Download citation
Download citation
link to html
Three alkaline earth metal salts of phenyl­acetic acid were examined and all were found to have similar structural types to analogous salts of benzoic and halobenzoic acids. Thus, a synchrotron study shows that the cations in catena-poly[[[tetra­aqua­magnesium(II)]-μ-phenyl­acetato-κ2O:O′] phenyl­acetate], {[Mg(C8H7O2)(H2O)4](C8H7O2)}n, form a one-dimensional coordination polymer that propagates through Mg—O—C—O—Mg inter­actions involving both crystallographically independent Mg centres (Z′ = 2) and through translation along the a axis. The polymeric chains pack to give alternate inorganic layers and organic bilayers. The Ca and Sr species catena-poly[[[diaqua­(phenyl­acetato-κ2O,O′)calcium(II)]-μ3-phenylacetato-1′:1:1′′κ4O:O,O′:O′] monohydrate], {[Ca(C8H7O2)2(H2O)2]·H2O}n, and catena-poly[[[diaqua­(phenyl­acetato-κ2O,O′)strontium(II)]-μ3-phenyl­acet­ato-1′:1:1′′κ4O:O,O′:O′] monohydrate], {[Sr(C8H7O2)2(H2O)2]·H2O}n, are essentially isostructural. Both form one-dimensional coordination polymers through a carboxyl­ate group that forms four M—O bonds. The polymeric chains propagate via 21 screw axes parallel to the b axis and are further linked in the bc plane by hydrogen bonding involving the non-metal-bound water mol­ecule. Similarly to the Mg salt, both have inorganic layers that alternate with organic bilayers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111055284/gz3204sup1.cif
Contains datablocks global, MgPAA, CaPAA, SrPAA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111055284/gz3204MgPAAsup2.hkl
Contains datablock MgPAA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111055284/gz3204CaPAAsup3.hkl
Contains datablock CaPAA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111055284/gz3204SrPAAsup4.hkl
Contains datablock SrPAA

CCDC references: 867000; 867001; 867002

Comment top

Often, the simplest way to alter the physicochemical properties of an active pharmaceutical ingredient (API) is to make different salt forms of it. As many of the performance-critical properties of an API (such as solubility, melting point and hygroscopicity) are dependant upon the solid-state structure, a true understanding of structure–property relationships should allow the most appropriate counterion to be chosen for any such desired property. However, such structure–property relationships are poorly understood, and thus salt selection of API forms is currently undertaken using time-consuming trial and error methods (Stahl & Wermuth, 2002). One reason for the lack of understanding is a general dearth of large groups of systematically related crystal structures with associated phase-specific physicochemical data. Such studies do exist (for example Collier et al., 2006; Black et al., 2007; Kennedy et al., 2011) but are relatively uncommon. As a contribution to this field, Arlin et al. (2011) showed that Mg, Ca and Sr (but not Ba) salt forms of a set of simple benzoate-derived anions could be systematically structurally classified and that these structural features help rationalize the comparative aqueous solubility data gathered. A major aim of this earlier work was to use the lessons learned from simple model compounds to predict behaviour in larger commercial APIs with similar functionality. Many APIs have aryl carboxylate groups (e.g. aspirin and fluoroquinolones), as do the reported model benzoate structures (Arlin et al., 2011). However, several important drug classes (e.g. profens and naproxens) have a Csp3 atom inserted between the aromatic ring and the carboxylate group, and this structural feature was not included in the model data set. To help fill this gap, the Mg, Ca and Sr complexes of phenylacetate (PAA) have been investigated in order to show what effect the extra `spacer' Csp3 atom has on crystal stucture, and thus to determine if the model benzoate data set could be a useful comparative tool for use with salts of ibuprofen and naproxen. Structural studies of both co-crystals and organic salts of PAA have recently been published (Brittain, 2010; Smith & Wermuth, 2010a,b), but the only s-block metal salt of PAA to be structurally characterized is the K salt, which is found to exist as the co-crystal K(PAA)(HPAA) (Bacon et al., 1977).

Crystals of catena-poly[[[tetraaquamagnesium(II)]-µ-phenylacetato-κ2O:O'] phenylacetate], MgPAA, form as very thin plates which required the use of synchrotron radiation to characterize them as [Mg(PAA)(H2O)4](PAA), with two crystallographically independent fragments per asymmetric unit (Z' = 2). Each Mg centre is approximately octahedral and bonds to four terminal water ligands and to single O atoms of two PAA anions. These last are in mutually cis positions (see Table 1 for geometric details and Fig. 1 for an illustration). Although the shortest Mg—O lengths involve the PAA anions, some of the Mg—OH2 bonds are shorter than the other Mg—PAA bonds. Thus, bonding to the PAA anion does not appear to be systematically stronger than Mg bonding to water. Two of the PAA anions each bridge across two Mg centres using both O atoms of their carboxylate groups to make single O—Mg contacts. This results in a one-dimensional coordination chain based on Mg—O—C—O—Mg units, which propagates by translation along the crystallographic a direction (Fig. 2). The remaining two PAA anions form no Mg—O bonds. Fig. 3 shows that the structure packs to give alternate hydrophobic and hydrophilic layers along the c direction. The organic bilayer thus formed means that, although all the water molecules utilize both of their H atoms to form hydrogen bonds, these only connect the structure in two dimensions, e.g. there is a hydrogen-bonding network in the ab plane. This packing motif with alternating layers, an organic bilayer and a one-dimensional coordination chain based on bridging carboxylates is that found previously for Mg salts of benzoate and halobenzoates. It is conspicously different from the structures found for other benzoate ions with hydroxy, amino or nitro substituents (Arlin et al., 2011).

The structures of the calcium(II) and strontium(II) compounds catena-poly[[[diaqua(phenylacetato-κ2O,O')calcium(II)]-µ3-phenylacetato-1':1:1''κ4O:O,O':O'] monohydrate] and catena-poly[[[diaqua(phenylacetato-κ2O,O')strontium(II)]-µ3-phenylacetato-1':1:1''κ4O:O,O':O'] monohydrate], CaPAA and SrPAA, respectively, were found to be essentially isostructural, with the composition [M(PAA)2(H2O)2].H2O (Figs. 4 and 5). This again reflects the structures of the benzoate derivatives, where the Ca and Sr structures were found to have similar structural types and even, for salicylate, p-aminosalicylate and p-aminobenzoate, to form isostructural pairs. In each structure herein, the metal centre is formally eight-coordinate, although, as Cotton & Bergman (1964) classically showed, if each chelated group is assigned to one coordination site rather than two, then the structures can be described as distorted octahedral. The water ligands are both trans to chelated carboxylate groups. As with MgPAA, the M—OH2 distances are not systematically longer or shorter than the M—O(PAA) distances. One PAA anion is a terminal ligand and uses both its O atoms to bond to a single metal centre, whilst the second PPA anion chelates to one metal centre and bridges to a further two. As both water ligands are terminal, it is this second PAA anion type that leads to the propagation of a one-dimensional coordination chain along the 21 screw axis parallel to the b direction (Fig. 6). These coordination chains are interlinked by hydrogen bonding through atom O3W, the non-metal-bound water molecule. This gives a hydrophilic layer in the bc plane with alternating hydrophilic and hydrophobic layers along the crystallographic a direction. Again, organic bilayers are formed. This alternating layer motif with organic bilayers is identical to that observed in the Ca salt of benzoate and the Ca and Sr salts of p-fluoro- and p-chlorobenzoate (Senkovska & Thewalt, 2005; Karipides et al., 1988; Arlin et al., 2011). The bonding of the coordination polymer is also somewhat similar to these species, in that the bridging –COO- group plays an identical role. However, in the benzoate derivatives there is no terminal carboxylate ligand. Instead, the third water molecule forms an extra bridge between the metal centres and the benzoate anion plays the role of linker group, hydrogen-bonding between the one-dimensional coordination chains. As with MgPAA, both the packing mode and the bonding within the coordination chains are extremely different from those typically observed for benzoates with hydroxy, amino or nitro substituents (Arlin et al., 2011).

In summary, despite the additional Csp3 atom between the aryl and –COO- groups, all three PAA structures presented here have structural types closely related to those found for analogous benzoate and halobenzoate salts. This is shown by similarities in hydration state and in packing and layering behaviour, and by the formation of one-dimensional coordination polymers via –COO- bridges. There is some variation from the benzoate structures in the detail of the metal bonding, but this is on a similar scale to the variation already found within the group of benzoate structures themselves. As the PAA salt structures are markedly different from those found for benzoate ions with active hydrogen-bonding substituents, it is concluded that the addition of CH2 has less overall effect on structure than the addition of hydroxy, amino or nitro groups to the aryl ring.

Related literature top

For related literature, see: Arlin et al. (2011); Bacon et al. (1977); Black et al. (2007); Brittain (2010); Collier et al. (2006); Cotton & Bergman (1964); Karipides et al. (1988); Kennedy et al. (2011); Senkovska & Thewalt (2005); Smith & Wermuth (2010a, 2010b); Stahl & Wermuth (2002).

Experimental top

All samples were prepared by slowly adding a slight excess of an aqueous solution of the appropriate metal carbonate to a stirred aqueous slurry of phenylacetic acid. The volumes of the resulting clear solutions were reduced until white precipitates were deposited, and these were collected by filtration. Colourless crystals suitable for single-crystal diffraction studies were obtained by recrystallization of the samples from warm water.

Refinement top

The H atoms of water molecules were positioned as found by difference syntheses and were refined with restraints such that the O—H and H···H distances approximated 0.88 and 1.33 Å, respectively; Uiso(H) values were set at 1.5Ueq(O). This introduced 24, nine and nine restraints for MgPAA, CaPAA and SrPAA, respectively. H atoms bonded to C atoms were positioned geometrically and refined in riding mode, with C—H = 0.95 and 0.99 Å for CH and CH2 groups, respectively, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007) for MgPAA; DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998) for CaPAA; CrysAlis CCD (Oxford Diffraction, 2009) for SrPAA. Cell refinement: SAINT (Bruker, 2007) for MgPAA; DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998) for CaPAA; CrysAlis CCD (Oxford Diffraction, 2009) for SrPAA. Data reduction: SAINT (Bruker, 2007) for MgPAA; DENZO (Otwinowski & Minor, 1997) for CaPAA; CrysAlis RED (Oxford Diffraction, 2009) for SrPAA. For all compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001) for MgPAA, CaPAA; ORTEP-3 (Farrugia, 1997) for SrPAA. For all compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The contents of the asymmetric unit of MgPPA, showing the atom-numbering scheme (for clarity, only essential atom labels are shown). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Part of the one-dimensional coordination polymer found in MgPAA. The polymer chain is parallel to the crystallographic a direction. The noncoordinating PAA anions are not shown.
[Figure 3] Fig. 3. The packing mode of MgPAA, viewed down a to show the alternating inorganic layers and organic bilayers along the c direction.
[Figure 4] Fig. 4. The contents of the asymmetric unit of CaPPA, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 5] Fig. 5. The contents of the asymmetric unit of SrPPA, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 6] Fig. 6. Part of the one-dimensional coordination polymer found in CaPAA. The polymer propagates in the crystallographic b direction. Non-metal-bound water and all H atoms have been omitted for clarity
(MgPAA) catena-poly[[[tetraaquamagnesium(II)]-µ-phenylacetato- κ2O:O'] phenylacetate] top
Crystal data top
[Mg(C8H7O2)(H2O)4](C8H7O2)F(000) = 1552
Mr = 366.65Dx = 1.373 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.68840 Å
Hall symbol: P 2ac 2abCell parameters from 5842 reflections
a = 9.7979 (7) Åθ = 2.3–26.9°
b = 10.0424 (8) ŵ = 0.14 mm1
c = 36.052 (3) ÅT = 120 K
V = 3547.3 (5) Å3Plate, colourless
Z = 80.12 × 0.08 × 0.001 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6253 independent reflections
Radiation source: Daresbury SRS Station 9.85231 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.050
fine–slice ω scansθmax = 24.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.844, Tmax = 1.000k = 1111
26335 measured reflectionsl = 4242
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2732P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.29 e Å3
6253 reflectionsΔρmin = 0.25 e Å3
500 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
24 restraintsExtinction coefficient: 0.0078 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with how many Friedel pairs?
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.5 (3)
Crystal data top
[Mg(C8H7O2)(H2O)4](C8H7O2)V = 3547.3 (5) Å3
Mr = 366.65Z = 8
Orthorhombic, P212121Synchrotron radiation, λ = 0.68840 Å
a = 9.7979 (7) ŵ = 0.14 mm1
b = 10.0424 (8) ÅT = 120 K
c = 36.052 (3) Å0.12 × 0.08 × 0.001 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6253 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5231 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 1.000Rint = 0.050
26335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.29 e Å3
S = 1.02Δρmin = 0.25 e Å3
6253 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
500 parametersAbsolute structure parameter: 0.5 (3)
24 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.87409 (8)0.01782 (8)0.20171 (2)0.0165 (2)
Mg20.37300 (9)0.12071 (8)0.20086 (2)0.0171 (2)
O10.55301 (18)0.05611 (17)0.17986 (5)0.0197 (4)
O20.76058 (18)0.03754 (18)0.15584 (5)0.0207 (4)
O1W0.3453 (2)0.06871 (17)0.22289 (5)0.0220 (4)
H1W0.303 (3)0.137 (2)0.2137 (7)0.033*
H2W0.341 (3)0.087 (3)0.2466 (3)0.033*
O30.05435 (18)0.04603 (17)0.18056 (5)0.0198 (4)
O2W0.19056 (19)0.19528 (18)0.22621 (5)0.0204 (4)
H3W0.184 (3)0.160 (3)0.2483 (4)0.031*
H4W0.131 (2)0.149 (2)0.2136 (6)0.031*
O40.25838 (18)0.06915 (18)0.15450 (5)0.0209 (4)
O3W0.42737 (19)0.30700 (18)0.18460 (5)0.0210 (4)
H5W0.384 (2)0.3796 (18)0.1897 (8)0.031*
H6W0.5137 (11)0.327 (3)0.1872 (8)0.031*
O50.19124 (18)0.71901 (17)0.19916 (5)0.0216 (4)
O4W0.45625 (19)0.16285 (18)0.25402 (5)0.0218 (4)
H7W0.5303 (19)0.138 (3)0.2658 (7)0.033*
H8W0.438 (3)0.2358 (18)0.2664 (7)0.033*
O60.33485 (18)0.54884 (16)0.20485 (5)0.0218 (4)
O5W0.69033 (19)0.09172 (18)0.22636 (5)0.0199 (4)
H9W0.631 (2)0.046 (2)0.2135 (6)0.030*
H10W0.683 (3)0.054 (2)0.2481 (4)0.030*
O70.68888 (18)0.38352 (17)0.19966 (5)0.0218 (4)
O6W0.95600 (19)0.05905 (18)0.25519 (5)0.0218 (4)
H11W1.027 (2)0.033 (3)0.2676 (7)0.033*
H12W0.939 (3)0.1390 (15)0.2638 (7)0.033*
O80.83275 (18)0.55423 (17)0.20467 (5)0.0218 (4)
O7W0.92905 (19)0.20417 (17)0.18503 (5)0.0209 (4)
H13W1.0144 (12)0.229 (3)0.1872 (8)0.031*
H14W0.885 (2)0.2765 (18)0.1906 (8)0.031*
O8W0.8467 (2)0.17253 (17)0.22385 (5)0.0217 (4)
H15W0.834 (3)0.189 (3)0.2477 (3)0.032*
H16W0.795 (3)0.234 (2)0.2140 (6)0.032*
C10.6397 (3)0.0758 (2)0.15402 (7)0.0178 (5)
C20.5917 (3)0.1517 (3)0.12002 (7)0.0222 (6)
H2A0.49070.15390.12010.027*
H2B0.62430.24470.12190.027*
C30.6388 (3)0.0951 (3)0.08337 (7)0.0208 (6)
C40.5480 (3)0.0228 (3)0.06230 (8)0.0360 (7)
H40.45700.01090.07080.043*
C50.5880 (4)0.0329 (4)0.02879 (9)0.0484 (9)
H50.52440.08370.01480.058*
C60.7191 (3)0.0153 (3)0.01546 (8)0.0327 (7)
H60.74610.05370.00750.039*
C70.8102 (3)0.0589 (3)0.03608 (8)0.0309 (7)
H70.90020.07320.02710.037*
C80.7705 (3)0.1127 (3)0.06995 (7)0.0276 (6)
H80.83440.16230.08410.033*
C90.1362 (3)0.0321 (2)0.15337 (7)0.0191 (6)
C100.0807 (3)0.0359 (3)0.11900 (7)0.0227 (6)
H10A0.09680.13280.12160.027*
H10B0.01930.02220.11840.027*
C110.1377 (3)0.0077 (3)0.08230 (7)0.0226 (6)
C120.1770 (3)0.0852 (3)0.05540 (7)0.0277 (6)
H120.17580.17750.06120.033*
C130.2179 (3)0.0438 (3)0.02033 (8)0.0333 (7)
H130.24210.10810.00220.040*
C140.2236 (3)0.0899 (4)0.01165 (8)0.0383 (8)
H140.25300.11780.01220.046*
C150.1863 (3)0.1822 (3)0.03789 (8)0.0369 (7)
H150.19000.27430.03200.044*
C160.1435 (3)0.1423 (3)0.07278 (8)0.0288 (6)
H160.11760.20760.09050.035*
C170.2396 (3)0.6088 (3)0.18818 (7)0.0183 (6)
C180.1828 (3)0.5460 (3)0.15308 (7)0.0240 (6)
H18A0.10050.59530.14510.029*
H18B0.15580.45280.15830.029*
C190.2880 (3)0.5479 (3)0.12208 (7)0.0239 (6)
C200.3281 (3)0.4308 (3)0.10452 (8)0.0308 (7)
H200.29030.34830.11230.037*
C210.4222 (3)0.4328 (4)0.07594 (8)0.0382 (8)
H210.44810.35220.06410.046*
C220.4787 (3)0.5524 (4)0.06459 (8)0.0400 (8)
H220.54260.55420.04480.048*
C230.4421 (3)0.6680 (3)0.08205 (8)0.0378 (8)
H230.48190.74990.07450.045*
C240.3474 (3)0.6668 (3)0.11065 (8)0.0304 (7)
H240.32300.74780.12250.036*
C250.7344 (3)0.4951 (3)0.18898 (7)0.0187 (5)
C260.6691 (3)0.5612 (3)0.15537 (8)0.0258 (6)
H26A0.59100.50650.14690.031*
H26B0.63350.64970.16260.031*
C270.7693 (3)0.5778 (3)0.12370 (7)0.0225 (6)
C280.8426 (3)0.4702 (3)0.11062 (8)0.0294 (7)
H280.83050.38540.12190.035*
C290.9332 (4)0.4836 (4)0.08143 (9)0.0398 (8)
H290.98210.40850.07250.048*
C300.9520 (4)0.6064 (4)0.06540 (8)0.0409 (8)
H301.01570.61630.04570.049*
C310.8795 (4)0.7148 (3)0.07753 (8)0.0369 (8)
H310.89120.79890.06590.044*
C320.7889 (3)0.7008 (3)0.10690 (7)0.0291 (7)
H320.73980.77610.11560.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0159 (4)0.0175 (4)0.0161 (4)0.0003 (3)0.0000 (4)0.0002 (3)
Mg20.0158 (4)0.0177 (4)0.0178 (4)0.0003 (3)0.0001 (4)0.0006 (3)
O10.0196 (9)0.0203 (10)0.0191 (9)0.0026 (8)0.0020 (8)0.0025 (7)
O20.0184 (10)0.0273 (10)0.0165 (9)0.0036 (8)0.0012 (8)0.0010 (8)
O1W0.0266 (11)0.0197 (10)0.0196 (9)0.0041 (8)0.0013 (9)0.0003 (8)
O30.0185 (9)0.0240 (10)0.0169 (9)0.0019 (8)0.0013 (7)0.0031 (7)
O2W0.0210 (10)0.0226 (10)0.0176 (9)0.0009 (8)0.0023 (8)0.0018 (8)
O40.0152 (10)0.0276 (10)0.0197 (9)0.0022 (8)0.0007 (8)0.0008 (8)
O3W0.0169 (9)0.0199 (9)0.0263 (10)0.0007 (8)0.0003 (8)0.0006 (8)
O50.0222 (10)0.0186 (9)0.0240 (9)0.0020 (8)0.0020 (8)0.0017 (8)
O4W0.0224 (10)0.0202 (10)0.0228 (10)0.0021 (8)0.0052 (8)0.0028 (8)
O60.0221 (10)0.0216 (10)0.0216 (9)0.0034 (8)0.0017 (8)0.0005 (8)
O5W0.0198 (10)0.0227 (10)0.0170 (9)0.0024 (8)0.0005 (8)0.0029 (8)
O70.0221 (10)0.0186 (9)0.0248 (9)0.0020 (8)0.0008 (8)0.0021 (8)
O6W0.0252 (11)0.0209 (10)0.0194 (10)0.0027 (9)0.0053 (8)0.0032 (8)
O80.0201 (10)0.0226 (10)0.0225 (10)0.0030 (8)0.0031 (8)0.0014 (8)
O7W0.0180 (9)0.0187 (9)0.0259 (10)0.0004 (8)0.0006 (8)0.0014 (8)
O8W0.0288 (11)0.0189 (10)0.0173 (9)0.0039 (8)0.0001 (8)0.0010 (8)
C10.0164 (13)0.0181 (13)0.0188 (13)0.0006 (11)0.0004 (11)0.0030 (10)
C20.0198 (14)0.0262 (15)0.0208 (14)0.0033 (12)0.0002 (11)0.0030 (11)
C30.0240 (15)0.0201 (13)0.0183 (13)0.0030 (12)0.0046 (12)0.0052 (11)
C40.0270 (16)0.056 (2)0.0253 (15)0.0104 (15)0.0035 (13)0.0047 (14)
C50.044 (2)0.074 (3)0.0273 (17)0.0217 (19)0.0016 (15)0.0110 (17)
C60.0375 (18)0.0436 (18)0.0171 (14)0.0041 (15)0.0036 (13)0.0047 (13)
C70.0271 (16)0.0369 (16)0.0285 (15)0.0029 (14)0.0036 (13)0.0039 (13)
C80.0283 (16)0.0314 (15)0.0230 (14)0.0008 (13)0.0006 (12)0.0012 (12)
C90.0228 (14)0.0171 (13)0.0175 (13)0.0011 (11)0.0011 (12)0.0027 (10)
C100.0208 (14)0.0272 (14)0.0201 (13)0.0045 (12)0.0004 (11)0.0032 (11)
C110.0194 (14)0.0312 (15)0.0172 (13)0.0035 (12)0.0017 (12)0.0033 (11)
C120.0214 (14)0.0396 (17)0.0220 (14)0.0012 (13)0.0005 (11)0.0045 (12)
C130.0278 (16)0.052 (2)0.0205 (15)0.0010 (15)0.0009 (12)0.0064 (13)
C140.0342 (18)0.057 (2)0.0236 (15)0.0098 (16)0.0022 (13)0.0067 (15)
C150.0372 (18)0.0411 (18)0.0324 (16)0.0078 (15)0.0071 (14)0.0075 (14)
C160.0320 (16)0.0290 (16)0.0256 (14)0.0034 (13)0.0004 (13)0.0004 (12)
C170.0176 (13)0.0211 (14)0.0164 (13)0.0012 (11)0.0042 (11)0.0007 (10)
C180.0192 (14)0.0287 (15)0.0241 (14)0.0004 (12)0.0020 (11)0.0042 (11)
C190.0246 (15)0.0286 (15)0.0185 (14)0.0038 (12)0.0046 (11)0.0025 (11)
C200.0356 (18)0.0354 (17)0.0214 (14)0.0065 (15)0.0064 (13)0.0051 (12)
C210.0383 (19)0.051 (2)0.0255 (16)0.0144 (17)0.0026 (14)0.0090 (14)
C220.0320 (17)0.067 (2)0.0209 (15)0.0100 (17)0.0015 (13)0.0037 (15)
C230.0355 (18)0.0468 (19)0.0310 (16)0.0002 (16)0.0019 (14)0.0139 (14)
C240.0262 (16)0.0329 (16)0.0321 (16)0.0037 (13)0.0005 (13)0.0050 (12)
C250.0177 (13)0.0197 (13)0.0187 (13)0.0051 (11)0.0002 (11)0.0003 (11)
C260.0253 (15)0.0278 (15)0.0244 (14)0.0003 (13)0.0026 (12)0.0044 (12)
C270.0224 (14)0.0301 (15)0.0151 (13)0.0029 (12)0.0054 (11)0.0008 (11)
C280.0315 (17)0.0314 (16)0.0254 (15)0.0036 (14)0.0026 (13)0.0014 (12)
C290.0396 (19)0.048 (2)0.0320 (17)0.0005 (17)0.0022 (15)0.0128 (16)
C300.0397 (19)0.064 (2)0.0189 (15)0.0146 (18)0.0045 (14)0.0033 (15)
C310.047 (2)0.0428 (18)0.0211 (14)0.0196 (16)0.0059 (14)0.0095 (13)
C320.0383 (18)0.0295 (16)0.0194 (14)0.0052 (14)0.0056 (13)0.0025 (12)
Geometric parameters (Å, º) top
Mg1—O3i2.0278 (19)C7—C81.391 (4)
Mg1—O7W2.0381 (19)C7—H70.9500
Mg1—O22.0691 (19)C8—H80.9500
Mg1—O8W2.0888 (19)C9—C101.515 (4)
Mg1—O6W2.1291 (19)C10—C111.501 (4)
Mg1—O5W2.141 (2)C10—H10A0.9900
Mg2—O12.026 (2)C10—H10B0.9900
Mg2—O3W2.032 (2)C11—C161.396 (4)
Mg2—O1W2.0790 (19)C11—C121.399 (4)
Mg2—O42.079 (2)C12—C131.390 (4)
Mg2—O4W2.1252 (19)C12—H120.9500
Mg2—O2W2.143 (2)C13—C141.379 (5)
O1—C11.276 (3)C13—H130.9500
O2—C11.247 (3)C14—C151.374 (5)
O1W—H1W0.866 (10)C14—H140.9500
O1W—H2W0.875 (10)C15—C161.386 (4)
O3—C91.274 (3)C15—H150.9500
O3—Mg1ii2.0278 (19)C16—H160.9500
O2W—H3W0.874 (10)C17—C181.519 (4)
O2W—H4W0.875 (10)C18—C191.520 (4)
O4—C91.255 (3)C18—H18A0.9900
O3W—H5W0.865 (10)C18—H18B0.9900
O3W—H6W0.873 (10)C19—C241.391 (4)
O5—C171.267 (3)C19—C201.393 (4)
O4W—H7W0.877 (10)C20—C211.383 (5)
O4W—H8W0.878 (10)C20—H200.9500
O6—C171.263 (3)C21—C221.384 (5)
O5W—H9W0.875 (10)C21—H210.9500
O5W—H10W0.875 (10)C22—C231.369 (4)
O7—C251.266 (3)C22—H220.9500
O6W—H11W0.869 (10)C23—C241.387 (4)
O6W—H12W0.877 (10)C23—H230.9500
O8—C251.265 (3)C24—H240.9500
O7W—H13W0.876 (10)C25—C261.523 (4)
O7W—H14W0.868 (10)C26—C271.515 (4)
O8W—H15W0.886 (10)C26—H26A0.9900
O8W—H16W0.874 (10)C26—H26B0.9900
C1—C21.518 (3)C27—C281.380 (4)
C2—C31.510 (4)C27—C321.389 (4)
C2—H2A0.9900C28—C291.384 (4)
C2—H2B0.9900C28—H280.9500
C3—C41.377 (4)C29—C301.374 (5)
C3—C81.389 (4)C29—H290.9500
C4—C51.388 (4)C30—C311.371 (5)
C4—H40.9500C30—H300.9500
C5—C61.383 (5)C31—C321.389 (4)
C5—H50.9500C31—H310.9500
C6—C71.380 (4)C32—H320.9500
C6—H60.9500
O3i—Mg1—O7W87.09 (8)C3—C8—H8119.5
O3i—Mg1—O294.74 (8)C7—C8—H8119.5
O7W—Mg1—O298.79 (8)O4—C9—O3122.9 (2)
O3i—Mg1—O8W88.06 (8)O4—C9—C10120.2 (2)
O7W—Mg1—O8W170.75 (9)O3—C9—C10116.9 (2)
O2—Mg1—O8W89.45 (8)C11—C10—C9117.1 (2)
O3i—Mg1—O6W94.23 (8)C11—C10—H10A108.0
O7W—Mg1—O6W89.38 (8)C9—C10—H10A108.0
O2—Mg1—O6W168.15 (8)C11—C10—H10B108.0
O8W—Mg1—O6W83.13 (7)C9—C10—H10B108.0
O3i—Mg1—O5W176.69 (8)H10A—C10—H10B107.3
O7W—Mg1—O5W91.51 (8)C16—C11—C12117.6 (3)
O2—Mg1—O5W88.44 (7)C16—C11—C10120.9 (2)
O8W—Mg1—O5W92.90 (8)C12—C11—C10121.3 (3)
O6W—Mg1—O5W82.74 (8)C13—C12—C11120.7 (3)
O1—Mg2—O3W87.63 (8)C13—C12—H12119.7
O1—Mg2—O1W87.90 (8)C11—C12—H12119.7
O3W—Mg2—O1W170.73 (9)C14—C13—C12120.6 (3)
O1—Mg2—O495.16 (8)C14—C13—H13119.7
O3W—Mg2—O497.99 (8)C12—C13—H13119.7
O1W—Mg2—O490.50 (8)C15—C14—C13119.3 (3)
O1—Mg2—O4W93.83 (8)C15—C14—H14120.3
O3W—Mg2—O4W88.63 (8)C13—C14—H14120.3
O1W—Mg2—O4W83.56 (8)C14—C15—C16120.7 (3)
O4—Mg2—O4W169.04 (8)C14—C15—H15119.6
O1—Mg2—O2W175.97 (8)C16—C15—H15119.6
O3W—Mg2—O2W91.14 (8)C15—C16—C11121.0 (3)
O1W—Mg2—O2W92.76 (8)C15—C16—H16119.5
O4—Mg2—O2W88.81 (7)C11—C16—H16119.5
O4W—Mg2—O2W82.31 (8)O6—C17—O5122.9 (2)
C1—O1—Mg2143.39 (17)O6—C17—C18118.0 (2)
C1—O2—Mg1129.46 (17)O5—C17—C18119.1 (2)
Mg2—O1W—H1W129.8 (18)C17—C18—C19111.1 (2)
Mg2—O1W—H2W124.5 (18)C17—C18—H18A109.4
H1W—O1W—H2W101.1 (18)C19—C18—H18A109.4
C9—O3—Mg1ii143.38 (16)C17—C18—H18B109.4
Mg2—O2W—H3W108 (2)C19—C18—H18B109.4
Mg2—O2W—H4W98.4 (19)H18A—C18—H18B108.0
H3W—O2W—H4W101.7 (18)C24—C19—C20118.2 (3)
C9—O4—Mg2128.00 (17)C24—C19—C18120.8 (2)
Mg2—O3W—H5W125.8 (19)C20—C19—C18121.0 (3)
Mg2—O3W—H6W115.6 (18)C21—C20—C19121.0 (3)
H5W—O3W—H6W105.4 (19)C21—C20—H20119.5
Mg2—O4W—H7W134.0 (18)C19—C20—H20119.5
Mg2—O4W—H8W123.1 (18)C20—C21—C22120.0 (3)
H7W—O4W—H8W99.6 (18)C20—C21—H21120.0
Mg1—O5W—H9W99 (2)C22—C21—H21120.0
Mg1—O5W—H10W107 (2)C23—C22—C21119.7 (3)
H9W—O5W—H10W101.2 (18)C23—C22—H22120.2
Mg1—O6W—H11W135.5 (18)C21—C22—H22120.2
Mg1—O6W—H12W115.3 (18)C22—C23—C24120.6 (3)
H11W—O6W—H12W104.0 (19)C22—C23—H23119.7
Mg1—O7W—H13W119.2 (18)C24—C23—H23119.7
Mg1—O7W—H14W124.7 (19)C23—C24—C19120.5 (3)
H13W—O7W—H14W102.3 (19)C23—C24—H24119.7
Mg1—O8W—H15W124.2 (18)C19—C24—H24119.7
Mg1—O8W—H16W124.5 (18)O8—C25—O7123.2 (2)
H15W—O8W—H16W100.4 (18)O8—C25—C26118.1 (2)
O2—C1—O1123.1 (2)O7—C25—C26118.7 (2)
O2—C1—C2119.4 (2)C27—C26—C25112.0 (2)
O1—C1—C2117.5 (2)C27—C26—H26A109.2
C3—C2—C1115.0 (2)C25—C26—H26A109.2
C3—C2—H2A108.5C27—C26—H26B109.2
C1—C2—H2A108.5C25—C26—H26B109.2
C3—C2—H2B108.5H26A—C26—H26B107.9
C1—C2—H2B108.5C28—C27—C32118.4 (3)
H2A—C2—H2B107.5C28—C27—C26120.5 (2)
C4—C3—C8118.4 (3)C32—C27—C26121.1 (3)
C4—C3—C2118.9 (3)C27—C28—C29121.1 (3)
C8—C3—C2122.7 (2)C27—C28—H28119.4
C3—C4—C5120.7 (3)C29—C28—H28119.4
C3—C4—H4119.7C30—C29—C28119.6 (3)
C5—C4—H4119.7C30—C29—H29120.2
C6—C5—C4120.9 (3)C28—C29—H29120.2
C6—C5—H5119.5C31—C30—C29120.6 (3)
C4—C5—H5119.5C31—C30—H30119.7
C7—C6—C5118.8 (3)C29—C30—H30119.7
C7—C6—H6120.6C30—C31—C32119.6 (3)
C5—C6—H6120.6C30—C31—H31120.2
C6—C7—C8120.1 (3)C32—C31—H31120.2
C6—C7—H7119.9C31—C32—C27120.7 (3)
C8—C7—H7119.9C31—C32—H32119.6
C3—C8—C7121.1 (3)C27—C32—H32119.6
O3W—Mg2—O1—C133.9 (3)O3—C9—C10—C11148.1 (2)
O1W—Mg2—O1—C1154.2 (3)C9—C10—C11—C1650.7 (4)
O4—Mg2—O1—C163.9 (3)C9—C10—C11—C12134.3 (3)
O4W—Mg2—O1—C1122.4 (3)C16—C11—C12—C131.1 (4)
O3i—Mg1—O2—C1148.7 (2)C10—C11—C12—C13174.1 (3)
O7W—Mg1—O2—C1123.5 (2)C11—C12—C13—C141.6 (4)
O8W—Mg1—O2—C160.7 (2)C12—C13—C14—C151.0 (5)
O6W—Mg1—O2—C19.6 (5)C13—C14—C15—C160.1 (5)
O5W—Mg1—O2—C132.2 (2)C14—C15—C16—C110.4 (5)
O1—Mg2—O4—C9148.4 (2)C12—C11—C16—C150.1 (4)
O3W—Mg2—O4—C9123.3 (2)C10—C11—C16—C15175.1 (3)
O1W—Mg2—O4—C960.4 (2)O6—C17—C18—C1967.6 (3)
O4W—Mg2—O4—C93.4 (6)O5—C17—C18—C19111.3 (3)
O2W—Mg2—O4—C932.3 (2)C17—C18—C19—C2456.1 (3)
Mg1—O2—C1—O118.2 (4)C17—C18—C19—C20123.5 (3)
Mg1—O2—C1—C2160.66 (17)C24—C19—C20—C211.4 (4)
Mg2—O1—C1—O2159.3 (2)C18—C19—C20—C21179.0 (3)
Mg2—O1—C1—C219.6 (4)C19—C20—C21—C220.5 (5)
O2—C1—C2—C344.0 (3)C20—C21—C22—C230.7 (5)
O1—C1—C2—C3137.1 (2)C21—C22—C23—C240.9 (5)
C1—C2—C3—C4102.9 (3)C22—C23—C24—C190.0 (4)
C1—C2—C3—C877.0 (3)C20—C19—C24—C231.2 (4)
C8—C3—C4—C51.1 (5)C18—C19—C24—C23179.2 (3)
C2—C3—C4—C5178.8 (3)O8—C25—C26—C2761.9 (3)
C3—C4—C5—C61.1 (6)O7—C25—C26—C27117.4 (3)
C4—C5—C6—C70.0 (5)C25—C26—C27—C2853.2 (3)
C5—C6—C7—C81.1 (5)C25—C26—C27—C32127.5 (3)
C4—C3—C8—C70.0 (4)C32—C27—C28—C290.2 (4)
C2—C3—C8—C7179.9 (3)C26—C27—C28—C29179.2 (3)
C6—C7—C8—C31.1 (4)C27—C28—C29—C300.7 (5)
Mg2—O4—C9—O314.7 (4)C28—C29—C30—C311.5 (5)
Mg2—O4—C9—C10163.65 (17)C29—C30—C31—C321.6 (5)
Mg1ii—O3—C9—O4162.3 (2)C30—C31—C32—C271.1 (4)
Mg1ii—O3—C9—C1016.1 (4)C28—C27—C32—C310.3 (4)
O4—C9—C10—C1133.5 (4)C26—C27—C32—C31179.0 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5iii0.87 (1)1.89 (1)2.749 (3)171 (3)
O1W—H2W···O7iv0.88 (1)1.98 (1)2.853 (3)173 (3)
O2W—H3W···O8iv0.87 (1)2.01 (1)2.875 (2)172 (3)
O2W—H4W···O30.88 (1)1.75 (1)2.595 (2)163 (3)
O3W—H5W···O60.87 (1)1.85 (1)2.693 (2)165 (3)
O3W—H6W···O70.87 (1)1.86 (1)2.729 (3)171 (3)
O4W—H7W···O6iv0.88 (1)1.91 (1)2.775 (3)166 (3)
O4W—H8W···O5Wv0.88 (1)2.15 (2)2.939 (3)149 (2)
O5W—H9W···O10.88 (1)1.76 (1)2.613 (2)164 (3)
O5W—H10W···O6iv0.88 (1)1.99 (1)2.864 (2)175 (2)
O6W—H11W···O8vi0.87 (1)1.91 (1)2.770 (3)169 (3)
O6W—H12W···O2Wiv0.88 (1)2.12 (1)2.932 (3)153 (3)
O7W—H13W···O5vii0.88 (1)1.86 (1)2.730 (3)172 (3)
O7W—H14W···O8iii0.87 (1)1.85 (1)2.698 (2)166 (2)
O8W—H15W···O5iv0.89 (1)1.95 (1)2.839 (2)178 (2)
O8W—H16W···O70.87 (1)1.90 (1)2.764 (2)171 (3)
Symmetry codes: (iii) x, y1, z; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+2, y1/2, z+1/2; (vii) x+1, y1, z.
(CaPAA) catena-poly[[[diaqua(phenylacetato-κ2O,O')calcium(II)]- µ3-phenylacetato-1':1:1''κ4O:O,O':O'] monohydrate] top
Crystal data top
[Ca(C8H7O2)2(H2O)2]·H2OF(000) = 1536
Mr = 364.40Dx = 1.391 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4276 reflections
a = 29.2249 (10) Åθ = 1.0–27.5°
b = 6.6941 (3) ŵ = 0.39 mm1
c = 17.8109 (5) ÅT = 150 K
β = 92.520 (2)°Rod, colourless
V = 3481.1 (2) Å30.36 × 0.08 × 0.07 mm
Z = 8
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
2429 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 27.0°, θmin = 3.1°
ω and ϕ scansh = 3737
7271 measured reflectionsk = 88
3814 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0414P)2 + 1.822P]
where P = (Fo2 + 2Fc2)/3
3814 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.39 e Å3
9 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ca(C8H7O2)2(H2O)2]·H2OV = 3481.1 (2) Å3
Mr = 364.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.2249 (10) ŵ = 0.39 mm1
b = 6.6941 (3) ÅT = 150 K
c = 17.8109 (5) Å0.36 × 0.08 × 0.07 mm
β = 92.520 (2)°
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
2429 reflections with I > 2σ(I)
7271 measured reflectionsRint = 0.061
3814 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0429 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
3814 reflectionsΔρmin = 0.31 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.246964 (14)0.04803 (7)0.69169 (2)0.02085 (14)
O10.27663 (5)0.1143 (2)0.81164 (8)0.0252 (4)
O20.27710 (5)0.2128 (2)0.81443 (8)0.0268 (4)
O1W0.17465 (5)0.0444 (3)0.74864 (8)0.0274 (4)
H1W0.1702 (8)0.144 (2)0.7786 (11)0.041*
H2W0.1698 (9)0.058 (2)0.7775 (11)0.041*
O30.31944 (5)0.1207 (3)0.65373 (10)0.0375 (4)
O2W0.23614 (6)0.0638 (3)0.55625 (9)0.0389 (4)
H3W0.2177 (7)0.017 (4)0.5205 (12)0.058*
H4W0.2616 (5)0.007 (4)0.5461 (15)0.058*
O40.32184 (5)0.2059 (2)0.65610 (9)0.0311 (4)
O3W0.32264 (8)0.5501 (3)0.55370 (10)0.0526 (5)
H5W0.3223 (11)0.652 (3)0.5846 (13)0.079*
H6W0.3270 (11)0.452 (3)0.5854 (13)0.079*
C10.28835 (6)0.0469 (4)0.84278 (11)0.0185 (4)
C20.31925 (7)0.0405 (4)0.91398 (12)0.0257 (5)
H2A0.31490.16330.94380.031*
H2B0.31100.07560.94500.031*
C30.36885 (7)0.0239 (4)0.89374 (11)0.0233 (5)
C40.39824 (8)0.1862 (4)0.90139 (13)0.0346 (6)
H40.38710.31030.91890.041*
C50.44388 (8)0.1682 (4)0.88358 (15)0.0421 (7)
H50.46380.27980.88930.051*
C60.46032 (9)0.0102 (4)0.85766 (14)0.0391 (7)
H60.49150.02170.84540.047*
C70.43140 (8)0.1728 (4)0.84956 (12)0.0329 (6)
H70.44270.29620.83170.040*
C80.38605 (7)0.1561 (4)0.86741 (12)0.0278 (5)
H80.36630.26850.86170.033*
C90.34169 (8)0.0410 (4)0.65413 (12)0.0247 (5)
C100.39353 (8)0.0287 (4)0.65570 (15)0.0360 (6)
H10A0.40470.00530.70740.043*
H10B0.40250.08160.62230.043*
C110.41691 (7)0.2164 (4)0.63188 (12)0.0255 (5)
C120.42567 (7)0.2474 (4)0.55726 (13)0.0307 (6)
H120.41800.14600.52160.037*
C130.44526 (8)0.4220 (4)0.53343 (13)0.0345 (6)
H130.45050.44080.48160.041*
C140.45720 (8)0.5688 (4)0.58418 (13)0.0325 (6)
H140.47030.69000.56750.039*
C150.45026 (8)0.5408 (4)0.65951 (13)0.0352 (6)
H150.45920.64080.69500.042*
C160.42997 (8)0.3644 (4)0.68319 (13)0.0349 (6)
H160.42500.34520.73510.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0211 (2)0.0130 (2)0.0283 (2)0.0003 (2)0.00002 (17)0.0001 (2)
O10.0292 (9)0.0133 (9)0.0325 (9)0.0012 (7)0.0051 (6)0.0009 (7)
O20.0301 (9)0.0145 (9)0.0353 (9)0.0013 (7)0.0026 (7)0.0026 (7)
O1W0.0268 (8)0.0150 (8)0.0407 (10)0.0001 (8)0.0059 (7)0.0020 (8)
O30.0311 (9)0.0161 (9)0.0665 (12)0.0017 (8)0.0160 (8)0.0025 (9)
O2W0.0425 (10)0.0404 (12)0.0336 (10)0.0035 (10)0.0006 (8)0.0038 (9)
O40.0243 (8)0.0164 (9)0.0529 (10)0.0029 (7)0.0065 (7)0.0040 (8)
O3W0.0840 (15)0.0313 (11)0.0405 (11)0.0045 (12)0.0205 (10)0.0014 (9)
C10.0156 (10)0.0146 (11)0.0259 (11)0.0022 (11)0.0059 (8)0.0010 (11)
C20.0280 (12)0.0248 (13)0.0243 (11)0.0009 (11)0.0018 (9)0.0008 (11)
C30.0254 (12)0.0229 (14)0.0209 (11)0.0001 (11)0.0073 (9)0.0023 (10)
C40.0360 (14)0.0243 (15)0.0426 (15)0.0001 (12)0.0074 (11)0.0003 (12)
C50.0313 (14)0.0332 (18)0.0608 (17)0.0108 (14)0.0077 (12)0.0050 (15)
C60.0246 (13)0.052 (2)0.0399 (14)0.0010 (13)0.0036 (11)0.0058 (13)
C70.0298 (13)0.0391 (17)0.0295 (13)0.0088 (13)0.0025 (10)0.0036 (12)
C80.0292 (12)0.0258 (15)0.0278 (12)0.0006 (12)0.0049 (9)0.0011 (11)
C90.0265 (12)0.0218 (13)0.0262 (12)0.0028 (13)0.0064 (9)0.0038 (11)
C100.0263 (13)0.0294 (15)0.0526 (16)0.0059 (12)0.0053 (11)0.0107 (13)
C110.0155 (11)0.0249 (14)0.0362 (13)0.0045 (10)0.0036 (9)0.0061 (11)
C120.0276 (13)0.0302 (15)0.0340 (14)0.0025 (11)0.0008 (10)0.0005 (11)
C130.0346 (13)0.0387 (18)0.0304 (13)0.0009 (13)0.0048 (10)0.0044 (12)
C140.0268 (12)0.0282 (15)0.0427 (15)0.0035 (12)0.0038 (10)0.0020 (13)
C150.0372 (14)0.0318 (15)0.0366 (14)0.0003 (14)0.0012 (11)0.0086 (13)
C160.0348 (14)0.0417 (17)0.0286 (13)0.0073 (13)0.0067 (10)0.0003 (13)
Geometric parameters (Å, º) top
Ca1—O2i2.3527 (16)C3—C41.388 (3)
Ca1—O1ii2.3632 (16)C3—C81.395 (3)
Ca1—O1W2.3843 (15)C4—C51.390 (3)
Ca1—O2W2.4214 (16)C4—H40.9500
Ca1—O12.5167 (14)C5—C61.375 (4)
Ca1—O32.5188 (16)C5—H50.9500
Ca1—O42.5355 (15)C6—C71.381 (4)
Ca1—O22.5695 (15)C6—H60.9500
Ca1—C92.877 (2)C7—C81.381 (3)
Ca1—C12.901 (2)C7—H70.9500
O1—C11.254 (3)C8—H80.9500
O1—Ca1i2.3632 (16)C9—C101.516 (3)
O2—C11.258 (3)C10—C111.501 (3)
O2—Ca1ii2.3527 (16)C10—H10A0.9900
O1W—H1W0.867 (9)C10—H10B0.9900
O1W—H2W0.875 (9)C11—C121.380 (3)
O3—C91.263 (3)C11—C161.390 (3)
O2W—H3W0.872 (10)C12—C131.377 (3)
O2W—H4W0.862 (10)C12—H120.9500
O4—C91.248 (3)C13—C141.370 (3)
O3W—H5W0.875 (10)C13—H130.9500
O3W—H6W0.873 (10)C14—C151.379 (3)
C1—C21.525 (3)C14—H140.9500
C2—C31.513 (3)C15—C161.395 (4)
C2—H2A0.9900C15—H150.9500
C2—H2B0.9900C16—H160.9500
O2i—Ca1—O1ii145.58 (5)Ca1i—Ca1—H4W114.9 (5)
O2i—Ca1—O1W75.01 (6)C1—O1—Ca1i155.21 (13)
O1ii—Ca1—O1W75.95 (6)C1—O1—Ca194.65 (12)
O2i—Ca1—O2W88.26 (6)Ca1i—O1—Ca1107.61 (6)
O1ii—Ca1—O2W84.73 (6)C1—O2—Ca1ii158.93 (14)
O1W—Ca1—O2W110.18 (6)C1—O2—Ca192.08 (12)
O2i—Ca1—O173.66 (5)Ca1ii—O2—Ca1106.23 (5)
O1ii—Ca1—O1121.57 (4)Ca1—O1W—H1W114.4 (16)
O1W—Ca1—O185.02 (5)Ca1—O1W—H2W115.4 (16)
O2W—Ca1—O1152.82 (6)H1W—O1W—H2W102.1 (17)
O2i—Ca1—O379.22 (5)C9—O3—Ca193.04 (13)
O1ii—Ca1—O3132.07 (6)Ca1—O2W—H3W139.5 (19)
O1W—Ca1—O3151.78 (6)Ca1—O2W—H4W96.5 (18)
O2W—Ca1—O380.02 (6)H3W—O2W—H4W101.5 (18)
O1—Ca1—O376.82 (5)C9—O4—Ca192.62 (13)
O2i—Ca1—O4130.20 (6)H5W—O3W—H6W100.6 (18)
O1ii—Ca1—O481.32 (5)O1—C1—O2121.38 (18)
O1W—Ca1—O4154.35 (6)O1—C1—C2118.9 (2)
O2W—Ca1—O479.00 (6)O2—C1—C2119.6 (2)
O1—Ca1—O497.08 (5)O1—C1—Ca159.83 (10)
O3—Ca1—O451.29 (5)O2—C1—Ca162.25 (10)
O2i—Ca1—O2122.64 (4)C2—C1—Ca1168.22 (14)
O1ii—Ca1—O272.51 (5)C3—C2—C1110.03 (17)
O1W—Ca1—O285.38 (5)C3—C2—H2A109.7
O2W—Ca1—O2148.63 (6)C1—C2—H2A109.7
O1—Ca1—O251.00 (5)C3—C2—H2B109.7
O3—Ca1—O299.21 (5)C1—C2—H2B109.7
O4—Ca1—O276.50 (5)H2A—C2—H2B108.2
O2i—Ca1—C9105.21 (7)C4—C3—C8118.6 (2)
O1ii—Ca1—C9107.01 (7)C4—C3—C2121.0 (2)
O1W—Ca1—C9168.18 (6)C8—C3—C2120.4 (2)
O2W—Ca1—C981.60 (6)C3—C4—C5120.4 (2)
O1—Ca1—C983.76 (6)C3—C4—H4119.8
O3—Ca1—C925.99 (6)C5—C4—H4119.8
O4—Ca1—C925.69 (6)C6—C5—C4120.3 (2)
O2—Ca1—C984.70 (6)C6—C5—H5119.8
O2i—Ca1—C198.75 (6)C4—C5—H5119.8
O1ii—Ca1—C197.76 (6)C5—C6—C7119.9 (2)
O1W—Ca1—C186.93 (5)C5—C6—H6120.1
O2W—Ca1—C1162.74 (6)C7—C6—H6120.1
O1—Ca1—C125.52 (5)C8—C7—C6120.1 (2)
O3—Ca1—C185.79 (6)C8—C7—H7120.0
O4—Ca1—C184.48 (5)C6—C7—H7120.0
O2—Ca1—C125.67 (5)C7—C8—C3120.7 (2)
C9—Ca1—C181.34 (6)C7—C8—H8119.6
O2i—Ca1—Ca1ii147.28 (4)C3—C8—H8119.6
O1ii—Ca1—Ca1ii37.52 (3)O4—C9—O3121.2 (2)
O1W—Ca1—Ca1ii78.73 (4)O4—C9—C10120.9 (2)
O2W—Ca1—Ca1ii119.29 (5)O3—C9—C10117.9 (2)
O1—Ca1—Ca1ii85.03 (4)O4—C9—Ca161.69 (11)
O3—Ca1—Ca1ii120.24 (4)O3—C9—Ca160.96 (11)
O4—Ca1—Ca1ii76.01 (4)C10—C9—Ca1165.35 (15)
O2—Ca1—Ca1ii34.99 (4)C11—C10—C9114.6 (2)
C9—Ca1—Ca1ii96.60 (5)C11—C10—H10A108.6
C1—Ca1—Ca1ii60.39 (5)C9—C10—H10A108.6
O2i—Ca1—Ca1i38.78 (3)C11—C10—H10B108.6
O1ii—Ca1—Ca1i146.34 (4)C9—C10—H10B108.6
O1W—Ca1—Ca1i77.72 (4)H10A—C10—H10B107.6
O2W—Ca1—Ca1i124.28 (5)C12—C11—C16118.0 (2)
O1—Ca1—Ca1i34.88 (4)C12—C11—C10120.3 (2)
O3—Ca1—Ca1i75.03 (4)C16—C11—C10121.7 (2)
O4—Ca1—Ca1i117.82 (4)C13—C12—C11121.4 (2)
O2—Ca1—Ca1i84.85 (4)C13—C12—H12119.3
C9—Ca1—Ca1i95.00 (5)C11—C12—H12119.3
C1—Ca1—Ca1i60.09 (5)C14—C13—C12120.2 (2)
Ca1ii—Ca1—Ca1i116.36 (2)C14—C13—H13119.9
O2i—Ca1—H4W85.2 (6)C12—C13—H13119.9
O1ii—Ca1—H4W97.7 (5)C13—C14—C15120.0 (2)
O1W—Ca1—H4W126.7 (4)C13—C14—H14120.0
O2W—Ca1—H4W18.8 (3)C15—C14—H14120.0
O1—Ca1—H4W135.9 (4)C14—C15—C16119.5 (2)
O3—Ca1—H4W61.2 (3)C14—C15—H15120.3
O4—Ca1—H4W67.8 (5)C16—C15—H15120.3
O2—Ca1—H4W144.1 (5)C11—C16—C15120.8 (2)
C9—Ca1—H4W64.8 (3)C11—C16—H16119.6
C1—Ca1—H4W145.6 (3)C15—C16—H16119.6
Ca1ii—Ca1—H4W126.6 (6)
O2i—Ca1—O1—C1169.14 (12)O1ii—Ca1—C1—O210.34 (12)
O1ii—Ca1—O1—C123.17 (10)O1W—Ca1—C1—O285.71 (12)
O1W—Ca1—O1—C193.32 (12)O2W—Ca1—C1—O286.9 (3)
O2W—Ca1—O1—C1140.66 (14)O1—Ca1—C1—O2170.56 (19)
O3—Ca1—O1—C1108.41 (12)O3—Ca1—C1—O2121.58 (12)
O4—Ca1—O1—C160.97 (12)O4—Ca1—C1—O270.10 (12)
O2—Ca1—O1—C15.24 (11)C9—Ca1—C1—O295.79 (13)
C9—Ca1—O1—C182.98 (12)Ca1ii—Ca1—C1—O26.94 (10)
Ca1ii—Ca1—O1—C114.24 (11)Ca1i—Ca1—C1—O2163.29 (13)
Ca1i—Ca1—O1—C1168.94 (15)O2i—Ca1—C1—C297.9 (8)
O2i—Ca1—O1—Ca1i0.20 (6)O1ii—Ca1—C1—C2112.5 (8)
O1ii—Ca1—O1—Ca1i145.77 (8)O1W—Ca1—C1—C2172.2 (8)
O1W—Ca1—O1—Ca1i75.62 (7)O2W—Ca1—C1—C215.2 (10)
O2W—Ca1—O1—Ca1i50.40 (14)O1—Ca1—C1—C287.3 (8)
O3—Ca1—O1—Ca1i82.65 (6)O3—Ca1—C1—C219.5 (8)
O4—Ca1—O1—Ca1i130.09 (6)O4—Ca1—C1—C232.0 (8)
O2—Ca1—O1—Ca1i163.69 (9)O2—Ca1—C1—C2102.1 (9)
C9—Ca1—O1—Ca1i108.08 (7)C9—Ca1—C1—C26.3 (8)
C1—Ca1—O1—Ca1i168.94 (15)Ca1ii—Ca1—C1—C2109.0 (8)
Ca1ii—Ca1—O1—Ca1i154.70 (5)Ca1i—Ca1—C1—C294.6 (8)
O2i—Ca1—O2—C123.64 (10)O1—C1—C2—C383.8 (2)
O1ii—Ca1—O2—C1169.26 (13)O2—C1—C2—C392.5 (2)
O1W—Ca1—O2—C192.54 (12)Ca1—C1—C2—C33.2 (9)
O2W—Ca1—O2—C1145.32 (13)C1—C2—C3—C4106.2 (2)
O1—Ca1—O2—C15.22 (11)C1—C2—C3—C874.3 (3)
O3—Ca1—O2—C159.40 (12)C8—C3—C4—C50.4 (3)
O4—Ca1—O2—C1105.74 (12)C2—C3—C4—C5179.1 (2)
C9—Ca1—O2—C181.04 (12)C3—C4—C5—C60.5 (4)
Ca1ii—Ca1—O2—C1169.45 (15)C4—C5—C6—C70.3 (4)
Ca1i—Ca1—O2—C114.49 (11)C5—C6—C7—C80.0 (4)
O2i—Ca1—O2—Ca1ii145.81 (8)C6—C7—C8—C30.0 (3)
O1ii—Ca1—O2—Ca1ii0.20 (5)C4—C3—C8—C70.2 (3)
O1W—Ca1—O2—Ca1ii76.91 (7)C2—C3—C8—C7179.34 (19)
O2W—Ca1—O2—Ca1ii45.23 (13)Ca1—O4—C9—O313.8 (2)
O1—Ca1—O2—Ca1ii164.24 (9)Ca1—O4—C9—C10163.40 (18)
O3—Ca1—O2—Ca1ii131.15 (6)Ca1—O3—C9—O413.9 (2)
O4—Ca1—O2—Ca1ii84.81 (6)Ca1—O3—C9—C10163.38 (17)
C9—Ca1—O2—Ca1ii109.51 (7)O2i—Ca1—C9—O4167.94 (12)
C1—Ca1—O2—Ca1ii169.45 (15)O1ii—Ca1—C9—O40.24 (14)
Ca1i—Ca1—O2—Ca1ii154.96 (5)O1W—Ca1—C9—O4102.6 (3)
O2i—Ca1—O3—C9178.59 (14)O2W—Ca1—C9—O482.06 (13)
O1ii—Ca1—O3—C917.82 (16)O1—Ca1—C9—O4120.91 (13)
O1W—Ca1—O3—C9154.33 (13)O3—Ca1—C9—O4166.5 (2)
O2W—Ca1—O3—C991.29 (14)O2—Ca1—C9—O469.64 (13)
O1—Ca1—O3—C9103.04 (13)C1—Ca1—C9—O495.28 (13)
O4—Ca1—O3—C97.45 (12)Ca1ii—Ca1—C9—O436.67 (12)
O2—Ca1—O3—C956.89 (13)Ca1i—Ca1—C9—O4153.98 (12)
C1—Ca1—O3—C978.84 (14)O2i—Ca1—C9—O31.44 (14)
Ca1ii—Ca1—O3—C926.90 (14)O1ii—Ca1—C9—O3166.26 (12)
Ca1i—Ca1—O3—C9138.99 (13)O1W—Ca1—C9—O390.9 (4)
O2i—Ca1—O4—C915.31 (15)O2W—Ca1—C9—O384.44 (13)
O1ii—Ca1—O4—C9179.77 (13)O1—Ca1—C9—O372.59 (13)
O1W—Ca1—O4—C9152.50 (14)O4—Ca1—C9—O3166.5 (2)
O2W—Ca1—O4—C993.50 (13)O2—Ca1—C9—O3123.86 (13)
O1—Ca1—O4—C959.25 (13)C1—Ca1—C9—O398.22 (14)
O3—Ca1—O4—C97.53 (12)Ca1ii—Ca1—C9—O3156.83 (12)
O2—Ca1—O4—C9106.25 (13)Ca1i—Ca1—C9—O339.52 (13)
C1—Ca1—O4—C981.49 (13)O2i—Ca1—C9—C1088.0 (7)
Ca1ii—Ca1—O4—C9142.31 (13)O1ii—Ca1—C9—C10104.3 (7)
Ca1i—Ca1—O4—C929.61 (14)O1W—Ca1—C9—C101.4 (10)
Ca1i—O1—C1—O2144.4 (2)O2W—Ca1—C9—C10173.9 (7)
Ca1—O1—C1—O29.8 (2)O1—Ca1—C9—C1016.9 (7)
Ca1i—O1—C1—C239.3 (4)O3—Ca1—C9—C1089.5 (7)
Ca1—O1—C1—C2166.53 (16)O4—Ca1—C9—C10104.1 (8)
Ca1i—O1—C1—Ca1154.1 (3)O2—Ca1—C9—C1034.4 (7)
Ca1ii—O2—C1—O1141.2 (3)C1—Ca1—C9—C108.8 (7)
Ca1—O2—C1—O19.56 (19)Ca1ii—Ca1—C9—C1067.4 (7)
Ca1ii—O2—C1—C242.5 (5)Ca1i—Ca1—C9—C1049.9 (7)
Ca1—O2—C1—C2166.74 (16)O4—C9—C10—C1121.1 (3)
Ca1ii—O2—C1—Ca1150.7 (4)O3—C9—C10—C11161.6 (2)
O2i—Ca1—C1—O110.54 (12)Ca1—C9—C10—C11116.9 (7)
O1ii—Ca1—C1—O1160.22 (9)C9—C10—C11—C1289.4 (3)
O1W—Ca1—C1—O184.86 (12)C9—C10—C11—C1690.0 (3)
O2W—Ca1—C1—O1102.5 (2)C16—C11—C12—C132.2 (3)
O3—Ca1—C1—O167.86 (12)C10—C11—C12—C13177.1 (2)
O4—Ca1—C1—O1119.34 (12)C11—C12—C13—C141.0 (4)
O2—Ca1—C1—O1170.56 (19)C12—C13—C14—C151.0 (4)
C9—Ca1—C1—O193.64 (12)C13—C14—C15—C161.6 (4)
Ca1ii—Ca1—C1—O1163.63 (13)C12—C11—C16—C151.6 (3)
Ca1i—Ca1—C1—O17.27 (10)C10—C11—C16—C15177.8 (2)
O2i—Ca1—C1—O2160.02 (9)C14—C15—C16—C110.4 (4)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3ii0.87 (1)2.00 (1)2.838 (2)163 (2)
O1W—H2W···O4i0.88 (1)1.98 (1)2.830 (2)164 (2)
O2W—H3W···O3Wiii0.87 (1)1.79 (1)2.659 (2)174 (3)
O2W—H4W···O30.86 (1)2.64 (2)3.177 (2)121 (2)
O3W—H5W···O3iv0.88 (1)1.96 (1)2.838 (3)178 (3)
O3W—H6W···O40.87 (1)2.08 (1)2.939 (3)167 (3)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z.
(SrPAA) catena-poly[[[diaqua(phenylacetato- κ2O,O')strontium(II)]- µ3-phenylacetato-1':1:1''κ4O:O,O':O'] monohydrate] top
Crystal data top
[Sr(C8H7O2)2(H2O)2]·H2OF(000) = 1680
Mr = 411.94Dx = 1.529 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4111 reflections
a = 29.5111 (15) Åθ = 2.5–29.0°
b = 6.8560 (5) ŵ = 3.05 mm1
c = 17.7229 (11) ÅT = 123 K
β = 93.453 (3)°Fragment, colourless
V = 3579.3 (4) Å30.30 × 0.15 × 0.10 mm
Z = 8
Data collection top
Oxford Gemini
diffractometer
4034 independent reflections
Radiation source: fine-focus sealed tube3175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 3736
Tmin = 0.564, Tmax = 0.767k = 88
20190 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0366P)2]
where P = (Fo2 + 2Fc2)/3
4034 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.57 e Å3
9 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Sr(C8H7O2)2(H2O)2]·H2OV = 3579.3 (4) Å3
Mr = 411.94Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.5111 (15) ŵ = 3.05 mm1
b = 6.8560 (5) ÅT = 123 K
c = 17.7229 (11) Å0.30 × 0.15 × 0.10 mm
β = 93.453 (3)°
Data collection top
Oxford Gemini
diffractometer
4034 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3175 reflections with I > 2σ(I)
Tmin = 0.564, Tmax = 0.767Rint = 0.032
20190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0279 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.57 e Å3
4034 reflectionsΔρmin = 0.26 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.247337 (6)0.05325 (3)0.186735 (11)0.01670 (7)
O10.32379 (5)0.1130 (2)0.14975 (9)0.0297 (4)
O20.32591 (5)0.2074 (2)0.15518 (9)0.0277 (4)
O1W0.17258 (5)0.0481 (2)0.25205 (9)0.0246 (3)
H1W0.1678 (9)0.048 (2)0.2820 (11)0.037*
H2W0.1712 (8)0.148 (2)0.2807 (11)0.037*
O30.27964 (5)0.2129 (2)0.31907 (8)0.0242 (3)
O2W0.23636 (7)0.0698 (3)0.04151 (10)0.0465 (5)
H3W0.2178 (8)0.023 (4)0.0071 (14)0.070*
H4W0.2615 (6)0.013 (4)0.0401 (19)0.070*
O40.28020 (5)0.1067 (2)0.31504 (8)0.0223 (3)
O3W0.32987 (7)0.5609 (3)0.05315 (10)0.0446 (5)
H5W0.3278 (10)0.664 (2)0.0804 (13)0.067*
H6W0.3323 (11)0.468 (3)0.0855 (12)0.067*
C10.34546 (7)0.0462 (3)0.15234 (12)0.0204 (4)
C20.39673 (8)0.0364 (4)0.15408 (14)0.0306 (5)
H2A0.40840.00360.20610.037*
H2B0.40560.07070.12050.037*
C30.41915 (6)0.2212 (3)0.13017 (12)0.0224 (5)
C40.43087 (8)0.3682 (4)0.18172 (13)0.0296 (5)
H40.42580.35020.23370.035*
C50.44990 (8)0.5406 (4)0.15812 (14)0.0321 (6)
H50.45800.63940.19400.039*
C60.45718 (7)0.5700 (3)0.08325 (13)0.0288 (5)
H60.46960.68960.06700.035*
C70.44626 (7)0.4245 (3)0.03191 (13)0.0273 (5)
H70.45150.44340.01990.033*
C80.42770 (7)0.2505 (4)0.05516 (12)0.0263 (5)
H80.42080.15050.01920.032*
C90.29210 (7)0.0515 (3)0.34608 (11)0.0162 (4)
C100.32477 (7)0.0459 (3)0.41529 (12)0.0226 (5)
H10A0.32170.16730.44480.027*
H10B0.31710.06540.44770.027*
C110.37316 (7)0.0256 (3)0.39319 (11)0.0211 (5)
C120.38891 (7)0.1507 (4)0.36606 (11)0.0252 (5)
H120.36880.25880.36050.030*
C130.43334 (8)0.1705 (4)0.34709 (12)0.0309 (6)
H130.44370.29180.32880.037*
C140.46272 (9)0.0144 (4)0.35471 (15)0.0373 (6)
H140.49340.02830.34200.045*
C150.44756 (8)0.1619 (4)0.38083 (14)0.0400 (6)
H150.46770.26980.38570.048*
C160.40290 (8)0.1820 (4)0.39999 (13)0.0324 (6)
H160.39260.30390.41790.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01780 (10)0.00786 (9)0.02426 (12)0.00023 (8)0.00010 (7)0.00034 (9)
O10.0283 (9)0.0126 (8)0.0496 (10)0.0005 (6)0.0133 (8)0.0013 (7)
O20.0218 (8)0.0153 (8)0.0465 (10)0.0002 (6)0.0053 (7)0.0043 (7)
O1W0.0287 (8)0.0134 (8)0.0325 (9)0.0003 (7)0.0077 (7)0.0008 (7)
O30.0286 (8)0.0110 (8)0.0322 (8)0.0016 (6)0.0058 (7)0.0003 (6)
O2W0.0548 (12)0.0583 (15)0.0263 (9)0.0231 (11)0.0013 (9)0.0042 (9)
O40.0268 (8)0.0113 (8)0.0281 (8)0.0007 (6)0.0037 (7)0.0010 (6)
O3W0.0667 (13)0.0316 (11)0.0337 (10)0.0113 (10)0.0113 (10)0.0031 (8)
C10.0229 (11)0.0187 (11)0.0200 (11)0.0017 (9)0.0053 (9)0.0029 (10)
C20.0245 (12)0.0265 (13)0.0411 (14)0.0056 (10)0.0056 (11)0.0067 (11)
C30.0131 (10)0.0232 (12)0.0310 (13)0.0047 (9)0.0029 (9)0.0036 (10)
C40.0275 (12)0.0374 (14)0.0245 (12)0.0042 (11)0.0072 (10)0.0025 (11)
C50.0318 (13)0.0290 (13)0.0352 (14)0.0007 (11)0.0002 (11)0.0090 (12)
C60.0239 (12)0.0237 (13)0.0393 (14)0.0008 (10)0.0051 (10)0.0026 (11)
C70.0247 (12)0.0322 (14)0.0254 (12)0.0000 (10)0.0062 (10)0.0016 (10)
C80.0251 (12)0.0260 (12)0.0279 (13)0.0027 (10)0.0014 (10)0.0017 (10)
C90.0172 (10)0.0117 (10)0.0204 (10)0.0012 (9)0.0058 (8)0.0002 (9)
C100.0257 (11)0.0210 (11)0.0210 (11)0.0001 (10)0.0003 (9)0.0023 (10)
C110.0236 (11)0.0214 (12)0.0175 (11)0.0002 (9)0.0058 (9)0.0025 (9)
C120.0271 (12)0.0245 (12)0.0229 (11)0.0001 (10)0.0068 (9)0.0022 (10)
C130.0318 (13)0.0342 (14)0.0260 (12)0.0078 (11)0.0043 (10)0.0058 (11)
C140.0242 (13)0.0506 (18)0.0366 (14)0.0015 (12)0.0019 (11)0.0055 (13)
C150.0267 (13)0.0381 (16)0.0542 (16)0.0103 (12)0.0069 (12)0.0043 (14)
C160.0329 (13)0.0216 (12)0.0415 (14)0.0011 (10)0.0073 (11)0.0020 (11)
Geometric parameters (Å, º) top
Sr1—O3i2.4655 (14)C3—C81.383 (3)
Sr1—O4ii2.4688 (14)C3—C41.390 (3)
Sr1—O1W2.5528 (15)C4—C51.384 (3)
Sr1—O2W2.5772 (18)C4—H40.9500
Sr1—O22.6386 (14)C5—C61.372 (3)
Sr1—O12.6453 (15)C5—H50.9500
Sr1—O42.6548 (14)C6—C71.375 (3)
Sr1—O32.7089 (14)C6—H60.9500
Sr1—C12.995 (2)C7—C81.385 (3)
Sr1—C93.045 (2)C7—H70.9500
O1—C11.265 (3)C8—H80.9500
O2—C11.249 (2)C9—C101.514 (3)
O1W—H1W0.865 (9)C10—C111.510 (3)
O1W—H2W0.853 (9)C10—H10A0.9900
O3—C91.252 (2)C10—H10B0.9900
O3—Sr1ii2.4655 (14)C11—C161.386 (3)
O2W—H3W0.859 (10)C11—C121.391 (3)
O2W—H4W0.841 (10)C12—C131.380 (3)
O4—C91.256 (2)C12—H120.9500
O4—Sr1i2.4688 (14)C13—C141.379 (4)
O3W—H5W0.862 (10)C13—H130.9500
O3W—H6W0.857 (10)C14—C151.379 (4)
C1—C21.513 (3)C14—H140.9500
C2—C31.502 (3)C15—C161.388 (3)
C2—H2A0.9900C15—H150.9500
C2—H2B0.9900C16—H160.9500
O3i—Sr1—O4ii142.00 (5)O1—Sr1—H4W61.8 (3)
O3i—Sr1—O1W73.74 (5)O4—Sr1—H4W136.0 (4)
O4ii—Sr1—O1W74.10 (5)O3—Sr1—H4W144.8 (6)
O3i—Sr1—O2W88.80 (6)C1—Sr1—H4W65.8 (4)
O4ii—Sr1—O2W85.66 (6)C9—Sr1—H4W144.8 (3)
O1W—Sr1—O2W113.17 (6)Sr1ii—Sr1—H4W128.1 (7)
O3i—Sr1—O2130.98 (5)Sr1i—Sr1—H4W116.3 (6)
O4ii—Sr1—O284.95 (5)H2W—Sr1—H4W137.9 (5)
O1W—Sr1—O2153.67 (5)C1—O1—Sr193.22 (13)
O2W—Sr1—O280.21 (5)C1—O2—Sr193.92 (12)
O3i—Sr1—O181.94 (5)Sr1—O1W—H1W117.8 (16)
O4ii—Sr1—O1133.54 (5)Sr1—O1W—H2W109.3 (15)
O1W—Sr1—O1151.60 (5)H1W—O1W—H2W103.4 (17)
O2W—Sr1—O180.17 (6)C9—O3—Sr1ii159.89 (14)
O2—Sr1—O149.19 (5)C9—O3—Sr193.08 (12)
O3i—Sr1—O475.24 (4)Sr1ii—O3—Sr1104.50 (5)
O4ii—Sr1—O4120.26 (4)Sr1—O2W—H3W137 (2)
O1W—Sr1—O483.51 (5)Sr1—O2W—H4W87 (2)
O2W—Sr1—O4153.00 (6)H3W—O2W—H4W109 (2)
O2—Sr1—O493.81 (5)C9—O4—Sr1i154.67 (14)
O1—Sr1—O476.19 (5)C9—O4—Sr195.55 (12)
O3i—Sr1—O3120.96 (4)Sr1i—O4—Sr1106.03 (5)
O4ii—Sr1—O374.20 (4)H5W—O3W—H6W104.1 (19)
O1W—Sr1—O383.21 (5)O2—C1—O1122.08 (19)
O2W—Sr1—O3149.70 (5)O2—C1—C2120.2 (2)
O2—Sr1—O375.75 (5)O1—C1—C2117.73 (19)
O1—Sr1—O397.34 (5)O2—C1—Sr161.50 (11)
O4—Sr1—O348.24 (4)O1—C1—Sr161.85 (11)
O3i—Sr1—C1106.85 (6)C2—C1—Sr1167.01 (15)
O4ii—Sr1—C1109.52 (5)C3—C2—C1114.43 (19)
O1W—Sr1—C1164.71 (5)C3—C2—H2A108.7
O2W—Sr1—C182.09 (6)C1—C2—H2A108.7
O2—Sr1—C124.58 (5)C3—C2—H2B108.7
O1—Sr1—C124.93 (5)C1—C2—H2B108.7
O4—Sr1—C181.94 (5)H2A—C2—H2B107.6
O3—Sr1—C183.61 (5)C8—C3—C4118.3 (2)
O3i—Sr1—C998.97 (5)C8—C3—C2120.2 (2)
O4ii—Sr1—C998.03 (5)C4—C3—C2121.5 (2)
O1W—Sr1—C985.29 (5)C5—C4—C3120.7 (2)
O2W—Sr1—C9161.41 (6)C5—C4—H4119.7
O2—Sr1—C981.98 (5)C3—C4—H4119.7
O1—Sr1—C984.22 (5)C6—C5—C4120.5 (2)
O4—Sr1—C924.25 (5)C6—C5—H5119.7
O3—Sr1—C924.25 (5)C4—C5—H5119.7
C1—Sr1—C979.51 (5)C5—C6—C7119.3 (2)
O3i—Sr1—Sr1ii144.77 (3)C5—C6—H6120.3
O4ii—Sr1—Sr1ii38.55 (3)C7—C6—H6120.3
O1W—Sr1—Sr1ii76.64 (4)C6—C7—C8120.6 (2)
O2W—Sr1—Sr1ii120.57 (5)C6—C7—H7119.7
O2—Sr1—Sr1ii77.03 (3)C8—C7—H7119.7
O1—Sr1—Sr1ii119.43 (4)C3—C8—C7120.6 (2)
O4—Sr1—Sr1ii82.91 (3)C3—C8—H8119.7
O3—Sr1—Sr1ii35.66 (3)C7—C8—H8119.7
C1—Sr1—Sr1ii96.85 (4)O3—C9—O4121.84 (18)
C9—Sr1—Sr1ii59.68 (4)O3—C9—C10119.34 (19)
O3i—Sr1—Sr1i39.83 (3)O4—C9—C10118.71 (18)
O4ii—Sr1—Sr1i143.08 (3)O3—C9—Sr162.67 (10)
O1W—Sr1—Sr1i75.27 (4)O4—C9—Sr160.21 (10)
O2W—Sr1—Sr1i125.60 (5)C10—C9—Sr1166.14 (14)
O2—Sr1—Sr1i116.50 (3)C11—C10—C9110.99 (17)
O1—Sr1—Sr1i76.69 (3)C11—C10—H10A109.4
O4—Sr1—Sr1i35.42 (3)C9—C10—H10A109.4
O3—Sr1—Sr1i82.20 (3)C11—C10—H10B109.4
C1—Sr1—Sr1i95.29 (4)C9—C10—H10B109.4
C9—Sr1—Sr1i59.24 (4)H10A—C10—H10B108.0
Sr1ii—Sr1—Sr1i113.710 (10)C16—C11—C12118.6 (2)
O3i—Sr1—H2W88.6 (3)C16—C11—C10120.7 (2)
O4ii—Sr1—H2W62.5 (3)C12—C11—C10120.7 (2)
O1W—Sr1—H2W15.9 (3)C13—C12—C11120.8 (2)
O2W—Sr1—H2W120.0 (4)C13—C12—H12119.6
O2—Sr1—H2W137.8 (3)C11—C12—H12119.6
O1—Sr1—H2W157.7 (4)C14—C13—C12120.1 (2)
O4—Sr1—H2W81.8 (4)C14—C13—H13120.0
O3—Sr1—H2W70.3 (4)C12—C13—H13120.0
C1—Sr1—H2W153.8 (4)C15—C14—C13119.9 (2)
C9—Sr1—H2W77.3 (4)C15—C14—H14120.0
Sr1ii—Sr1—H2W60.8 (3)C13—C14—H14120.0
Sr1i—Sr1—H2W83.1 (4)C14—C15—C16120.1 (2)
O3i—Sr1—H4W86.0 (7)C14—C15—H15119.9
O4ii—Sr1—H4W99.0 (6)C16—C15—H15119.9
O1W—Sr1—H4W129.0 (4)C11—C16—C15120.5 (2)
O2W—Sr1—H4W18.3 (3)C11—C16—H16119.8
O2—Sr1—H4W69.2 (6)C15—C16—H16119.8
O3i—Sr1—O1—C1177.45 (13)C9—Sr1—C1—O198.93 (13)
O4ii—Sr1—O1—C118.08 (15)Sr1ii—Sr1—C1—O1156.28 (12)
O1W—Sr1—O1—C1146.36 (13)Sr1i—Sr1—C1—O141.58 (12)
O2W—Sr1—O1—C192.37 (13)O3i—Sr1—C1—C289.0 (7)
O2—Sr1—O1—C16.87 (12)O4ii—Sr1—C1—C2102.2 (7)
O4—Sr1—O1—C1100.75 (13)O1W—Sr1—C1—C20.9 (8)
O3—Sr1—O1—C157.08 (13)O2W—Sr1—C1—C2175.3 (7)
C9—Sr1—O1—C177.51 (13)O2—Sr1—C1—C2100.9 (7)
Sr1ii—Sr1—O1—C127.29 (13)O1—Sr1—C1—C291.6 (7)
Sr1i—Sr1—O1—C1137.22 (13)O4—Sr1—C1—C217.2 (7)
O3i—Sr1—O2—C112.63 (15)O3—Sr1—C1—C231.5 (7)
O4ii—Sr1—O2—C1178.83 (13)C9—Sr1—C1—C27.3 (7)
O1W—Sr1—O2—C1144.16 (13)Sr1ii—Sr1—C1—C264.6 (7)
O2W—Sr1—O2—C192.38 (13)Sr1i—Sr1—C1—C250.1 (7)
O1—Sr1—O2—C16.96 (12)O2—C1—C2—C321.9 (3)
O4—Sr1—O2—C161.09 (13)O1—C1—C2—C3159.7 (2)
O3—Sr1—O2—C1106.21 (13)Sr1—C1—C2—C3115.6 (6)
C9—Sr1—O2—C182.31 (13)C1—C2—C3—C890.4 (3)
Sr1ii—Sr1—O2—C1142.92 (13)C1—C2—C3—C488.1 (3)
Sr1i—Sr1—O2—C132.66 (13)C8—C3—C4—C51.1 (3)
O3i—Sr1—O3—C927.22 (10)C2—C3—C4—C5177.5 (2)
O4ii—Sr1—O3—C9168.97 (13)C3—C4—C5—C60.5 (4)
O1W—Sr1—O3—C993.62 (12)C4—C5—C6—C71.4 (3)
O2W—Sr1—O3—C9140.82 (14)C5—C6—C7—C80.6 (3)
O2—Sr1—O3—C9102.32 (12)C4—C3—C8—C71.8 (3)
O1—Sr1—O3—C957.76 (12)C2—C3—C8—C7176.74 (19)
O4—Sr1—O3—C96.27 (11)C6—C7—C8—C31.0 (3)
C1—Sr1—O3—C978.62 (12)Sr1ii—O3—C9—O4139.5 (3)
Sr1ii—Sr1—O3—C9170.15 (14)Sr1—O3—C9—O411.7 (2)
Sr1i—Sr1—O3—C917.64 (11)Sr1ii—O3—C9—C1044.4 (5)
O3i—Sr1—O3—Sr1ii142.93 (7)Sr1—O3—C9—C10164.41 (16)
O4ii—Sr1—O3—Sr1ii1.18 (5)Sr1ii—O3—C9—Sr1151.2 (4)
O1W—Sr1—O3—Sr1ii76.53 (5)Sr1i—O4—C9—O3136.6 (2)
O2W—Sr1—O3—Sr1ii49.03 (13)Sr1—O4—C9—O312.0 (2)
O2—Sr1—O3—Sr1ii87.53 (5)Sr1i—O4—C9—C1047.3 (4)
O1—Sr1—O3—Sr1ii132.09 (5)Sr1—O4—C9—C10164.15 (16)
O4—Sr1—O3—Sr1ii163.88 (8)Sr1i—O4—C9—Sr1148.6 (3)
C1—Sr1—O3—Sr1ii111.23 (6)O3i—Sr1—C9—O3156.60 (9)
C9—Sr1—O3—Sr1ii170.15 (14)O4ii—Sr1—C9—O310.71 (12)
Sr1i—Sr1—O3—Sr1ii152.51 (5)O1W—Sr1—C9—O383.90 (12)
O3i—Sr1—O4—C9167.79 (12)O2W—Sr1—C9—O389.6 (2)
O4ii—Sr1—O4—C925.62 (10)O2—Sr1—C9—O372.99 (12)
O1W—Sr1—O4—C992.95 (12)O1—Sr1—C9—O3122.52 (12)
O2W—Sr1—O4—C9136.59 (14)O4—Sr1—C9—O3168.6 (2)
O2—Sr1—O4—C960.75 (12)C1—Sr1—C9—O397.78 (12)
O1—Sr1—O4—C9107.05 (12)Sr1ii—Sr1—C9—O36.63 (10)
O3—Sr1—O4—C96.27 (11)Sr1i—Sr1—C9—O3159.55 (13)
C1—Sr1—O4—C982.33 (12)O3i—Sr1—C9—O411.95 (12)
Sr1ii—Sr1—O4—C915.66 (11)O4ii—Sr1—C9—O4157.84 (9)
Sr1i—Sr1—O4—C9166.58 (14)O1W—Sr1—C9—O484.65 (12)
O3i—Sr1—O4—Sr1i1.21 (5)O2W—Sr1—C9—O4101.8 (2)
O4ii—Sr1—O4—Sr1i140.96 (7)O2—Sr1—C9—O4118.46 (12)
O1W—Sr1—O4—Sr1i73.64 (6)O1—Sr1—C9—O468.93 (11)
O2W—Sr1—O4—Sr1i56.83 (13)O3—Sr1—C9—O4168.6 (2)
O2—Sr1—O4—Sr1i132.67 (5)C1—Sr1—C9—O493.67 (12)
O1—Sr1—O4—Sr1i86.36 (6)Sr1ii—Sr1—C9—O4161.92 (13)
O3—Sr1—O4—Sr1i160.31 (8)Sr1i—Sr1—C9—O49.00 (10)
C1—Sr1—O4—Sr1i111.09 (6)O3i—Sr1—C9—C10101.4 (6)
C9—Sr1—O4—Sr1i166.58 (14)O4ii—Sr1—C9—C10112.7 (6)
Sr1ii—Sr1—O4—Sr1i150.92 (5)O1W—Sr1—C9—C10174.1 (6)
Sr1—O2—C1—O113.1 (2)O2W—Sr1—C9—C1012.4 (7)
Sr1—O2—C1—C2165.21 (18)O2—Sr1—C9—C1029.0 (6)
Sr1—O1—C1—O213.0 (2)O1—Sr1—C9—C1020.5 (6)
Sr1—O1—C1—C2165.30 (17)O4—Sr1—C9—C1089.4 (6)
O3i—Sr1—C1—O2170.07 (12)O3—Sr1—C9—C10102.0 (6)
O4ii—Sr1—C1—O21.24 (14)C1—Sr1—C9—C104.2 (6)
O1W—Sr1—C1—O2100.0 (2)Sr1ii—Sr1—C9—C10108.6 (6)
O2W—Sr1—C1—O283.74 (13)Sr1i—Sr1—C9—C1098.5 (6)
O1—Sr1—C1—O2167.4 (2)O3—C9—C10—C1194.8 (2)
O4—Sr1—C1—O2118.09 (13)O4—C9—C10—C1181.5 (2)
O3—Sr1—C1—O269.47 (12)Sr1—C9—C10—C110.2 (7)
C9—Sr1—C1—O293.64 (13)C9—C10—C11—C16107.2 (2)
Sr1ii—Sr1—C1—O236.29 (12)C9—C10—C11—C1273.3 (2)
Sr1i—Sr1—C1—O2150.99 (12)C16—C11—C12—C130.7 (3)
O3i—Sr1—C1—O12.64 (13)C10—C11—C12—C13178.85 (19)
O4ii—Sr1—C1—O1166.19 (12)C11—C12—C13—C140.2 (3)
O1W—Sr1—C1—O192.6 (2)C12—C13—C14—C150.4 (4)
O2W—Sr1—C1—O183.68 (13)C13—C14—C15—C160.5 (4)
O2—Sr1—C1—O1167.4 (2)C12—C11—C16—C150.7 (3)
O4—Sr1—C1—O174.48 (12)C10—C11—C16—C15178.9 (2)
O3—Sr1—C1—O1123.10 (13)C14—C15—C16—C110.1 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.87 (1)2.01 (1)2.855 (2)164 (2)
O1W—H2W···O1ii0.85 (1)2.05 (1)2.901 (2)173 (2)
O2W—H3W···O3Wiii0.86 (1)1.81 (1)2.654 (3)169 (3)
O3W—H5W···O1iv0.86 (1)1.97 (1)2.828 (3)175 (3)
O3W—H6W···O20.86 (1)2.19 (1)3.031 (3)168 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x, y+1, z.

Experimental details

(MgPAA)(CaPAA)(SrPAA)
Crystal data
Chemical formula[Mg(C8H7O2)(H2O)4](C8H7O2)[Ca(C8H7O2)2(H2O)2]·H2O[Sr(C8H7O2)2(H2O)2]·H2O
Mr366.65364.40411.94
Crystal system, space groupOrthorhombic, P212121Monoclinic, C2/cMonoclinic, C2/c
Temperature (K)120150123
a, b, c (Å)9.7979 (7), 10.0424 (8), 36.052 (3)29.2249 (10), 6.6941 (3), 17.8109 (5)29.5111 (15), 6.8560 (5), 17.7229 (11)
α, β, γ (°)90, 90, 9090, 92.520 (2), 9090, 93.453 (3), 90
V3)3547.3 (5)3481.1 (2)3579.3 (4)
Z888
Radiation typeSynchrotron, λ = 0.68840 ÅMo KαMo Kα
µ (mm1)0.140.393.05
Crystal size (mm)0.12 × 0.08 × 0.0010.36 × 0.08 × 0.070.30 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Enraf–Nonius KappaCCD area-detector
diffractometer
Oxford Gemini
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.844, 1.0000.564, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
26335, 6253, 5231 7271, 3814, 2429 20190, 4034, 3175
Rint0.0500.0610.032
(sin θ/λ)max1)0.5950.6390.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.02 0.042, 0.103, 1.03 0.027, 0.065, 1.04
No. of reflections625338144034
No. of parameters500235235
No. of restraints2499
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.250.39, 0.310.57, 0.26
Absolute structureFlack (1983), with how many Friedel pairs???
Absolute structure parameter0.5 (3)??

Computer programs: APEX2 (Bruker, 2007), DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), CrysAlis CCD (Oxford Diffraction, 2009), SAINT (Bruker, 2007), DENZO (Otwinowski & Minor, 1997), CrysAlis RED (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) for (MgPAA) top
Mg1—O3i2.0278 (19)Mg2—O12.026 (2)
Mg1—O7W2.0381 (19)Mg2—O3W2.032 (2)
Mg1—O22.0691 (19)Mg2—O1W2.0790 (19)
Mg1—O8W2.0888 (19)Mg2—O42.079 (2)
Mg1—O6W2.1291 (19)Mg2—O4W2.1252 (19)
Mg1—O5W2.141 (2)Mg2—O2W2.143 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (MgPAA) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5ii0.866 (10)1.889 (11)2.749 (3)171 (3)
O1W—H2W···O7iii0.875 (10)1.982 (11)2.853 (3)173 (3)
O2W—H3W···O8iii0.874 (10)2.007 (11)2.875 (2)172 (3)
O2W—H4W···O30.875 (10)1.745 (12)2.595 (2)163 (3)
O3W—H5W···O60.865 (10)1.848 (13)2.693 (2)165 (3)
O3W—H6W···O70.873 (10)1.864 (11)2.729 (3)171 (3)
O4W—H7W···O6iii0.877 (10)1.914 (12)2.775 (3)166 (3)
O4W—H8W···O5Wiv0.878 (10)2.154 (15)2.939 (3)149 (2)
O5W—H9W···O10.875 (10)1.762 (12)2.613 (2)164 (3)
O5W—H10W···O6iii0.875 (10)1.992 (11)2.864 (2)175 (2)
O6W—H11W···O8v0.869 (10)1.911 (11)2.770 (3)169 (3)
O6W—H12W···O2Wiii0.877 (10)2.123 (14)2.932 (3)153 (3)
O7W—H13W···O5vi0.876 (10)1.861 (11)2.730 (3)172 (3)
O7W—H14W···O8ii0.868 (10)1.847 (12)2.698 (2)166 (2)
O8W—H15W···O5iii0.886 (10)1.953 (10)2.839 (2)178 (2)
O8W—H16W···O70.874 (10)1.898 (11)2.764 (2)171 (3)
Symmetry codes: (ii) x, y1, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+2, y1/2, z+1/2; (vi) x+1, y1, z.
Selected bond lengths (Å) for (CaPAA) top
Ca1—O2i2.3527 (16)Ca1—O12.5167 (14)
Ca1—O1ii2.3632 (16)Ca1—O32.5188 (16)
Ca1—O1W2.3843 (15)Ca1—O42.5355 (15)
Ca1—O2W2.4214 (16)Ca1—O22.5695 (15)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (CaPAA) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3ii0.867 (9)1.999 (12)2.838 (2)163 (2)
O1W—H2W···O4i0.875 (9)1.980 (12)2.830 (2)164 (2)
O2W—H3W···O3Wiii0.872 (10)1.791 (10)2.659 (2)174 (3)
O2W—H4W···O30.862 (10)2.64 (2)3.177 (2)121 (2)
O3W—H5W···O3iv0.875 (10)1.964 (10)2.838 (3)178 (3)
O3W—H6W···O40.873 (10)2.082 (12)2.939 (3)167 (3)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z.
Selected bond lengths (Å) for (SrPAA) top
Sr1—O3i2.4655 (14)Sr1—O22.6386 (14)
Sr1—O4ii2.4688 (14)Sr1—O12.6453 (15)
Sr1—O1W2.5528 (15)Sr1—O42.6548 (14)
Sr1—O2W2.5772 (18)Sr1—O32.7089 (14)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (SrPAA) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.865 (9)2.013 (11)2.855 (2)164 (2)
O1W—H2W···O1ii0.853 (9)2.052 (10)2.901 (2)173 (2)
O2W—H3W···O3Wiii0.859 (10)1.806 (11)2.654 (3)169 (3)
O3W—H5W···O1iv0.862 (10)1.968 (10)2.828 (3)175 (3)
O3W—H6W···O20.857 (10)2.187 (11)3.031 (3)168 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds