Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In situ neutron powder investigations of cubic stabilized zirconia [Zr0.85Ca0.15O1.85 (CSZ15)] sinter material were performed at room temperature without an applied direct-current electric field and at 1100K with and without an applied field, i.e. lasting ionic current. Experimental conditions (temperature, oxidizing atmosphere etc.) were chosen as close as possible to `working conditions' of zirconia oxygen sensoric devices. To learn about field-induced structural changes and most probable ionic pathways, atomic displacement parameters were derived in the frame of a non-Gaussian Debye-Waller factor formalism for the oxygens. Probability-density-function maps and pseudo-potential (V eff) maps indicate curved diffusion pathways of the oxygens close to the (100) directions. The action of the applied field is to lower the effective potential barriers.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds