H1S40.76740.63561.03980.062*0.5
C2S40.9434 (6)0.55493 (19)0.9897 (5)0.0417 (5)0.5
H2S10.97810.61580.99710.05*0.5
H2S20.92030.56160.92110.05*0.5
C3S41.0564 (6)0.44507 (19)1.0098 (5)0.0417 (5)0.5
H3S11.13280.43920.96130.063*0.5
H3S21.02220.38391.00610.063*0.5
H3S31.08760.44091.0750.063*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01929 (8)0.01762 (8)0.01623 (8)0.00907 (6)0.00265 (6)0.00348 (5)
N10.0190 (5)0.0169 (5)0.0176 (5)0.0082 (4)0.0024 (4)0.0034 (4)
C20.0179 (6)0.0161 (6)0.0195 (6)0.0060 (5)0.0028 (5)0.0013 (5)
C30.0211 (7)0.0245 (7)0.0199 (6)0.0076 (5)0.0029 (5)0.0033 (5)
C40.0223 (7)0.0315 (8)0.0199 (7)0.0060 (6)0.0003 (5)0.0001 (6)
C50.0230 (7)0.0284 (8)0.0281 (8)0.0083 (6)0.0004 (6)0.0046 (6)
C60.0217 (7)0.0223 (7)0.0323 (8)0.0102 (6)0.0015 (6)0.0011 (6)
C70.0190 (6)0.0167 (6)0.0237 (7)0.0066 (5)0.0041 (5)0.0008 (5)
N80.0207 (6)0.0187 (5)0.0244 (6)0.0097 (5)0.0049 (5)0.0038 (4)
C90.0184 (6)0.0163 (6)0.0197 (6)0.0066 (5)0.0048 (5)0.0033 (5)
C100.0205 (6)0.0181 (6)0.0191 (6)0.0073 (5)0.0045 (5)0.0041 (5)
C110.0250 (7)0.0272 (7)0.0222 (7)0.0108 (6)0.0033 (5)0.0090 (6)
S120.0302 (2)0.0357 (2)0.01944 (17)0.01424 (17)0.00127 (14)0.01004 (15)
C130.0277 (8)0.0298 (8)0.0193 (6)0.0140 (6)0.0021 (5)0.0043 (6)
N140.0240 (6)0.0235 (6)0.0181 (5)0.0118 (5)0.0036 (5)0.0035 (4)
N1'0.0245 (6)0.0195 (6)0.0202 (6)0.0099 (5)0.0041 (5)0.0008 (4)
C2'0.0273 (7)0.0207 (7)0.0202 (6)0.0080 (6)0.0050 (5)0.0031 (5)
C3'0.0271 (8)0.0250 (7)0.0271 (8)0.0073 (6)0.0035 (6)0.0027 (6)
C4'0.0312 (9)0.0330 (9)0.0307 (9)0.0002 (7)0.0058 (7)0.0087 (7)
C5'0.0392 (10)0.0283 (8)0.0264 (8)0.0015 (7)0.0085 (7)0.0080 (6)
C6'0.0483 (11)0.0209 (7)0.0240 (8)0.0046 (7)0.0096 (7)0.0024 (6)
C7'0.0371 (9)0.0204 (7)0.0184 (6)0.0106 (6)0.0074 (6)0.0013 (5)
N8'0.0395 (8)0.0213 (6)0.0215 (6)0.0148 (6)0.0047 (5)0.0013 (5)
C9'0.0297 (7)0.0208 (6)0.0163 (6)0.0126 (6)0.0053 (5)0.0008 (5)
C10'0.0318 (8)0.0290 (8)0.0177 (6)0.0179 (6)0.0015 (6)0.0034 (5)
C11'0.0401 (10)0.0410 (10)0.0243 (8)0.0267 (8)0.0013 (7)0.0025 (7)
S12'0.0341 (2)0.0491 (3)0.0326 (2)0.0248 (2)0.01029 (18)0.0130 (2)
C13'0.0264 (8)0.0347 (9)0.0274 (8)0.0133 (7)0.0038 (6)0.0125 (7)
N14'0.0255 (6)0.0261 (6)0.0210 (6)0.0131 (5)0.0010 (5)0.0074 (5)
N1"0.0180 (5)0.0160 (5)0.0179 (5)0.0060 (4)0.0025 (4)0.0047 (4)
C2"0.0190 (6)0.0181 (6)0.0186 (6)0.0072 (5)0.0027 (5)0.0053 (5)
C3"0.0241 (7)0.0188 (6)0.0232 (7)0.0047 (5)0.0048 (5)0.0056 (5)
C4"0.0301 (8)0.0212 (7)0.0268 (7)0.0055 (6)0.0040 (6)0.0096 (6)
C5"0.0295 (8)0.0275 (8)0.0285 (8)0.0061 (6)0.0049 (6)0.0139 (6)
C6"0.0266 (8)0.0302 (8)0.0238 (7)0.0063 (6)0.0061 (6)0.0113 (6)
C7"0.0199 (6)0.0221 (6)0.0194 (6)0.0057 (5)0.0031 (5)0.0066 (5)
N8"0.0199 (6)0.0222 (6)0.0189 (6)0.0031 (5)0.0056 (4)0.0056 (4)
C9"0.0174 (6)0.0187 (6)0.0171 (6)0.0070 (5)0.0013 (5)0.0044 (5)
C10"0.0165 (6)0.0187 (6)0.0193 (6)0.0066 (5)0.0005 (5)0.0049 (5)
C11"0.0205 (7)0.0195 (6)0.0238 (7)0.0049 (5)0.0027 (5)0.0047 (5)
S12"0.02527 (19)0.01905 (17)0.0315 (2)0.00179 (14)0.00450 (15)0.00905 (14)
C13"0.0232 (7)0.0215 (7)0.0246 (7)0.0061 (5)0.0030 (5)0.0080 (5)
N14"0.0183 (5)0.0188 (5)0.0205 (6)0.0068 (4)0.0017 (4)0.0061 (4)
N1S30.0350 (8)0.0313 (8)0.0343 (8)0.0119 (6)0.0044 (6)0.0138 (6)
O2S30.0498 (9)0.0519 (9)0.0421 (8)0.0298 (8)0.0079 (7)0.0150 (7)
O3S30.0294 (7)0.0447 (8)0.0486 (9)0.0139 (6)0.0040 (6)0.0012 (7)
O4S30.1235 (19)0.0515 (10)0.0664 (12)0.0592 (12)0.0579 (13)0.0164 (9)
N1S20.0332 (7)0.0262 (7)0.0224 (6)0.0110 (6)0.0049 (5)0.0000 (5)
O2S20.0687 (11)0.0445 (8)0.0250 (6)0.0341 (8)0.0023 (6)0.0008 (6)
O3S20.0595 (10)0.0312 (7)0.0365 (8)0.0224 (7)0.0021 (7)0.0012 (6)
O4S20.0358 (7)0.0292 (6)0.0253 (6)0.0079 (5)0.0078 (5)0.0055 (5)
O1S0.0442 (8)0.0283 (6)0.0226 (6)0.0198 (6)0.0008 (5)0.0011 (5)
O1S40.0419 (16)0.0363 (15)0.0498 (18)0.0161 (13)0.0004 (13)0.0139 (13)
C2S40.0452 (12)0.0397 (11)0.0428 (11)0.0148 (9)0.0002 (9)0.0147 (9)
C3S40.0452 (12)0.0397 (11)0.0428 (11)0.0148 (9)0.0002 (9)0.0147 (9)
Geometric parameters (Å, º) top
Zn1—N12.0931 (12)C13'—N14'1.309 (2)
Zn1—N1'2.0985 (13)C13'—H13'0.95
Zn1—N1"2.1197 (12)N1"—C9"1.3247 (18)
Zn1—N142.2170 (12)N1"—C2"1.3879 (18)
Zn1—N14"2.2326 (13)C2"—C3"1.398 (2)
Zn1—N14'2.2694 (14)C2"—C7"1.404 (2)
N1—C91.3292 (17)C3"—C4"1.384 (2)
N1—C21.3911 (19)C3"—H3"0.95
C2—C31.396 (2)C4"—C5"1.402 (2)
C2—C71.407 (2)C4"—H4"0.95
C3—C41.386 (2)C5"—C6"1.383 (2)
C3—H30.95C5"—H5"0.95
C4—C51.405 (3)C6"—C7"1.390 (2)
C4—H40.95C6"—H6"0.95
C5—C61.387 (3)C7"—N8"1.3834 (19)
C5—H50.95N8"—C9"1.3482 (18)
C6—C71.393 (2)N8"—H8"0.88
C6—H60.95C9"—C10"1.4535 (19)
C7—N81.383 (2)C10"—C11"1.362 (2)
N8—C91.3480 (19)C10"—N14"1.3767 (18)
N8—H80.88C11"—S12"1.7088 (16)
C9—C101.449 (2)C11"—H11"0.95
C10—C111.362 (2)S12"—C13"1.7113 (17)
C10—N141.3810 (19)C13"—N14"1.3038 (19)
C11—S121.7059 (17)C13"—H13"0.95
C11—H110.95N1S3—O2S31.241 (2)
S12—C131.7102 (16)N1S3—O4S31.243 (2)
C13—N141.306 (2)N1S3—O3S31.246 (2)
C13—H130.95N1S2—N1S20.000 (3)
N1'—C9'1.337 (2)N1S2—O2S21.247 (2)
N1'—C2'1.388 (2)N1S2—O2S21.247 (2)
C2'—C3'1.395 (2)N1S2—O3S21.255 (2)
C2'—C7'1.412 (2)N1S2—O3S21.255 (2)
C3'—C4'1.389 (2)N1S2—O4S21.2592 (19)
C3'—H3'0.95O2S2—O2S20.000 (5)
C4'—C5'1.407 (3)O2S2—N1S21.247 (2)
C4'—H4'0.95O3S2—O3S20.000 (5)
C5'—C6'1.376 (3)O3S2—N1S21.255 (2)
C5'—H5'0.95O4S2—N1S21.2592 (19)
C6'—C7'1.385 (2)O1S—O1S0.000 (4)
C6'—H6'0.95O1S—H1SA0.947 (5)
C7'—N8'1.382 (2)O1S—H1SB0.945 (5)
N8'—C9'1.346 (2)O1S4—C2S41.426 (7)
N8'—H8'0.88O1S4—H1S40.84
C9'—C10'1.457 (2)C2S4—C3S41.511 (5)
C10'—C11'1.364 (2)C2S4—H2S10.99
C10'—N14'1.379 (2)C2S4—H2S20.99
C11'—S12'1.723 (2)C3S4—H3S10.98
C11'—H11'0.95C3S4—H3S20.98
S12'—C13'1.6990 (19)C3S4—H3S30.98
N1—Zn1—N1'100.89 (5)N1'—C9'—C10'120.05 (14)
N1—Zn1—N1"101.26 (5)N8'—C9'—C10'127.16 (15)
N1'—Zn1—N1"97.91 (5)C11'—C10'—N14'114.86 (17)
N1—Zn1—N1477.63 (5)C11'—C10'—C9'130.34 (17)
N1'—Zn1—N1497.21 (5)N14'—C10'—C9'114.80 (14)
N1"—Zn1—N14164.77 (5)C10'—C11'—S12'109.58 (15)
N1—Zn1—N14"96.16 (5)C10'—C11'—H11'125.2
N1'—Zn1—N14"162.86 (5)S12'—C11'—H11'125.2
N1"—Zn1—N14"76.89 (5)C13'—S12'—C11'89.72 (9)
N14—Zn1—N14"88.08 (5)N14'—C13'—S12'115.21 (15)
N1—Zn1—N14'164.85 (5)N14'—C13'—H13'122.4
N1'—Zn1—N14'76.49 (5)S12'—C13'—H13'122.4
N1"—Zn1—N14'93.89 (5)C13'—N14'—C10'110.62 (15)
N14—Zn1—N14'87.83 (5)C13'—N14'—Zn1137.29 (13)
N14"—Zn1—N14'87.47 (5)C10'—N14'—Zn1112.09 (11)
C9—N1—C2105.50 (12)C9"—N1"—C2"105.33 (12)
C9—N1—Zn1115.11 (10)C9"—N1"—Zn1114.90 (9)
C2—N1—Zn1138.53 (10)C2"—N1"—Zn1139.21 (10)
N1—C2—C3130.95 (14)N1"—C2"—C3"130.90 (13)
N1—C2—C7108.59 (13)N1"—C2"—C7"109.06 (13)
C3—C2—C7120.46 (14)C3"—C2"—C7"120.04 (13)
C4—C3—C2117.35 (15)C4"—C3"—C2"117.11 (14)
C4—C3—H3121.3C4"—C3"—H3"121.4
C2—C3—H3121.3C2"—C3"—H3"121.4
C3—C4—C5121.68 (16)C3"—C4"—C5"121.95 (15)
C3—C4—H4119.2C3"—C4"—H4"119
C5—C4—H4119.2C5"—C4"—H4"119
C6—C5—C4121.58 (16)C6"—C5"—C4"121.76 (15)
C6—C5—H5119.2C6"—C5"—H5"119.1
C4—C5—H5119.2C4"—C5"—H5"119.1
C5—C6—C7116.55 (15)C5"—C6"—C7"116.05 (15)
C5—C6—H6121.7C5"—C6"—H6"122
C7—C6—H6121.7C7"—C6"—H6"122
N8—C7—C6131.65 (14)N8"—C7"—C6"131.38 (14)
N8—C7—C2106.00 (13)N8"—C7"—C2"105.56 (12)
C6—C7—C2122.34 (15)C6"—C7"—C2"123.04 (14)
C9—N8—C7107.00 (12)C9"—N8"—C7"107.09 (12)
C9—N8—H8126.5C9"—N8"—H8"126.5
C7—N8—H8126.5C7"—N8"—H8"126.5
N1—C9—N8112.89 (13)N1"—C9"—N8"112.95 (13)
N1—C9—C10120.25 (13)N1"—C9"—C10"120.51 (12)
N8—C9—C10126.75 (13)N8"—C9"—C10"126.54 (13)
C11—C10—N14115.09 (14)C11"—C10"—N14"115.19 (13)
C11—C10—C9129.90 (14)C11"—C10"—C9"130.08 (14)
N14—C10—C9114.87 (12)N14"—C10"—C9"114.70 (13)
C10—C11—S12109.47 (12)C10"—C11"—S12"109.35 (11)
C10—C11—H11125.3C10"—C11"—H11"125.3
S12—C11—H11125.3S12"—C11"—H11"125.3
C11—S12—C1390.39 (8)C11"—S12"—C13"90.26 (7)
N14—C13—S12114.18 (12)N14"—C13"—S12"114.19 (12)
N14—C13—H13122.9N14"—C13"—H13"122.9
S12—C13—H13122.9S12"—C13"—H13"122.9
C13—N14—C10110.85 (13)C13"—N14"—C10"111.00 (13)
C13—N14—Zn1137.17 (11)C13"—N14"—Zn1136.33 (11)
C10—N14—Zn1111.96 (10)C10"—N14"—Zn1112.50 (9)
C9'—N1'—C2'105.49 (13)O2S3—N1S3—O4S3120.16 (19)
C9'—N1'—Zn1116.53 (11)O2S3—N1S3—O3S3121.35 (18)
C2'—N1'—Zn1137.92 (11)O4S3—N1S3—O3S3118.49 (17)
N1'—C2'—C3'130.68 (15)O2S2—N1S2—O3S2120.02 (16)
N1'—C2'—C7'108.59 (15)O2S2—N1S2—O3S2120.02 (16)
C3'—C2'—C7'120.72 (16)O2S2—N1S2—O3S2120.02 (16)
C4'—C3'—C2'116.65 (17)O2S2—N1S2—O3S2120.02 (16)
C4'—C3'—H3'121.7O2S2—N1S2—O4S2121.30 (15)
C2'—C3'—H3'121.7O2S2—N1S2—O4S2121.30 (15)
C3'—C4'—C5'121.59 (19)O3S2—N1S2—O4S2118.63 (15)
C3'—C4'—H4'119.2O3S2—N1S2—O4S2118.63 (15)
C5'—C4'—H4'119.2H1SA—O1S—H1SB103 (2)
C6'—C5'—C4'122.28 (17)C2S4—O1S4—H1S4109.5
C6'—C5'—H5'118.9O1S4—C2S4—C3S4115.1 (3)
C4'—C5'—H5'118.9O1S4—C2S4—H2S1108.5
C5'—C6'—C7'116.21 (17)C3S4—C2S4—H2S1108.5
C5'—C6'—H6'121.9O1S4—C2S4—H2S2108.5
C7'—C6'—H6'121.9C3S4—C2S4—H2S2108.5
N8'—C7'—C6'131.51 (17)H2S1—C2S4—H2S2107.5
N8'—C7'—C2'105.96 (14)C2S4—C3S4—H3S1109.5
C6'—C7'—C2'122.51 (18)C2S4—C3S4—H3S2109.5
C9'—N8'—C7'107.19 (14)H3S1—C3S4—H3S2109.5
C9'—N8'—H8'126.4C2S4—C3S4—H3S3109.5
C7'—N8'—H8'126.4H3S1—C3S4—H3S3109.5
N1'—C9'—N8'112.78 (15)H3S2—C3S4—H3S3109.5
N1'—Zn1—N1—C996.43 (11)C2'—N1'—C9'—C10'179.60 (13)
N1"—Zn1—N1—C9163.13 (10)Zn1—N1'—C9'—C10'2.06 (18)
N14—Zn1—N1—C91.35 (10)C7'—N8'—C9'—N1'0.42 (18)
N14"—Zn1—N1—C985.32 (11)C7'—N8'—C9'—C10'179.51 (14)
N14'—Zn1—N1—C917.9 (3)N1'—C9'—C10'—C11'177.96 (16)
N1'—Zn1—N1—C296.16 (15)N8'—C9'—C10'—C11'3.0 (3)
N1"—Zn1—N1—C24.28 (15)N1'—C9'—C10'—N14'2.1 (2)
N14—Zn1—N1—C2168.75 (15)N8'—C9'—C10'—N14'176.96 (14)
N14"—Zn1—N1—C282.09 (15)N14'—C10'—C11'—S12'0.44 (19)
N14'—Zn1—N1—C2174.66 (17)C9'—C10'—C11'—S12'179.54 (14)
C9—N1—C2—C3179.11 (16)C10'—C11'—S12'—C13'0.23 (14)
Zn1—N1—C2—C310.9 (3)C11'—S12'—C13'—N14'0.03 (14)
C9—N1—C2—C70.20 (16)S12'—C13'—N14'—C10'0.27 (18)
Zn1—N1—C2—C7168.37 (11)S12'—C13'—N14'—Zn1178.99 (9)
N1—C2—C3—C4177.01 (15)C11'—C10'—N14'—C13'0.5 (2)
C7—C2—C3—C42.2 (2)C9'—C10'—N14'—C13'179.52 (13)
C2—C3—C4—C51.0 (2)C11'—C10'—N14'—Zn1179.00 (12)
C3—C4—C5—C60.9 (3)C9'—C10'—N14'—Zn11.02 (16)
C4—C5—C6—C71.5 (2)N1—Zn1—N14'—C13'99.0 (2)
C5—C6—C7—N8177.85 (16)N1'—Zn1—N14'—C13'179.30 (17)
C5—C6—C7—C20.2 (2)N1"—Zn1—N14'—C13'82.08 (17)
N1—C2—C7—N80.79 (16)N14—Zn1—N14'—C13'82.76 (17)
C3—C2—C7—N8179.81 (13)N14"—Zn1—N14'—C13'5.41 (17)
N1—C2—C7—C6177.72 (14)N1—Zn1—N14'—C10'81.8 (2)
C3—C2—C7—C61.7 (2)N1'—Zn1—N14'—C10'0.04 (10)
C6—C7—N8—C9176.86 (16)N1"—Zn1—N14'—C10'97.17 (11)
C2—C7—N8—C91.47 (16)N14—Zn1—N14'—C10'97.98 (11)
C2—N1—C9—N81.18 (16)N14"—Zn1—N14'—C10'173.84 (11)
Zn1—N1—C9—N8172.57 (10)N1—Zn1—N1"—C9"98.84 (11)
C2—N1—C9—C10175.35 (13)N1'—Zn1—N1"—C9"158.33 (11)
Zn1—N1—C9—C103.97 (17)N14—Zn1—N1"—C9"14.6 (2)
C7—N8—C9—N11.71 (17)N14"—Zn1—N1"—C9"5.05 (10)
C7—N8—C9—C10174.56 (14)N14'—Zn1—N1"—C9"81.44 (11)
N1—C9—C10—C11179.39 (16)N1—Zn1—N1"—C2"91.41 (15)
N8—C9—C10—C114.6 (3)N1'—Zn1—N1"—C2"11.43 (16)
N1—C9—C10—N145.2 (2)N14—Zn1—N1"—C2"175.66 (16)
N8—C9—C10—N14170.79 (14)N14"—Zn1—N1"—C2"174.81 (16)
N14—C10—C11—S121.30 (18)N14'—Zn1—N1"—C2"88.31 (16)
C9—C10—C11—S12174.08 (13)C9"—N1"—C2"—C3"178.40 (17)
C10—C11—S12—C130.99 (13)Zn1—N1"—C2"—C3"11.2 (3)
C11—S12—C13—N140.52 (14)C9"—N1"—C2"—C7"1.05 (17)
S12—C13—N14—C100.12 (18)Zn1—N1"—C2"—C7"169.32 (12)
S12—C13—N14—Zn1178.49 (9)N1"—C2"—C3"—C4"179.53 (16)
C11—C10—N14—C130.9 (2)C7"—C2"—C3"—C4"1.1 (2)
C9—C10—N14—C13175.16 (14)C2"—C3"—C4"—C5"0.8 (3)
C11—C10—N14—Zn1179.74 (11)C3"—C4"—C5"—C6"1.6 (3)
C9—C10—N14—Zn13.65 (16)C4"—C5"—C6"—C7"0.3 (3)
N1—Zn1—N14—C13177.00 (18)C5"—C6"—C7"—N8"179.84 (18)
N1'—Zn1—N14—C1383.37 (17)C5"—C6"—C7"—C2"1.7 (3)
N1"—Zn1—N14—C1389.5 (2)N1"—C2"—C7"—N8"0.50 (17)
N14"—Zn1—N14—C1380.26 (17)C3"—C2"—C7"—N8"179.02 (14)
N14'—Zn1—N14—C137.28 (17)N1"—C2"—C7"—C6"178.03 (15)
N1—Zn1—N14—C101.36 (10)C3"—C2"—C7"—C6"2.5 (2)
N1'—Zn1—N14—C1098.27 (11)C6"—C7"—N8"—C9"178.60 (18)
N1"—Zn1—N14—C1088.8 (2)C2"—C7"—N8"—C9"0.24 (17)
N14"—Zn1—N14—C1098.09 (10)C2"—N1"—C9"—N8"1.25 (17)
N14'—Zn1—N14—C10174.36 (11)Zn1—N1"—C9"—N8"171.83 (10)
N1—Zn1—N1'—C9'163.67 (10)C2"—N1"—C9"—C10"178.59 (13)
N1"—Zn1—N1'—C9'93.18 (11)Zn1—N1"—C9"—C10"8.32 (18)
N14—Zn1—N1'—C9'84.95 (11)C7"—N8"—C9"—N1"0.96 (18)
N14"—Zn1—N1'—C9'22.2 (2)C7"—N8"—C9"—C10"178.87 (14)
N14'—Zn1—N1'—C9'1.06 (10)N1"—C9"—C10"—C11"170.92 (16)
N1—Zn1—N1'—C2'12.80 (16)N8"—C9"—C10"—C11"8.9 (3)
N1"—Zn1—N1'—C2'90.35 (15)N1"—C9"—C10"—N14"7.1 (2)
N14—Zn1—N1'—C2'91.52 (16)N8"—C9"—C10"—N14"173.08 (14)
N14"—Zn1—N1'—C2'161.30 (15)N14"—C10"—C11"—S12"0.48 (17)
N14'—Zn1—N1'—C2'177.52 (16)C9"—C10"—C11"—S12"178.49 (13)
C9'—N1'—C2'—C3'179.14 (17)C10"—C11"—S12"—C13"0.60 (13)
Zn1—N1'—C2'—C3'4.1 (3)C11"—S12"—C13"—N14"0.63 (14)
C9'—N1'—C2'—C7'0.29 (17)S12"—C13"—N14"—C10"0.47 (18)
Zn1—N1'—C2'—C7'176.43 (11)S12"—C13"—N14"—Zn1175.30 (9)
N1'—C2'—C3'—C4'179.16 (16)C11"—C10"—N14"—C13"0.02 (19)
C7'—C2'—C3'—C4'1.5 (2)C9"—C10"—N14"—C13"178.34 (13)
C2'—C3'—C4'—C5'0.2 (3)C11"—C10"—N14"—Zn1176.12 (11)
C3'—C4'—C5'—C6'1.2 (3)C9"—C10"—N14"—Zn12.20 (16)
C4'—C5'—C6'—C7'0.5 (3)N1—Zn1—N14"—C13"73.26 (16)
C5'—C6'—C7'—N8'179.00 (17)N1'—Zn1—N14"—C13"112.6 (2)
C5'—C6'—C7'—C2'1.2 (2)N1"—Zn1—N14"—C13"173.43 (17)
N1'—C2'—C7'—N8'0.05 (17)N14—Zn1—N14"—C13"4.07 (16)
C3'—C2'—C7'—N8'179.45 (14)N14'—Zn1—N14"—C13"91.98 (16)
N1'—C2'—C7'—C6'178.26 (15)N1—Zn1—N14"—C10"101.52 (10)
C3'—C2'—C7'—C6'2.2 (2)N1'—Zn1—N14"—C10"72.6 (2)
C6'—C7'—N8'—C9'178.30 (17)N1"—Zn1—N14"—C10"1.35 (10)
C2'—C7'—N8'—C9'0.21 (17)N14—Zn1—N14"—C10"178.86 (10)
C2'—N1'—C9'—N8'0.44 (17)N14'—Zn1—N14"—C10"93.24 (10)
Zn1—N1'—C9'—N8'177.10 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O4S3i0.881.912.759 (2)163
N8—H8···O1S0.881.852.7179 (19)169
N8"—H8"···O3S2ii0.882.373.045 (2)134
N8"—H8"···O4S2ii0.882.082.8628 (18)147
O1S—H1SA···O2S30.95 (1)2.53 (2)3.297 (2)139 (2)
O1S—H1SA···O3S30.95 (1)1.94 (1)2.852 (2)162 (2)
O1S—H1SB···O2S20.95 (1)1.87 (1)2.801 (2)167 (2)
O1S—H1SB···O3S20.95 (1)2.43 (2)3.083 (2)126 (2)
O1S4—H1S4···C130.842.583.369 (4)156
O1S4—H1S4···S120.842.743.547 (3)161
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C10H7N3S)3](NO3)2·0.5C2H6O·H2O
Mr834.23
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.4687 (2), 12.8659 (3), 13.8539 (3)
α, β, γ (°)83.280 (1), 84.374 (1), 69.611 (1)
V3)1733.76 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.21 × 0.18 × 0.10
Data collection
DiffractometerBruker Kappa APEXII DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.711, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
161151, 12621, 10491
Rint0.055
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.06
No. of reflections12621
No. of parameters495
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.75, 1.13

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Zn1—N12.0931 (12)Zn1—N142.2170 (12)
Zn1—N1'2.0985 (13)Zn1—N14"2.2326 (13)
Zn1—N1"2.1197 (12)Zn1—N14'2.2694 (14)
N1—Zn1—N1477.63 (5)N1"—Zn1—N14"76.89 (5)
N1"—Zn1—N14164.77 (5)N1—Zn1—N14'164.85 (5)
N1'—Zn1—N14"162.86 (5)N1'—Zn1—N14'76.49 (5)
N1—C9—C10—N145.2 (2)N1"—C9"—C10"—N14"7.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O4S3i0.881.912.759 (2)163
N8'—H8'···O1S0.881.852.7179 (19)168.5
N8"—H8"···O3S2ii0.882.373.045 (2)134
N8"—H8"···O4S2ii0.882.082.8628 (18)147
O1S—H1SA···O2S30.947 (5)2.525 (19)3.297 (2)139 (2)
O1S—H1SA···O3S30.947 (5)1.936 (10)2.852 (2)162 (2)
O1S—H1SB···O2S20.945 (5)1.873 (8)2.801 (2)167 (2)
O1S—H1SB···O3S20.945 (5)2.43 (2)3.083 (2)126 (2)
O1S4—H1S4···C130.842.583.369 (4)156
O1S4—H1S4···S120.842.743.547 (3)161
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds