Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
An approach for analysing neutron and X-ray specular reflectivity data from stratified media having variation in the scattering-length density near the surface is described. The method has its origin in small-angle scattering and it is composed of two steps: (i) indirect Fourier transformation [Glatter (1977). J. Appl. Cryst. 10, 415–421] giving the profile correlation function p(z) of the derivative dρ/dz of the scattering-length density; (ii) square-root deconvolution [Glatter (1981). J. Appl. Cryst. 14, 101–108] giving dρ/dz and ρ, the scattering-length-density profile. The only requirement for applying the method is that the scattering-length density varies only in a limited range. In nearly all cases the approach does not require any knowledge of the chemical composition of the surface layer and consequently incorporates a certain degree of objectivity. The method gives the smoothest profile which agrees with the experimental reflectivity data. The method is tested on simulated reflectivity data for a series of different surface profiles and subsequently used for analysing experimental data on fluorocarbon amphiphiles in water and salt solutions. The tests on simulated data show that the indirect Fourier transformation gives correlation functions agreeing very well with the corresponding functions of the original profiles. It is further demonstrated that the square-root deconvolution gives reliable results for the scattering-length-density profiles.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds