Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Studies in the Rb–Eu–In–Ge system confirm the existence of the phase Rb8−xEux(In,Ge)46 (0.6 ≤ x ≤ 1.8), crystallizing with the cubic clathrate type-I structure. The In and Ge content can be varied, concomitant with changes in the Rb–Eu ratio. Two of the three framework sites are occupied by statistical mixtures of Ge and In atoms, while the site with the lowest multiplicity is taken by the In atoms only. Based on the three refined formulae [hepta­rubidium europium nona­indium hepta­triaconta­germanide, Rb7.39(3)Eu0.61(3)In8.88(5)Ge37.12(5), and two forms of hexa­rubidium dieuropium deca­indium hexa­triaconta­germanide, Rb6.30(3)Eu1.70(3)In9.76(4)Ge36.24(4) and Rb6.24(2)Eu1.76(2)In10.16(5)Ge35.84(5)] and the explored different synthetic routes, it can be suggested that the known ternary phase Rb8In8Ge38 and the hypothetical quaternary phase Rb6Eu2In10Ge36 represent the boundaries of the homogeneity range. In the former limiting composition, both the (Ge,In)20 and the (Ge,In)24 cages are fully occupied by Rb atoms only, whereas Rb6Eu2In10Ge36 has Rb atoms encapsulated in the larger tetra­kaideca­hedra, with Eu atoms filling the smaller penta­gonal dodeca­hedra. For the solid solutions Rb8−xEux(In,Ge)46, Rb and Eu are statistically disordered in the dodeca­hedral cage, and the tetra­kaideca­hedral cage is only occupied by Rb atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113030011/fn3157sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030011/fn3157Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030011/fn3157IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030011/fn3157IIIsup4.hkl
Contains datablock III

CCDC references: 969913; 969914; 969915

Introduction top

In the last two decades, cage compounds with clathrate structures have received renewed inter­est due to their proposed potential as thermoelectric materials (Slack, 1995; Nolas et al., 1998; Sales et al., 1999; Christensen et al., 2010). The open-framework structures of these materials are based on tetra­hedrally coordinated Si, Ge and Sn. There are large cages left behind, which are capable of encapsulating guest atoms (typically alkali metals, alkaline-earth metals or the nominally divalent rare-earth metal Eu). During the preparation of this manuscript, the rare earth metals La and Ce were reported, for the first time, as guest atoms in the structure of Ba8–xLnxAuySi46–x (Prokofiev et al., 2013).

Clathrates crystallize in different structure types, whereby the most common structure types are the type-I structure with general formula A8M46 (A denotes guest atoms and M denotes framework atoms; cubic, Pm3n, Pearson symbol cP54) and the type-II structure with general formula A24M136 (cubic, Fd3m, Pearson symbol cF160). Both formulas represent the limiting compositions with full occupation of all cages by guest atoms and without any defects (vacancies) in the framework. Fractional occupation of the cages by the guest atoms, as well as missing atoms on the framework sites are common traits of the crystal chemistry of the clathrates; these issues have been analyzed in the past in many previous publications and we refer the reader to some recent review articles on the subject (Bobev & Sevov, 2000; Beekman & Nolas, 2008; Shevelkov & Kovnir, 2011). The compositions are further complicated by the possible partial substitution of the framework-building Group 14 atoms with atoms of Group 12 and 13 elements, or even late transition metals from Groups 10 and 11, as well as by insertion of two different guest atoms (Bobev & Sevov, 1999, 2000; Nolas et al., 2002; Bobev et al., 2006; Paschen et al., 2006; Beekman et al., 2007, 2009; Schäfer & Bobev, 2013a; Prokofiev et al., 2013).

Experimental top

Synthesis and crystallization top

All synthetic manipulations were carried out in an argon-filled glove-box or under vacuum. The elements were purchased from Alfa or Sigma–Aldrich with purity greater than 99.9%.

Rb8–xEux(In,Ge)46 can be obtained with three different synthetic routes: (i) by fusing together the elements, (ii) by using a multi-step synthesis (i.e. precursors) and (iii) by In-flux reactions.

For synthetic route (i), in our initial experiments, the nominal composition Rb6Eu2In10Ge36 was the target, and the starting materials were loaded in this ratio. The Nb tubes were always arc-sealed and enclosed in fused-silica jackets before the heat treatments. The samples were heated in programmable tube furnaces to 1223 K (rate 100 K h-1), kept for 2 h, cooled to 873 K (rate 150 K h-1), annealed at this temperature for 96 h and cooled to room temperature with a rate of 5 K h-1. None of these experiments proceed as desired – side products were always present, and a slight excess of Eu was needed to avoid the formation of Rb8In8Ge38 (von Schnering et al., 1998). An additional problem was the reaction of Ge with the Nb tube, which prompted us to look at prereacting Eu and Ge (the elements with highest melting points), and to lower the reaction temperature.

As a result, we came up with a different procedure, i.e. (ii). EuIn4 and RbGe were synthesized in a first step by fusing together the elements in stoichiometric ratios (Eu–In = 1:4 and Rb–Ge = 1:1) in Nb tubes. The products obtained were carefully ground to a fine powder and used in the second step, also carried out in Nb tubes. The mixtures were heated to 898 K (rate 100 K h-1), annealed for 60 h and cooled to room temperature (rate 20 K h-1). The products obtained were reground and additional Eu was added. In the final step, the reaction mixture was heated to 1123 K (rate 10 K h-1), kept for 1 h, cooled to 873 K (15 K h-1), annealed for 96 h and cooled to room temperature (rate 5 K h-1).

For the flux reaction (iii), the elements were loaded with the Rb–Eu–In–Ge ratio 6:6:40:40 in longer Nb tubes (length 8 cm, diameter 1 cm). After insertion of a filter part (a round Nb sheet with small drilled holes), the Nb tubes were heated to 1073 K (rate 100 K h-1), annealed for 60 h and cooled slowly (rate 5 K h-1). The In flux was removed at 573 K.

The compositions of the synthesized phases were confirmed by EDX measurements on a Jeol 7400 F electron microscope equipped with an INCA–OXFORD energy-dispersive spectrometer.

Powder patterns were taken at room temperature on a Rigaku MiniFlex powder diffractometer using filtered Cu Kα radiation (λ = 1.54056 Å). The data were used for phase-identification only. Irrespective of the method of synthesis, single-phase product was never obtained.

Differential scanning calorimetry and thermogravimetric (DSC–TG) analyses for different batches were carried out using a calorimeter supplied by TA Instruments (model SDT Q600). The samples were ground into powders and loaded in small alumina pans. The temperature of a typical run was ramped at a rate of 10 K under a constant flow (100 ml min-1) of high purity argon in order to avoid oxidation in ambient air.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The contrast between the X-ray atomic scattering factors between Ge and In, as well as between Rb and Eu, is significant enough to allow precise refinements of the site-occupation factors. In all cases, the occupancies of the framework sites were first freely refined and then fixed, allowing for the final refinements of the sites for the guest atoms. Afterwards, the occupancies of all Ge/In sites were refined by freeing the occupancy of each individual site, while the remaining occupancies [OK?] were kept fixed. The 24k and 16i sites were found to be mixed occupied by both atoms, while site 6c is only occupied by In atoms. There were no hints in the refinements for vacancies in the framework. The isotropic displacement parameter for Rb at site 6d is slightly larger than the rest, and the oblate shape of the spheroid might suggest an off-centering of the atom occupying this large tetra­kaidecahedral cage, as discussed by us in a related study (Schäfer & Bobev, 2013b). However, refinements with a split site model (24k) did not yield statistically significant improvements.

The atomic coordinates were standardized to conform to the literature prior to the final anisotropic refinement. Final difference Fourier maps were flat. The small residual peaks are located at (0.2476, 0.1417, 0) for compound (I) (0.72 e- Å-3), at (0.3609, 0.5, 0.1834) for compound (II) (0.43 e- Å-3) and at (0, 0.3667, 0.2130) for compound (III) (0.75 e- Å-3). The corresponding holes are at (0.5, 0.2524, 0.0362) for compound (I) (-1.08 e- Å-3), at (0.1267, 0.5, 0) for compound (II) (-0.70 e- Å-3) and at (0, 0, 0.0391) for compound (III) (-1.07 e- Å-3).

Results and discussion top

The title compounds adopt the cubic type-I structure with the space group Pm3n (No. 223). The open-framework consists of 46 tetra­hedrally coordinated atoms per unit cell, located on the Wyckoff sites 24k, 16i and 6c. In total, one unit cell contains two (Ge,In)20 penta­gonal dodecahedra and six (Ge,In)24 tetra­kaidecahedra (Fig. 1). The 24-atom polyhedra share their two hexagonal faces to create three perpendicular, but not inter­penetrating, columns running along [100], [010] and [001] of the cube, and entrapping the `isolated' 20-atom polyhedra. In all three reported clathrates, the framework site 6c is refined as fully occupied by In, while in the known Rb8In8Ge38 (von Schnering et al., 1998), the same site is a 9:1 mixture of In and Ge. The other two framework sites, namely 24k and 16i, are occupied predominantly by Ge, with very small amounts of In substitutions.

The refined Ge–In ratios are summarized for easier comparison in Table 2. The preference for the In atoms on site 6c can be understood from the point of view of requiring minimization of homoatomic In···In inter­actions. Additionally, In occupying the 6c site allows for elongation of the Ge1/In1–In3 bonds, as seen by comparing their values with other Ge/In–Ge/In distances (Table 3). The Ge/In—Ge/In distances here match closely the values reported for other Ge-based clathrates. We also note that assuming only Ge—Ge bonding between 24k and 16i sites, the corresponding distances on the order of 2.5 Å should signify relatively strong covalent bonds – this conclusion can be deduced from the separation of 2.45 Å between Ge atoms in the elemental form (Pauling, 1960).

The cages themselves are fully occupied by the Rb and Eu guest atoms. The penta­gonal dodecahedra encapsulate statistically disordered Rb and Eu atoms (site 2a) (Fig. 2). The filler atoms for the larger tetra­kaidecahedral polyhedra are exclusively Rb atoms (site 6d). We note here that Eu prefers the 2a site by a large margin, suggesting that if the Eu content can be increased, full ordering of the cations might be possible. The site preferences here can be rationalized taking into account the smaller size of the Eu atoms (rEu = 2.08 Å; Pauling, 1960) and the much larger size of the Rb atoms (rRb = 2.48 Å; Pauling, 1960). Apparently, the latter are appropriate to fit in the larger cavities, while Eu is suitable for the smaller 20-atom cages only. Notice that we used the Pauling metallic radii to illustrate our reasoning, the same conclusion could be reached if one were to use ionic radii (limited to much smaller coordination numbers).

The sizes of Eu and Rb can apparently be linked to the relatively higher abundance of Rb-containing clathrates relative to Eu-containing ones. Inspecting the literature reveals that only very few clathrates host Eu atoms as guest atoms. The most prominent ones are the type-I and type-VIII phase with formula Eu8Ga16Ge30 (Paschen et al., 2001). They have same nominal compositions and undergo a reversible phase transition at 969 K from type-VIII to type-I (Paschen et al., 2001). The magnetic and electronic properties of these compounds are already studied extensively (Paschen et al., 2001; Sales et al., 2001; Bentien et al., 2005) and compared with these of Eu8–xSrxGa16Ge30 (x = 2, 4) (Woods et al. 2006; Phan et al., 2011). Additionally, some quaternary type-I clathrates with Eu are also known, viz. K6Eu2Ga10Ge36 (very close structurally to the structures discussed herein) and K6Eu2T5Ge41, with T = Zn and Cd (Paschen et al., 2006).

The homogeneity range in Rb8–xEux(In,Ge)46 is another issue related to the size of the guest atoms. Inspecting the experimental details, one would immediately notice that the observed unit cells vary monotonically as a function of `x', and the structure with the highest amount Eu (x 1.8) has the largest unit cell among all: Rb7.39 (3)Eu0.61 (3)(In,Ge)46 [a = 11.0292 (9) Å], Rb6.30 (3)Eu1.70 (3)(In,Ge)46 [a = 11.0592 (3) Å] and Rb6.24 (2)Eu1.76 (2)(In,Ge)46 [a = 11.0614 (7) Å]. Another relevant observation is that Rb8In8Ge38 (von Schnering et al., 1998) is reported with a = 11.033 (2) Å, which is very close to our structure with the lowest amount Eu (x 0.6). The two numbers, however, should be compared with a degree of caution, since the literature value was determined at room temperature, while our data were gathered at 200 K.

Evidently, the trend above does not correlate with the decreased atomic size of Eu relative to that of Rb (Pauling, 1960) – instead, the reason why the structure expands the way it does is the proportional increase of In as Eu replaces Rb. This increase in the amount of In substituting Ge in the framework is required by the Zintl–Klemm concept (Miller, 1996; Guloy, 2006), which can be successfully applied to rationalize the structure. Accordingly, in order to obtain the electroneutrality of the compound, assuming a `2+' state for Eu, the above discussed compounds will have idealized formulas, which can be broken down as follows: [Rb+]8[4b-In1-]8[4b-Ge0]38, [Rb+]7[Eu2+]1[4b-In1-]9 [4b-Ge0]37 and [Rb+]6[Eu2+]2 [4b-In1-]10[4b-Ge0]36 (4b-In denotes 4-bonded In atom, which requires an extra electron to form four covalent bonds, and hence, a formal charge of -1).

Clearly, more Eu content in the structure calls for an increasing substitution rate of In for Ge, and since In is larger than Ge (Pauling, 1960) the unit-cell volume increases. Similar dependence of the unit cell (but in an opposite direction) has been reported recently for the type-II clathrates KxBa16–x□8(Ga,Sn)136 (□: vacancy; 0.8 x 12.9) (Schäfer & Bobev, 2013a,b), where the smaller Ga replaces Sn in the framework. Similar phenomena concerning the unit-cell parameters are known even for more exotic cases, such as Si46–xPxTey [6.6 (1) y 7.5 (1), x 2y], where introduction of Te instead of a vacancy leads to the contraction of the framework (Zaikina et al., 2009).

Considering Rb8In8Ge38 (von Schnering et al., 1998) as an end member, one can ask the question if the amount of Eu replacing Rb is limited to x 1.8? We have wondered about that too, and had attempted numerous attempts to extend the phase width further; we have also tried to make the pure Eu version (i.e. Eu8In16Ge30), but none of these experiments have been successful so far. This is perhaps due to the fact that Eu is smaller than the empty space provided by the 24-atom tetra­kaidecahedra, which comprise 3/4 of the sites available for guest-atom fillers. Furthermore, the increase in Eu-content will require an additional increase of the unit-cell volumes due to the higher In-uptake, which could be the reason why the hypothetical Rb6Eu2In10Ge36 may very well represent the boundaries of the homogeneity range.

Another issue with regard to the Eu content is that it appears to be very sensitive to the chosen experimental conditions. Our experiments with both classic solid-state methods (direct fusion of elements at high temperature) or using metal fluxes as a `milder' synthetic route suggest that maximum Eu-content can be reached by both types of reactions – In self-flux or fusing together stoichiometric amounts of the elements. The crystals obtained from excess molten In and the crystals obtained from a stochiometric melt (same loading composition except for In) had nearly the same refined formulas, viz. Rb6.24 (2)Eu1.76 (2)In10.16 (5)Ge35.84 (5) for the former and Rb6.30 (3)Eu1.70 (3)In9.76 (4)Ge36.24 (4) for the latter. In both cases, some Eu was `lost' due to the formation of the EuIn4 and EuGe2 binary phases as unwanted side products, and we could not find conditions to fully circumvent them. We also note explicitly that the compositions vary in each single batch – for instance the phase Rb7.39 (3)Eu0.61 (3)In8.88 (5)Ge37.12 (5) [a = 11.0292 (9) Å] was found in a reaction that also yielded crystals indexed with a = 11.047 (2) Å. The latter were of inferior quality and their composition could not be established by refinements of the X-ray data, but judging from the unit-cell parameters, one has considerably lower Eu content. EDX analyses of different single crystals (3–4 per batch) also confirm the lack of homogeneity. The same argument is further supported by the DSC curves, which show peritectic decomposition of the studied clathrates, however, not at a sharp temperature point – there is a relatively wide range between 1143 to 1173 K. In comparison, the melting point of type-I Eu8Ga16Ge30 is 972 K (Paschen et al., 2001).

Based on the above, it can be argued that the controlled and reproducible synthesis of the quaternary clathrates Rb8–xEux(In,Ge)46 will only be possible using different synthetic methods, or if high-temperature routes are involved, prolonged equilibration steps should be used to ensure uniformity.

Last, we also would like to compare the closely related K6Eu2Ga10Ge36, which has been described earlier as a line compound (Paschen et al., 2006). In this case, the 24-atom cages are filled only by K atoms (rK = 2.35 Å; Pauling, 1960) and the 20-atom polyhedra only by Eu (Paschen et al., 2006). The paper, however, does not report single-crystal refinements of the occupancies which can be compared with ours. The same authors also describe K6Eu2T5Ge41 with T = Zn and Cd, where the smaller atom size of the substituting framework atoms T (rZn = 1.34 Å and rGe = 1.44 Å; Pauling, 1960) causes a contraction of the unit cell. Cd atoms have nearly the same size as In atoms (rCd = 1.51 Å and rIn = 1.58 Å; Pauling, 1960); however, only about half the amount of Cd atoms is present. This, of course, is not only due to the size of Cd versus In, the formal charge of 2- for Cd and 1- for In must also be taken under consideration (i.e. as discussed above, the Zintl–Klemm rules should apply, calling for the formulation [K+]6[Eu2+]2[4b-Cd2-]5[4b-Ge0]41).

Related literature top

For related literature, see: Beekman & Nolas (2008); Beekman et al. (2007, 2009); Bentien et al. (2005); Bobev & Sevov (1999, 2000); Bobev et al. (2006); Christensen et al. (2010); Guloy (2006); Miller (1996); Nolas et al. (1998, 2002); Paschen et al. (2001, 2006); Pauling (1960); Phan et al. (2011); Prokofiev et al. (2013); Sales et al. (1999, 2001); Schäfer & Bobev (2013a, 2013b); Schnering et al. (1998); Shevelkov & Kovnir (2011); Slack (1995); Woods et al. (2006); Zaikina et al. (2009).

Computing details top

For all compounds, data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the polyanionic framework of the type-I clathrates (colour coding for the electronic version of the paper: pentagonal dodecahedra are purple and tetrakaidecahedra are yellow). The framework site 6c, taken by the In atoms, is highlighted in light blue.
[Figure 2] Fig. 2. Representation of the polyhedral cages in (a) Rb7.39 (3)Eu0.61 (3)In8.88 (5)Ge37.12 (5), (b) Rb6.30 (3)Eu1.70 (3)In9.76 (4)Ge36.24 (4) and (c) Rb6.24 (2)Eu1.76 (2)In10.16 (5)Ge35.84 (5). The anisotropic displacement parameters are drawn at the 95% probability level. In all electronic version of the plots, the framework sites are colour coded as follows: 6c is light blue, 16i is dark blue, and 24k is shown in black. The Rb and Eu atoms co-occuying site 2a are shown in purple and the Rb at site 6d are drawn in yellow.
(I) Heptarubidium europium nonaindium heptatriacontagermanide top
Crystal data top
Rb7.39Eu0.61In8.88Ge37.12Dx = 5.494 Mg m3
Mr = 4438.46Mo Kα radiation, λ = 0.71073 Å
Cubic, Pm3nCell parameters from 1008 reflections
Hall symbol: -P 4n 2 3θ = 4.1–26.9°
a = 11.0292 (9) ŵ = 31.51 mm1
V = 1341.63 (19) Å3T = 200 K
Z = 1Irregular, silver–grey
F(000) = 19350.16 × 0.11 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
324 independent reflections
Radiation source: fine-focus sealed tube298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and ϕ scansθmax = 28.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1414
Tmin = 0.081, Tmax = 0.137k = 1414
12572 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.018Secondary atom site location: difference Fourier map
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0132P)2 + 9.8432P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
324 reflectionsΔρmax = 0.72 e Å3
20 parametersΔρmin = 1.08 e Å3
Crystal data top
Rb7.39Eu0.61In8.88Ge37.12Z = 1
Mr = 4438.46Mo Kα radiation
Cubic, Pm3nµ = 31.51 mm1
a = 11.0292 (9) ÅT = 200 K
V = 1341.63 (19) Å30.16 × 0.11 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
324 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
298 reflections with I > 2σ(I)
Tmin = 0.081, Tmax = 0.137Rint = 0.057
12572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01820 parameters
wR(F2) = 0.0420 restraints
S = 1.18Δρmax = 0.72 e Å3
324 reflectionsΔρmin = 1.08 e Å3
Special details top

Experimental. Data collection is performed with four batch runs at ϕ = 0.00 ° (456 frames), at ϕ = 90.00 ° (456 frames), at ϕ = 180.00 ° (230 frames), and at ϕ = 270.00 (230 frames). Frame width = 0.40 \& in ω. Data is merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.00000.30101 (5)0.11557 (5)0.00715 (15)0.94
In10.00000.30101 (5)0.11557 (5)0.00715 (15)0.06
Ge20.18368 (3)0.18368 (3)0.18368 (3)0.00719 (16)0.91
In20.18368 (3)0.18368 (3)0.18368 (3)0.00719 (16)0.09
In30.25000.00000.50000.00946 (19)
Rb10.25000.50000.00000.0184 (3)
Eu20.00000.00000.00000.0110 (3)0.30
Rb20.00000.00000.00000.0110 (3)0.70
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0074 (3)0.0069 (3)0.0071 (3)0.0000.0000.0003 (2)
In10.0074 (3)0.0069 (3)0.0071 (3)0.0000.0000.0003 (2)
Ge20.00719 (16)0.00719 (16)0.00719 (16)0.00043 (13)0.00043 (13)0.00043 (13)
In20.00719 (16)0.00719 (16)0.00719 (16)0.00043 (13)0.00043 (13)0.00043 (13)
In30.0104 (4)0.0090 (3)0.0090 (3)0.0000.0000.000
Rb10.0118 (5)0.0217 (4)0.0217 (4)0.0000.0000.000
Eu20.0110 (3)0.0110 (3)0.0110 (3)0.0000.0000.000
Rb20.0110 (3)0.0110 (3)0.0110 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Ge1—Ge22.5185 (4)In3—Rb1x3.8994 (3)
Ge1—In2i2.5185 (4)In3—Rb1xi3.8994 (3)
Ge1—Ge2i2.5185 (4)In3—Rb1v3.8994 (3)
Ge1—In1ii2.5492 (12)In3—Rb1iii3.8994 (3)
Ge1—Ge1ii2.5492 (12)Rb1—In1xii3.7475 (5)
Ge1—In3iii2.6486 (6)Rb1—In1ii3.7475 (5)
Ge1—Eu23.5562 (7)Rb1—Ge1xii3.7475 (5)
Ge1—Rb13.7475 (5)Rb1—Ge1ii3.7475 (5)
Ge1—Rb1iv3.7475 (5)Rb1—In1xiii3.7475 (5)
Ge2—In1iii2.5185 (4)Rb1—Ge1xiii3.7475 (5)
Ge2—In1v2.5185 (4)Rb1—Ge1iv3.7475 (5)
Ge2—Ge1iii2.5185 (4)Rb1—In1xiv3.7475 (5)
Ge2—Ge1v2.5185 (4)Rb1—In1iv3.7475 (5)
Ge2—In2vi2.5340 (13)Rb1—Ge1xiv3.7475 (5)
Ge2—Ge2vi2.5340 (13)Rb1—In1xv3.7475 (5)
Ge2—Eu23.5088 (7)Rb1—Ge1xvi3.7475 (5)
Ge2—Rb1iii4.1001 (4)Eu2—In2xvii3.5088 (7)
Ge2—Rb14.1001 (4)Eu2—Ge2xvii3.5088 (7)
In3—In1vii2.6486 (6)Eu2—In2i3.5088 (7)
In3—Ge1v2.6486 (6)Eu2—In2xviii3.5088 (7)
In3—In1v2.6486 (6)Eu2—In2xix3.5088 (7)
In3—Ge1vii2.6486 (6)Eu2—In2xx3.5088 (7)
In3—In1viii2.6486 (6)Eu2—In2ii3.5088 (7)
In3—Ge1viii2.6486 (6)Eu2—In2xxi3.5088 (7)
In3—In1ix2.6486 (6)Eu2—Ge2i3.5088 (7)
In3—Ge1ix2.6486 (6)Eu2—Ge2xviii3.5088 (7)
Ge2—Ge1—In2i107.10 (3)Rb1xi—In3—Rb1v90.0
Ge2—Ge1—Ge2i107.10 (3)In1vii—In3—Rb1iii66.681 (8)
Ge2—Ge1—In1ii107.354 (15)Ge1v—In3—Rb1iii79.043 (12)
In2i—Ge1—In1ii107.354 (15)In1v—In3—Rb1iii79.043 (12)
Ge2i—Ge1—In1ii107.354 (15)Ge1vii—In3—Rb1iii66.681 (8)
Ge2—Ge1—Ge1ii107.354 (15)In1viii—In3—Rb1iii66.681 (8)
In2i—Ge1—Ge1ii107.354 (15)Ge1viii—In3—Rb1iii66.681 (8)
Ge2i—Ge1—Ge1ii107.354 (15)In1ix—In3—Rb1iii169.043 (12)
Ge2—Ge1—In3iii105.00 (2)Ge1ix—In3—Rb1iii169.043 (12)
In2i—Ge1—In3iii105.00 (2)Rb1x—In3—Rb1iii90.0
Ge2i—Ge1—In3iii105.00 (2)Rb1xi—In3—Rb1iii120.0
In1ii—Ge1—In3iii124.042 (12)Rb1v—In3—Rb1iii120.0
Ge1ii—Ge1—In3iii124.042 (12)In1xii—Rb1—In1ii160.003 (18)
Ge2—Ge1—Eu268.112 (19)In1ii—Rb1—Ge1xii160.003 (18)
In2i—Ge1—Eu268.113 (19)In1xii—Rb1—Ge1ii160.003 (18)
Ge2i—Ge1—Eu268.113 (19)Ge1xii—Rb1—Ge1ii160.003 (18)
In1ii—Ge1—Eu268.997 (9)In1xii—Rb1—In1xiii39.767 (17)
Ge1ii—Ge1—Eu268.997 (9)In1ii—Rb1—In1xiii122.776 (7)
In3iii—Ge1—Eu2166.96 (2)Ge1xii—Rb1—In1xiii39.767 (17)
Ge2—Ge1—Rb179.079 (9)Ge1ii—Rb1—In1xiii122.776 (7)
In2i—Ge1—Rb1173.823 (18)In1xii—Rb1—Ge1xiii39.767 (17)
Ge2i—Ge1—Rb1173.823 (18)In1ii—Rb1—Ge1xiii122.776 (7)
In1ii—Ge1—Rb170.116 (8)Ge1xii—Rb1—Ge1xiii39.767 (17)
Ge1ii—Ge1—Rb170.116 (8)Ge1ii—Rb1—Ge1xiii122.776 (7)
In3iii—Ge1—Rb172.850 (10)In1xii—Rb1—Ge1iv122.776 (7)
Eu2—Ge1—Rb1115.140 (11)In1ii—Rb1—Ge1iv71.697 (15)
Ge2—Ge1—Rb1iv173.823 (18)Ge1xii—Rb1—Ge1iv122.776 (7)
In2i—Ge1—Rb1iv79.079 (9)Ge1ii—Rb1—Ge1iv71.697 (15)
Ge2i—Ge1—Rb1iv79.079 (9)In1xiii—Rb1—Ge1iv160.003 (18)
In1ii—Ge1—Rb1iv70.116 (8)Ge1xiii—Rb1—Ge1iv160.003 (18)
Ge1ii—Ge1—Rb1iv70.116 (8)In1xii—Rb1—In1xiv71.697 (15)
In3iii—Ge1—Rb1iv72.850 (10)In1ii—Rb1—In1xiv122.776 (7)
Eu2—Ge1—Rb1iv115.140 (11)Ge1xii—Rb1—In1xiv71.697 (15)
Rb1—Ge1—Rb1iv94.744 (13)Ge1ii—Rb1—In1xiv122.776 (7)
Ge1—Ge2—In1iii109.07 (2)In1xiii—Rb1—In1xiv85.256 (13)
Ge1—Ge2—In1v109.07 (2)Ge1xiii—Rb1—In1xiv85.256 (13)
In1iii—Ge2—In1v109.07 (2)Ge1iv—Rb1—In1xiv98.221 (13)
Ge1—Ge2—Ge1iii109.07 (2)In1xii—Rb1—In1iv122.776 (7)
In1v—Ge2—Ge1iii109.07 (2)In1ii—Rb1—In1iv71.697 (15)
Ge1—Ge2—Ge1v109.07 (2)Ge1xii—Rb1—In1iv122.776 (7)
In1iii—Ge2—Ge1v109.07 (2)Ge1ii—Rb1—In1iv71.697 (15)
Ge1iii—Ge2—Ge1v109.07 (2)In1xiii—Rb1—In1iv160.003 (18)
Ge1—Ge2—In2vi109.874 (19)Ge1xiii—Rb1—In1iv160.003 (18)
In1iii—Ge2—In2vi109.874 (19)In1xiv—Rb1—In1iv98.221 (13)
In1v—Ge2—In2vi109.874 (19)In1xii—Rb1—Ge1xiv71.697 (15)
Ge1iii—Ge2—In2vi109.874 (19)In1ii—Rb1—Ge1xiv122.776 (7)
Ge1v—Ge2—In2vi109.874 (19)Ge1xii—Rb1—Ge1xiv71.697 (15)
Ge1—Ge2—Ge2vi109.874 (19)Ge1ii—Rb1—Ge1xiv122.776 (7)
In1iii—Ge2—Ge2vi109.874 (19)In1xiii—Rb1—Ge1xiv85.256 (13)
In1v—Ge2—Ge2vi109.874 (19)Ge1xiii—Rb1—Ge1xiv85.256 (13)
Ge1iii—Ge2—Ge2vi109.874 (19)Ge1iv—Rb1—Ge1xiv98.221 (13)
Ge1v—Ge2—Ge2vi109.874 (19)In1iv—Rb1—Ge1xiv98.221 (13)
Ge1—Ge2—Eu270.126 (19)In1xii—Rb1—In1xv85.256 (13)
In1iii—Ge2—Eu270.126 (19)In1ii—Rb1—In1xv98.221 (13)
In1v—Ge2—Eu270.126 (19)Ge1xii—Rb1—In1xv85.256 (13)
Ge1iii—Ge2—Eu270.126 (19)Ge1ii—Rb1—In1xv98.221 (13)
Ge1v—Ge2—Eu270.126 (19)In1xiii—Rb1—In1xv71.697 (15)
In2vi—Ge2—Eu2180.00 (4)Ge1xiii—Rb1—In1xv71.697 (15)
Ge2vi—Ge2—Eu2180.00 (4)Ge1iv—Rb1—In1xv122.776 (7)
Ge1—Ge2—Rb1iii172.541 (13)In1xiv—Rb1—In1xv39.767 (17)
In1iii—Ge2—Rb1iii63.826 (11)In1iv—Rb1—In1xv122.776 (7)
In1v—Ge2—Rb1iii76.392 (13)Ge1xiv—Rb1—In1xv39.767 (17)
Ge1iii—Ge2—Rb1iii63.826 (11)In1xii—Rb1—Ge1xvi98.221 (13)
Ge1v—Ge2—Rb1iii76.392 (13)In1ii—Rb1—Ge1xvi85.256 (13)
In2vi—Ge2—Rb1iii72.000 (9)Ge1xii—Rb1—Ge1xvi98.221 (13)
Ge2vi—Ge2—Rb1iii72.000 (9)Ge1ii—Rb1—Ge1xvi85.256 (13)
Eu2—Ge2—Rb1iii108.000 (9)In1xiii—Rb1—Ge1xvi122.776 (7)
Ge1—Ge2—Rb163.826 (11)Ge1xiii—Rb1—Ge1xvi122.776 (7)
In1iii—Ge2—Rb176.392 (13)Ge1iv—Rb1—Ge1xvi39.767 (17)
In1v—Ge2—Rb1172.541 (13)In1xiv—Rb1—Ge1xvi122.776 (7)
Ge1iii—Ge2—Rb176.392 (13)In1iv—Rb1—Ge1xvi39.767 (17)
Ge1v—Ge2—Rb1172.541 (13)Ge1xiv—Rb1—Ge1xvi122.776 (7)
In2vi—Ge2—Rb172.000 (9)In1xv—Rb1—Ge1xvi160.003 (18)
Ge2vi—Ge2—Rb172.000 (9)Ge2—Eu2—In2xvii180.000 (10)
Eu2—Ge2—Rb1108.000 (9)Ge2—Eu2—Ge2xvii180.000 (10)
Rb1iii—Ge2—Rb1110.901 (8)Ge2—Eu2—In2i70.5
In1vii—In3—Ge1v108.264 (12)In2xvii—Eu2—In2i109.5
In1vii—In3—In1v108.264 (12)Ge2xvii—Eu2—In2i109.5
Ge1v—In3—Ge1vii108.264 (12)Ge2—Eu2—In2xviii109.5
In1v—In3—Ge1vii108.264 (12)In2xvii—Eu2—In2xviii70.5
In1vii—In3—In1viii111.91 (2)Ge2xvii—Eu2—In2xviii70.5
Ge1v—In3—In1viii108.264 (12)In2i—Eu2—In2xviii180.0
In1v—In3—In1viii108.264 (12)Ge2—Eu2—In2xix70.529 (1)
Ge1vii—In3—In1viii111.91 (2)In2xvii—Eu2—In2xix109.5
In1vii—In3—Ge1viii111.91 (2)Ge2xvii—Eu2—In2xix109.5
Ge1v—In3—Ge1viii108.264 (12)In2i—Eu2—In2xix109.5
In1v—In3—Ge1viii108.264 (12)In2xviii—Eu2—In2xix70.5
Ge1vii—In3—Ge1viii111.91 (2)Ge2—Eu2—In2xx109.5
In1vii—In3—In1ix108.264 (12)In2xvii—Eu2—In2xx70.529 (1)
Ge1v—In3—In1ix111.91 (2)Ge2xvii—Eu2—In2xx70.529 (1)
In1v—In3—In1ix111.91 (2)In2i—Eu2—In2xx70.5
Ge1vii—In3—In1ix108.264 (12)In2xviii—Eu2—In2xx109.5
In1viii—In3—In1ix108.264 (12)In2xix—Eu2—In2xx180.0
Ge1viii—In3—In1ix108.264 (12)Ge2—Eu2—In2ii70.5
In1vii—In3—Ge1ix108.264 (12)In2xvii—Eu2—In2ii109.5
Ge1v—In3—Ge1ix111.91 (2)Ge2xvii—Eu2—In2ii109.5
In1v—In3—Ge1ix111.91 (2)In2i—Eu2—In2ii109.5
Ge1vii—In3—Ge1ix108.264 (12)In2xviii—Eu2—In2ii70.5
In1viii—In3—Ge1ix108.264 (12)In2xix—Eu2—In2ii109.5
Ge1viii—In3—Ge1ix108.264 (12)In2xx—Eu2—In2ii70.5
In1vii—In3—Rb1x66.681 (8)Ge2—Eu2—In2xxi109.5
Ge1v—In3—Rb1x169.043 (12)In2xvii—Eu2—In2xxi70.5
In1v—In3—Rb1x169.043 (12)Ge2xvii—Eu2—In2xxi70.5
Ge1vii—In3—Rb1x66.681 (8)In2i—Eu2—In2xxi70.5
In1viii—In3—Rb1x66.681 (8)In2xviii—Eu2—In2xxi109.5
Ge1viii—In3—Rb1x66.681 (8)In2xix—Eu2—In2xxi70.5
In1ix—In3—Rb1x79.043 (12)In2xx—Eu2—In2xxi109.5
Ge1ix—In3—Rb1x79.043 (12)In2ii—Eu2—In2xxi180.000 (10)
In1vii—In3—Rb1xi169.043 (12)Ge2—Eu2—Ge2i70.5
Ge1v—In3—Rb1xi66.681 (8)In2xvii—Eu2—Ge2i109.5
In1v—In3—Rb1xi66.681 (8)Ge2xvii—Eu2—Ge2i109.5
Ge1vii—In3—Rb1xi169.043 (12)In2xviii—Eu2—Ge2i180.0
In1viii—In3—Rb1xi79.043 (12)In2xix—Eu2—Ge2i109.5
Ge1viii—In3—Rb1xi79.043 (12)In2xx—Eu2—Ge2i70.5
In1ix—In3—Rb1xi66.681 (8)In2ii—Eu2—Ge2i109.5
Ge1ix—In3—Rb1xi66.681 (8)In2xxi—Eu2—Ge2i70.5
Rb1x—In3—Rb1xi120.0Ge2—Eu2—Ge2xviii109.5
In1vii—In3—Rb1v79.043 (12)In2xvii—Eu2—Ge2xviii70.5
Ge1v—In3—Rb1v66.681 (8)Ge2xvii—Eu2—Ge2xviii70.5
In1v—In3—Rb1v66.681 (8)In2i—Eu2—Ge2xviii180.0
Ge1vii—In3—Rb1v79.043 (12)In2xix—Eu2—Ge2xviii70.5
In1viii—In3—Rb1v169.043 (12)In2xx—Eu2—Ge2xviii109.5
Ge1viii—In3—Rb1v169.043 (12)In2ii—Eu2—Ge2xviii70.5
In1ix—In3—Rb1v66.681 (8)In2xxi—Eu2—Ge2xviii109.5
Ge1ix—In3—Rb1v66.681 (8)Ge2i—Eu2—Ge2xviii180.0
Rb1x—In3—Rb1v120.0
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) y, z, x; (iv) x, y+1, z; (v) z, x, y; (vi) y+1/2, x+1/2, z+1/2; (vii) z+1/2, y+1/2, x+1/2; (viii) z+1/2, y1/2, x+1/2; (ix) z, x, y+1; (x) y+1, z, x+1; (xi) z, x, y+1; (xii) x+1/2, z+1/2, y+1/2; (xiii) x+1/2, z+1/2, y+1/2; (xiv) x+1/2, z+1/2, y1/2; (xv) x+1/2, z+1/2, y1/2; (xvi) x, y+1, z; (xvii) x, y, z; (xviii) x, y, z; (xix) x, y, z; (xx) x, y, z; (xxi) x, y, z.
(II) Hexarubidium dieuropium decaindium hexatriacontagermanide top
Crystal data top
Rb6.30Eu1.70In9.76Ge36.24Dx = 5.584 Mg m3
Mr = 4548.10Mo Kα radiation, λ = 0.71073 Å
Cubic, Pm3nCell parameters from 1018 reflections
Hall symbol: -P 4n 2 3θ = 2.6–26.9°
a = 11.0592 (3) ŵ = 31.41 mm1
V = 1352.61 (6) Å3T = 200 K
Z = 1Irregular, silver–grey
F(000) = 19780.08 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
324 independent reflections
Radiation source: fine-focus sealed tube295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω and ϕ scansθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1414
Tmin = 0.199, Tmax = 0.277k = 1414
16518 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.016Secondary atom site location: difference Fourier map
wR(F2) = 0.031 w = 1/[σ2(Fo2) + (0.008P)2 + 6.2731P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
324 reflectionsΔρmax = 0.43 e Å3
20 parametersΔρmin = 0.71 e Å3
Crystal data top
Rb6.30Eu1.70In9.76Ge36.24Z = 1
Mr = 4548.10Mo Kα radiation
Cubic, Pm3nµ = 31.41 mm1
a = 11.0592 (3) ÅT = 200 K
V = 1352.61 (6) Å30.08 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
324 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
295 reflections with I > 2σ(I)
Tmin = 0.199, Tmax = 0.277Rint = 0.065
16518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01620 parameters
wR(F2) = 0.0310 restraints
S = 1.15Δρmax = 0.43 e Å3
324 reflectionsΔρmin = 0.71 e Å3
Special details top

Experimental. Data collection is performed with four batch runs at ϕ = 0.00 ° (456 frames), at ϕ = 90.00 ° (456 frames), at ϕ = 180.00 ° (230 frames), and at ϕ = 270.00 (230 frames). Frame width = 0.40 \& in ω. Data is merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.00000.30045 (5)0.11392 (5)0.00995 (12)0.97
In10.00000.30045 (5)0.11392 (5)0.00995 (12)0.03
Ge20.18311 (3)0.18311 (3)0.18311 (3)0.00920 (13)0.81
In20.18311 (3)0.18311 (3)0.18311 (3)0.00920 (13)0.19
In30.25000.00000.50000.00946 (15)
Rb10.25000.50000.00000.0203 (2)
Eu20.00000.00000.00000.0146 (2)0.85
Rb20.00000.00000.00000.0146 (2)0.15
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0116 (3)0.0091 (2)0.0091 (2)0.0000.0000.0011 (2)
In10.0116 (3)0.0091 (2)0.0091 (2)0.0000.0000.0011 (2)
Ge20.00920 (13)0.00920 (13)0.00920 (13)0.00006 (12)0.00006 (12)0.00006 (12)
In20.00920 (13)0.00920 (13)0.00920 (13)0.00006 (12)0.00006 (12)0.00006 (12)
In30.0103 (3)0.0091 (2)0.0091 (2)0.0000.0000.000
Rb10.0139 (5)0.0234 (4)0.0234 (4)0.0000.0000.000
Eu20.0146 (2)0.0146 (2)0.0146 (2)0.0000.0000.000
Rb20.0146 (2)0.0146 (2)0.0146 (2)0.0000.0000.000
Geometric parameters (Å, º) top
Ge1—In1i2.5198 (10)In3—Rb1xi3.9100 (1)
Ge1—Ge1i2.5198 (10)In3—Rb1v3.9100 (1)
Ge1—In2ii2.5239 (4)In3—Rb1iii3.9100 (1)
Ge1—Ge2ii2.5239 (4)Rb1—In1xii3.7552 (4)
Ge1—Ge22.5239 (4)Rb1—In1i3.7552 (4)
Ge1—In3iii2.6712 (5)Rb1—Ge1xii3.7552 (4)
Ge1—Eu23.5536 (5)Rb1—Ge1i3.7552 (4)
Ge1—Rb13.7552 (4)Rb1—In1xiii3.7552 (4)
Ge1—Rb1iv3.7552 (4)Rb1—Ge1xiii3.7552 (4)
Ge2—In1iii2.5239 (4)Rb1—Ge1iv3.7552 (4)
Ge2—In1v2.5239 (4)Rb1—In1xiv3.7552 (4)
Ge2—Ge1iii2.5239 (4)Rb1—In1iv3.7552 (4)
Ge2—Ge1v2.5239 (4)Rb1—Ge1xiv3.7552 (4)
Ge2—In2vi2.5627 (11)Rb1—In1xv3.7552 (4)
Ge2—Ge2vi2.5627 (11)Rb1—Ge1xvi3.7552 (4)
Ge2—Eu23.5074 (6)Eu2—In2xvii3.5074 (6)
Ge2—Rb1iii4.1146 (2)Eu2—Ge2xvii3.5074 (6)
Ge2—Rb14.1146 (2)Eu2—In2ii3.5074 (6)
In3—In1vii2.6711 (5)Eu2—In2xviii3.5074 (6)
In3—Ge1v2.6711 (5)Eu2—In2xix3.5074 (6)
In3—In1v2.6711 (5)Eu2—In2xx3.5074 (6)
In3—Ge1vii2.6711 (5)Eu2—In2i3.5074 (6)
In3—In1viii2.6711 (5)Eu2—In2xxi3.5074 (6)
In3—Ge1viii2.6711 (5)Eu2—Ge2ii3.5074 (6)
In3—In1ix2.6711 (5)Eu2—Ge2xviii3.5074 (6)
In3—Ge1ix2.6711 (5)Eu2—Ge2xix3.5074 (6)
In3—Rb1x3.9100 (1)Eu2—Ge2xx3.5074 (6)
In1i—Ge1—In2ii107.647 (13)Ge1vii—In3—Rb1iii66.523 (7)
Ge1i—Ge1—In2ii107.647 (13)In1viii—In3—Rb1iii66.523 (7)
In1i—Ge1—Ge2ii107.647 (13)Ge1viii—In3—Rb1iii66.523 (7)
Ge1i—Ge1—Ge2ii107.647 (13)In1ix—In3—Rb1iii169.291 (11)
In1i—Ge1—Ge2107.648 (13)Ge1ix—In3—Rb1iii169.291 (11)
Ge1i—Ge1—Ge2107.648 (13)Rb1x—In3—Rb1iii90.0
In2ii—Ge1—Ge2106.71 (2)Rb1xi—In3—Rb1iii120.0
Ge2ii—Ge1—Ge2106.71 (2)Rb1v—In3—Rb1iii120.0
In1i—Ge1—In3iii124.291 (11)In1xii—Rb1—In1i159.458 (16)
Ge1i—Ge1—In3iii124.291 (11)In1i—Rb1—Ge1xii159.458 (16)
In2ii—Ge1—In3iii104.715 (18)In1xii—Rb1—Ge1i159.458 (16)
Ge2ii—Ge1—In3iii104.715 (18)Ge1xii—Rb1—Ge1i159.458 (16)
Ge2—Ge1—In3iii104.714 (18)In1xii—Rb1—In1xiii39.207 (15)
In1i—Ge1—Eu269.236 (8)In1i—Rb1—In1xiii122.825 (7)
Ge1i—Ge1—Eu269.236 (8)Ge1xii—Rb1—In1xiii39.207 (15)
In2ii—Ge1—Eu268.081 (17)Ge1i—Rb1—In1xiii122.825 (7)
Ge2ii—Ge1—Eu268.081 (17)In1xii—Rb1—Ge1xiii39.207 (15)
Ge2—Ge1—Eu268.081 (17)In1i—Rb1—Ge1xiii122.825 (7)
In3iii—Ge1—Eu2166.474 (19)Ge1xii—Rb1—Ge1xiii39.207 (15)
In1i—Ge1—Rb170.397 (8)Ge1i—Rb1—Ge1xiii122.825 (7)
Ge1i—Ge1—Rb170.397 (8)In1xii—Rb1—Ge1iv122.825 (7)
In2ii—Ge1—Rb1174.039 (17)In1i—Rb1—Ge1iv71.984 (13)
Ge2ii—Ge1—Rb1174.039 (17)Ge1xii—Rb1—Ge1iv122.825 (7)
Ge2—Ge1—Rb179.231 (8)Ge1i—Rb1—Ge1iv71.984 (13)
In3iii—Ge1—Rb172.752 (9)In1xiii—Rb1—Ge1iv159.457 (16)
Eu2—Ge1—Rb1115.503 (10)Ge1xiii—Rb1—Ge1iv159.457 (16)
In1i—Ge1—Rb1iv70.397 (8)In1xii—Rb1—In1xiv71.984 (13)
Ge1i—Ge1—Rb1iv70.397 (8)In1i—Rb1—In1xiv122.825 (7)
In2ii—Ge1—Rb1iv79.232 (8)Ge1xii—Rb1—In1xiv71.984 (13)
Ge2ii—Ge1—Rb1iv79.232 (8)Ge1i—Rb1—In1xiv122.825 (7)
Ge2—Ge1—Rb1iv174.039 (17)In1xiii—Rb1—In1xiv85.173 (11)
In3iii—Ge1—Rb1iv72.752 (9)Ge1xiii—Rb1—In1xiv85.173 (11)
Eu2—Ge1—Rb1iv115.503 (10)Ge1iv—Rb1—In1xiv98.496 (12)
Rb1—Ge1—Rb1iv94.827 (11)In1xii—Rb1—In1iv122.825 (7)
Ge1—Ge2—In1iii108.976 (17)In1i—Rb1—In1iv71.984 (13)
Ge1—Ge2—In1v108.977 (17)Ge1xii—Rb1—In1iv122.825 (7)
In1iii—Ge2—In1v108.977 (17)Ge1i—Rb1—In1iv71.984 (13)
Ge1—Ge2—Ge1iii108.976 (17)In1xiii—Rb1—In1iv159.457 (16)
In1v—Ge2—Ge1iii108.977 (17)Ge1xiii—Rb1—In1iv159.457 (16)
Ge1—Ge2—Ge1v108.977 (17)In1xiv—Rb1—In1iv98.496 (12)
In1iii—Ge2—Ge1v108.977 (17)In1xii—Rb1—Ge1xiv71.984 (13)
Ge1iii—Ge2—Ge1v108.977 (17)In1i—Rb1—Ge1xiv122.825 (7)
Ge1—Ge2—In2vi109.962 (17)Ge1xii—Rb1—Ge1xiv71.984 (13)
In1iii—Ge2—In2vi109.961 (16)Ge1i—Rb1—Ge1xiv122.825 (7)
In1v—Ge2—In2vi109.961 (17)In1xiii—Rb1—Ge1xiv85.173 (11)
Ge1iii—Ge2—In2vi109.961 (16)Ge1xiii—Rb1—Ge1xiv85.173 (11)
Ge1v—Ge2—In2vi109.961 (17)Ge1iv—Rb1—Ge1xiv98.496 (12)
Ge1—Ge2—Ge2vi109.962 (17)In1iv—Rb1—Ge1xiv98.496 (12)
In1iii—Ge2—Ge2vi109.961 (16)In1xii—Rb1—In1xv85.173 (11)
In1v—Ge2—Ge2vi109.961 (17)In1i—Rb1—In1xv98.496 (12)
Ge1iii—Ge2—Ge2vi109.961 (16)Ge1xii—Rb1—In1xv85.173 (11)
Ge1v—Ge2—Ge2vi109.961 (17)Ge1i—Rb1—In1xv98.496 (12)
Ge1—Ge2—Eu270.038 (17)In1xiii—Rb1—In1xv71.984 (13)
In1iii—Ge2—Eu270.039 (17)Ge1xiii—Rb1—In1xv71.984 (13)
In1v—Ge2—Eu270.039 (17)Ge1iv—Rb1—In1xv122.825 (7)
Ge1iii—Ge2—Eu270.039 (17)In1xiv—Rb1—In1xv39.207 (15)
Ge1v—Ge2—Eu270.039 (17)In1iv—Rb1—In1xv122.825 (7)
In2vi—Ge2—Eu2180.00 (4)Ge1xiv—Rb1—In1xv39.207 (15)
Ge2vi—Ge2—Eu2180.00 (4)In1xii—Rb1—Ge1xvi98.496 (12)
Ge1—Ge2—Rb1iii172.276 (11)In1i—Rb1—Ge1xvi85.173 (11)
In1iii—Ge2—Rb1iii63.712 (10)Ge1xii—Rb1—Ge1xvi98.496 (12)
In1v—Ge2—Rb1iii76.755 (11)Ge1i—Rb1—Ge1xvi85.173 (11)
Ge1iii—Ge2—Rb1iii63.712 (10)In1xiii—Rb1—Ge1xvi122.825 (7)
Ge1v—Ge2—Rb1iii76.755 (11)Ge1xiii—Rb1—Ge1xvi122.825 (7)
In2vi—Ge2—Rb1iii71.856 (7)Ge1iv—Rb1—Ge1xvi39.207 (15)
Ge2vi—Ge2—Rb1iii71.856 (7)In1xiv—Rb1—Ge1xvi122.825 (7)
Eu2—Ge2—Rb1iii108.144 (7)In1iv—Rb1—Ge1xvi39.207 (15)
Ge1—Ge2—Rb163.712 (10)Ge1xiv—Rb1—Ge1xvi122.825 (7)
In1iii—Ge2—Rb176.755 (11)In1xv—Rb1—Ge1xvi159.458 (16)
In1v—Ge2—Rb1172.277 (11)In2xvii—Eu2—In2ii109.5
Ge1iii—Ge2—Rb176.755 (11)Ge2xvii—Eu2—In2ii109.5
Ge1v—Ge2—Rb1172.277 (11)In2xvii—Eu2—In2xviii70.5
In2vi—Ge2—Rb171.856 (7)Ge2xvii—Eu2—In2xviii70.5
Ge2vi—Ge2—Rb171.856 (7)In2ii—Eu2—In2xviii180.0
Eu2—Ge2—Rb1108.144 (7)In2xvii—Eu2—In2xix109.5
Rb1iii—Ge2—Rb1110.765 (7)Ge2xvii—Eu2—In2xix109.5
In1vii—In3—Ge1v108.507 (11)In2ii—Eu2—In2xix109.5
In1vii—In3—In1v108.507 (11)In2xviii—Eu2—In2xix70.5
Ge1v—In3—Ge1vii108.507 (11)In2xvii—Eu2—In2xx70.529 (1)
In1v—In3—Ge1vii108.507 (11)Ge2xvii—Eu2—In2xx70.529 (1)
In1vii—In3—In1viii111.42 (2)In2ii—Eu2—In2xx70.5
Ge1v—In3—In1viii108.507 (11)In2xviii—Eu2—In2xx109.5
In1v—In3—In1viii108.507 (11)In2xix—Eu2—In2xx180.0
Ge1vii—In3—In1viii111.42 (2)In2xvii—Eu2—In2i109.5
In1vii—In3—Ge1viii111.42 (2)Ge2xvii—Eu2—In2i109.5
Ge1v—In3—Ge1viii108.507 (11)In2ii—Eu2—In2i109.5
In1v—In3—Ge1viii108.507 (11)In2xviii—Eu2—In2i70.5
Ge1vii—In3—Ge1viii111.42 (2)In2xix—Eu2—In2i109.5
In1vii—In3—In1ix108.507 (11)In2xx—Eu2—In2i70.5
Ge1v—In3—In1ix111.42 (2)In2xvii—Eu2—In2xxi70.5
In1v—In3—In1ix111.42 (2)Ge2xvii—Eu2—In2xxi70.5
Ge1vii—In3—In1ix108.507 (11)In2ii—Eu2—In2xxi70.5
In1viii—In3—In1ix108.507 (11)In2xviii—Eu2—In2xxi109.5
Ge1viii—In3—In1ix108.507 (11)In2xix—Eu2—In2xxi70.5
In1vii—In3—Ge1ix108.507 (11)In2xx—Eu2—In2xxi109.5
Ge1v—In3—Ge1ix111.42 (2)In2i—Eu2—In2xxi180.000 (9)
In1v—In3—Ge1ix111.42 (2)In2xvii—Eu2—Ge2ii109.5
Ge1vii—In3—Ge1ix108.507 (11)Ge2xvii—Eu2—Ge2ii109.5
In1viii—In3—Ge1ix108.507 (11)In2xviii—Eu2—Ge2ii180.0
Ge1viii—In3—Ge1ix108.507 (11)In2xix—Eu2—Ge2ii109.5
In1vii—In3—Rb1x66.523 (7)In2xx—Eu2—Ge2ii70.5
Ge1v—In3—Rb1x169.291 (11)In2i—Eu2—Ge2ii109.5
In1v—In3—Rb1x169.291 (11)In2xxi—Eu2—Ge2ii70.5
Ge1vii—In3—Rb1x66.523 (7)In2xvii—Eu2—Ge2xviii70.5
In1viii—In3—Rb1x66.523 (7)Ge2xvii—Eu2—Ge2xviii70.5
Ge1viii—In3—Rb1x66.523 (7)In2ii—Eu2—Ge2xviii180.0
In1ix—In3—Rb1x79.291 (11)In2xix—Eu2—Ge2xviii70.5
Ge1ix—In3—Rb1x79.291 (11)In2xx—Eu2—Ge2xviii109.5
In1vii—In3—Rb1xi169.291 (11)In2i—Eu2—Ge2xviii70.5
Ge1v—In3—Rb1xi66.523 (7)In2xxi—Eu2—Ge2xviii109.5
In1v—In3—Rb1xi66.523 (7)Ge2ii—Eu2—Ge2xviii180.0
Ge1vii—In3—Rb1xi169.291 (11)In2xvii—Eu2—Ge2xix109.5
In1viii—In3—Rb1xi79.291 (11)Ge2xvii—Eu2—Ge2xix109.5
Ge1viii—In3—Rb1xi79.291 (11)In2ii—Eu2—Ge2xix109.5
In1ix—In3—Rb1xi66.523 (7)In2xviii—Eu2—Ge2xix70.5
Ge1ix—In3—Rb1xi66.523 (7)In2xx—Eu2—Ge2xix180.000 (9)
Rb1x—In3—Rb1xi120.0In2i—Eu2—Ge2xix109.5
In1vii—In3—Rb1v79.291 (11)In2xxi—Eu2—Ge2xix70.5
Ge1v—In3—Rb1v66.523 (7)Ge2ii—Eu2—Ge2xix109.5
In1v—In3—Rb1v66.523 (7)Ge2xviii—Eu2—Ge2xix70.5
Ge1vii—In3—Rb1v79.291 (11)In2xvii—Eu2—Ge2xx70.529 (1)
In1viii—In3—Rb1v169.291 (11)Ge2xvii—Eu2—Ge2xx70.529 (1)
Ge1viii—In3—Rb1v169.291 (11)In2ii—Eu2—Ge2xx70.5
In1ix—In3—Rb1v66.523 (7)In2xviii—Eu2—Ge2xx109.5
Ge1ix—In3—Rb1v66.523 (7)In2xix—Eu2—Ge2xx180.0
Rb1x—In3—Rb1v120.0In2i—Eu2—Ge2xx70.5
Rb1xi—In3—Rb1v90.0In2xxi—Eu2—Ge2xx109.5
In1vii—In3—Rb1iii66.523 (7)Ge2ii—Eu2—Ge2xx70.5
Ge1v—In3—Rb1iii79.291 (11)Ge2xviii—Eu2—Ge2xx109.5
In1v—In3—Rb1iii79.291 (11)Ge2xix—Eu2—Ge2xx180.0
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) y, z, x; (iv) x, y+1, z; (v) z, x, y; (vi) y+1/2, x+1/2, z+1/2; (vii) z+1/2, y+1/2, x+1/2; (viii) z+1/2, y1/2, x+1/2; (ix) z, x, y+1; (x) y+1, z, x+1; (xi) z, x, y+1; (xii) x+1/2, z+1/2, y+1/2; (xiii) x+1/2, z+1/2, y+1/2; (xiv) x+1/2, z+1/2, y1/2; (xv) x+1/2, z+1/2, y1/2; (xvi) x, y+1, z; (xvii) x, y, z; (xviii) x, y, z; (xix) x, y, z; (xx) x, y, z; (xxi) x, y, z.
(III) Hexarubidium dieuropium decaindium hexatriacontagermanide top
Crystal data top
Rb6.24Eu1.76In10.16Ge35.84Dx = 5.606 Mg m3
Mr = 4568.98Mo Kα radiation, λ = 0.71073 Å
Cubic, Pm3nCell parameters from 1027 reflections
Hall symbol: -P 4n 2 3θ = 4.1–21.8°
a = 11.0614 (7) ŵ = 31.35 mm1
V = 1353.41 (15) Å3T = 200 K
Z = 1Irregular, silver–grey
F(000) = 19860.05 × 0.04 × 0.04 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
324 independent reflections
Radiation source: fine-focus sealed tube272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ω and ϕ scansθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1414
Tmin = 0.327, Tmax = 0.374k = 1414
16786 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.021Secondary atom site location: difference Fourier map
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0126P)2 + 9.9713P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
324 reflectionsΔρmax = 0.75 e Å3
20 parametersΔρmin = 1.07 e Å3
Crystal data top
Rb6.24Eu1.76In10.16Ge35.84Z = 1
Mr = 4568.98Mo Kα radiation
Cubic, Pm3nµ = 31.35 mm1
a = 11.0614 (7) ÅT = 200 K
V = 1353.41 (15) Å30.05 × 0.04 × 0.04 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
324 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
272 reflections with I > 2σ(I)
Tmin = 0.327, Tmax = 0.374Rint = 0.107
16786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02120 parameters
wR(F2) = 0.0440 restraints
S = 1.11Δρmax = 0.75 e Å3
324 reflectionsΔρmin = 1.07 e Å3
Special details top

Experimental. Data collection is performed with four batch runs at ϕ = 0.00 ° (456 frames), at ϕ = 90.00 ° (456 frames), at ϕ = 180.00 ° (230 frames), and at ϕ = 270.00 (230 frames). Frame width = 0.40 \& in ω. Data is merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.00000.30048 (6)0.11409 (6)0.01085 (18)0.96
In10.00000.30048 (6)0.11409 (6)0.01085 (18)0.04
Ge20.18321 (4)0.18321 (4)0.18321 (4)0.01075 (18)0.80
In20.18321 (4)0.18321 (4)0.18321 (4)0.01075 (18)0.20
In30.25000.00000.50000.0112 (2)
Rb10.25000.50000.00000.0237 (3)
Eu20.00000.00000.00000.0182 (3)0.88
Rb20.00000.00000.00000.0182 (3)0.12
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0121 (4)0.0104 (3)0.0101 (3)0.0000.0000.0011 (3)
In10.0121 (4)0.0104 (3)0.0101 (3)0.0000.0000.0011 (3)
Ge20.01075 (18)0.01075 (18)0.01075 (18)0.00027 (16)0.00027 (16)0.00027 (16)
In20.01075 (18)0.01075 (18)0.01075 (18)0.00027 (16)0.00027 (16)0.00027 (16)
In30.0116 (5)0.0110 (3)0.0110 (3)0.0000.0000.000
Rb10.0160 (7)0.0275 (5)0.0275 (5)0.0000.0000.000
Eu20.0182 (3)0.0182 (3)0.0182 (3)0.0000.0000.000
Rb20.0182 (3)0.0182 (3)0.0182 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Ge1—In1i2.5240 (14)In3—Rb1xi3.9108 (2)
Ge1—Ge1i2.5240 (14)In3—Rb1v3.9108 (2)
Ge1—In2ii2.5247 (5)In3—Rb1iii3.9108 (2)
Ge1—Ge2ii2.5247 (5)Rb1—In1xii3.7564 (5)
Ge1—Ge22.5248 (5)Rb1—In1i3.7564 (5)
Ge1—In3iii2.6703 (7)Rb1—Ge1xii3.7564 (5)
Ge1—Eu23.5553 (8)Rb1—Ge1i3.7564 (5)
Ge1—Rb1iv3.7564 (5)Rb1—In1xiii3.7564 (5)
Ge2—In1iii2.5248 (5)Rb1—Ge1xiii3.7564 (5)
Ge2—In1v2.5248 (5)Rb1—In1xiv3.7564 (5)
Ge2—Ge1iii2.5248 (5)Rb1—In1iv3.7564 (5)
Ge2—Ge1v2.5248 (5)Rb1—Ge1xiv3.7564 (5)
Ge2—In2vi2.5591 (16)Rb1—Ge1iv3.7564 (5)
Ge2—Ge2vi2.5591 (16)Eu2—In2xv3.5101 (8)
Ge2—Eu23.5102 (8)Eu2—Ge2xv3.5101 (8)
Ge2—Rb1iii4.1148 (4)Eu2—In2ii3.5101 (8)
Ge2—Rb14.1148 (4)Eu2—In2xvi3.5101 (8)
In3—In1vii2.6703 (7)Eu2—In2xvii3.5101 (8)
In3—Ge1v2.6703 (7)Eu2—In2xviii3.5101 (8)
In3—In1v2.6703 (7)Eu2—In2i3.5101 (8)
In3—Ge1vii2.6703 (7)Eu2—In2xix3.5101 (8)
In3—In1viii2.6703 (7)Eu2—Ge2ii3.5101 (8)
In3—Ge1viii2.6703 (7)Eu2—Ge2xvi3.5101 (8)
In3—In1ix2.6703 (7)Eu2—Ge2xvii3.5101 (8)
In3—Ge1ix2.6703 (7)Eu2—Ge2xviii3.5101 (8)
In3—Rb1x3.9108 (3)
In1i—Ge1—In2ii107.628 (18)Rb1x—In3—Rb1v120.0
Ge1i—Ge1—In2ii107.628 (18)Rb1xi—In3—Rb1v90.0
In1i—Ge1—Ge2ii107.628 (18)In1vii—In3—Rb1iii66.541 (9)
Ge1i—Ge1—Ge2ii107.628 (18)Ge1v—In3—Rb1iii79.262 (15)
In1i—Ge1—Ge2107.628 (18)In1v—In3—Rb1iii79.262 (15)
Ge1i—Ge1—Ge2107.628 (18)Ge1vii—In3—Rb1iii66.541 (9)
In2ii—Ge1—Ge2106.78 (3)In1viii—In3—Rb1iii66.541 (9)
Ge2ii—Ge1—Ge2106.78 (3)Ge1viii—In3—Rb1iii66.541 (9)
In1i—Ge1—In3iii124.263 (15)In1ix—In3—Rb1iii169.262 (15)
Ge1i—Ge1—In3iii124.263 (15)Ge1ix—In3—Rb1iii169.262 (15)
In2ii—Ge1—In3iii104.72 (3)Rb1x—In3—Rb1iii90.0
Ge2ii—Ge1—In3iii104.72 (3)Rb1xi—In3—Rb1iii120.0
Ge2—Ge1—In3iii104.72 (3)Rb1v—In3—Rb1iii120.0
In1i—Ge1—Eu269.209 (11)Ge1—Rb1—In1xii122.817 (9)
Ge1i—Ge1—Eu269.209 (11)Ge1—Rb1—In1i39.26 (2)
In2ii—Ge1—Eu268.11 (2)In1xii—Rb1—In1i159.51 (2)
Ge2ii—Ge1—Eu268.11 (2)Ge1—Rb1—Ge1xii122.817 (9)
Ge2—Ge1—Eu268.11 (2)In1i—Rb1—Ge1xii159.51 (2)
In3iii—Ge1—Eu2166.53 (3)Ge1—Rb1—Ge1i39.26 (2)
In1i—Ge1—Rb170.369 (10)In1xii—Rb1—Ge1i159.51 (2)
Ge1i—Ge1—Rb170.369 (10)Ge1xii—Rb1—Ge1i159.51 (2)
In2ii—Ge1—Rb1174.00 (2)Ge1—Rb1—In1xiii98.464 (16)
Ge2ii—Ge1—Rb1174.00 (2)In1xii—Rb1—In1xiii39.26 (2)
Ge2—Ge1—Rb179.203 (10)In1i—Rb1—In1xiii122.817 (9)
In3iii—Ge1—Rb172.757 (13)Ge1xii—Rb1—In1xiii39.26 (2)
Eu2—Ge1—Rb1115.468 (13)Ge1i—Rb1—In1xiii122.817 (9)
In1i—Ge1—Rb1iv70.369 (10)Ge1—Rb1—Ge1xiii98.464 (16)
Ge1i—Ge1—Rb1iv70.369 (10)In1xii—Rb1—Ge1xiii39.26 (2)
In2ii—Ge1—Rb1iv79.204 (10)In1i—Rb1—Ge1xiii122.817 (9)
Ge2ii—Ge1—Rb1iv79.204 (10)Ge1xii—Rb1—Ge1xiii39.26 (2)
Ge2—Ge1—Rb1iv174.00 (2)Ge1i—Rb1—Ge1xiii122.817 (9)
In3iii—Ge1—Rb1iv72.757 (13)Ge1—Rb1—In1xiv159.51 (2)
Eu2—Ge1—Rb1iv115.468 (13)In1xii—Rb1—In1xiv71.962 (19)
Rb1—Ge1—Rb1iv94.813 (16)In1i—Rb1—In1xiv122.817 (9)
In1iii—Ge2—In1v108.96 (2)Ge1xii—Rb1—In1xiv71.962 (19)
In1v—Ge2—Ge1iii108.96 (2)Ge1i—Rb1—In1xiv122.817 (9)
In1iii—Ge2—Ge1v108.96 (2)In1xiii—Rb1—In1xiv85.187 (16)
Ge1iii—Ge2—Ge1v108.96 (2)Ge1xiii—Rb1—In1xiv85.187 (16)
In1iii—Ge2—Ge1108.96 (2)Ge1—Rb1—In1iv85.187 (16)
In1v—Ge2—Ge1108.96 (2)In1xii—Rb1—In1iv122.817 (9)
Ge1iii—Ge2—Ge1108.96 (2)In1i—Rb1—In1iv71.962 (19)
Ge1v—Ge2—Ge1108.96 (2)Ge1xii—Rb1—In1iv122.817 (9)
In1iii—Ge2—In2vi109.98 (2)Ge1i—Rb1—In1iv71.962 (19)
In1v—Ge2—In2vi109.98 (2)In1xiii—Rb1—In1iv159.51 (2)
Ge1iii—Ge2—In2vi109.98 (2)Ge1xiii—Rb1—In1iv159.51 (2)
Ge1v—Ge2—In2vi109.98 (2)In1xiv—Rb1—In1iv98.464 (16)
Ge1—Ge2—In2vi109.98 (2)Ge1—Rb1—Ge1xiv159.51 (2)
In1iii—Ge2—Ge2vi109.98 (2)In1xii—Rb1—Ge1xiv71.962 (19)
In1v—Ge2—Ge2vi109.98 (2)In1i—Rb1—Ge1xiv122.817 (9)
Ge1iii—Ge2—Ge2vi109.98 (2)Ge1xii—Rb1—Ge1xiv71.962 (19)
Ge1v—Ge2—Ge2vi109.98 (2)Ge1i—Rb1—Ge1xiv122.817 (9)
Ge1—Ge2—Ge2vi109.98 (2)In1xiii—Rb1—Ge1xiv85.187 (16)
In1iii—Ge2—Eu270.02 (2)Ge1xiii—Rb1—Ge1xiv85.187 (16)
In1v—Ge2—Eu270.02 (2)In1iv—Rb1—Ge1xiv98.464 (16)
Ge1iii—Ge2—Eu270.02 (2)Ge1—Rb1—Ge1iv85.187 (16)
Ge1v—Ge2—Eu270.02 (2)In1xii—Rb1—Ge1iv122.817 (9)
Ge1—Ge2—Eu270.02 (2)In1i—Rb1—Ge1iv71.962 (19)
In2vi—Ge2—Eu2180.00 (5)Ge1xii—Rb1—Ge1iv122.817 (9)
Ge2vi—Ge2—Eu2180.00 (5)Ge1i—Rb1—Ge1iv71.962 (19)
In1iii—Ge2—Rb1iii63.732 (13)In1xiii—Rb1—Ge1iv159.51 (2)
In1v—Ge2—Rb1iii76.722 (15)Ge1xiii—Rb1—Ge1iv159.51 (2)
Ge1iii—Ge2—Rb1iii63.732 (13)In1xiv—Rb1—Ge1iv98.464 (16)
Ge1v—Ge2—Rb1iii76.722 (15)Ge1xiv—Rb1—Ge1iv98.464 (16)
Ge1—Ge2—Rb1iii172.297 (16)In2xv—Eu2—In2ii109.5
In2vi—Ge2—Rb1iii71.883 (10)Ge2xv—Eu2—In2ii109.5
Ge2vi—Ge2—Rb1iii71.883 (10)In2xv—Eu2—In2xvi70.5
Eu2—Ge2—Rb1iii108.117 (10)Ge2xv—Eu2—In2xvi70.5
In1iii—Ge2—Rb176.722 (15)In2ii—Eu2—In2xvi180.000 (12)
In1v—Ge2—Rb1172.297 (16)In2xv—Eu2—In2xvii109.5
Ge1iii—Ge2—Rb176.722 (15)Ge2xv—Eu2—In2xvii109.5
Ge1v—Ge2—Rb1172.297 (16)In2ii—Eu2—In2xvii109.5
Ge1—Ge2—Rb163.732 (13)In2xvi—Eu2—In2xvii70.5
In2vi—Ge2—Rb171.883 (10)In2xv—Eu2—In2xviii70.5
Ge2vi—Ge2—Rb171.883 (10)Ge2xv—Eu2—In2xviii70.5
Eu2—Ge2—Rb1108.117 (10)In2ii—Eu2—In2xviii70.5
Rb1iii—Ge2—Rb1110.791 (10)In2xvi—Eu2—In2xviii109.5
In1vii—In3—Ge1v108.479 (15)In2xvii—Eu2—In2xviii180.000 (12)
In1vii—In3—In1v108.479 (15)In2xv—Eu2—In2i109.5
Ge1v—In3—Ge1vii108.479 (15)Ge2xv—Eu2—In2i109.5
In1v—In3—Ge1vii108.479 (15)In2ii—Eu2—In2i109.5
In1vii—In3—In1viii111.48 (3)In2xvi—Eu2—In2i70.5
Ge1v—In3—In1viii108.479 (15)In2xvii—Eu2—In2i109.5
In1v—In3—In1viii108.479 (15)In2xviii—Eu2—In2i70.5
Ge1vii—In3—In1viii111.48 (3)In2xv—Eu2—In2xix70.5
In1vii—In3—Ge1viii111.48 (3)Ge2xv—Eu2—In2xix70.5
Ge1v—In3—Ge1viii108.479 (15)In2ii—Eu2—In2xix70.5
In1v—In3—Ge1viii108.479 (15)In2xvi—Eu2—In2xix109.5
Ge1vii—In3—Ge1viii111.48 (3)In2xvii—Eu2—In2xix70.5
In1vii—In3—In1ix108.479 (15)In2xviii—Eu2—In2xix109.5
Ge1v—In3—In1ix111.48 (3)In2i—Eu2—In2xix180.00 (2)
In1v—In3—In1ix111.48 (3)In2xv—Eu2—Ge2ii109.5
Ge1vii—In3—In1ix108.479 (15)Ge2xv—Eu2—Ge2ii109.5
In1viii—In3—In1ix108.479 (15)In2xvi—Eu2—Ge2ii180.00 (2)
Ge1viii—In3—In1ix108.479 (15)In2xvii—Eu2—Ge2ii109.5
In1vii—In3—Ge1ix108.479 (15)In2xviii—Eu2—Ge2ii70.5
Ge1v—In3—Ge1ix111.48 (3)In2i—Eu2—Ge2ii109.5
In1v—In3—Ge1ix111.48 (3)In2xix—Eu2—Ge2ii70.5
Ge1vii—In3—Ge1ix108.479 (15)In2xv—Eu2—Ge2xvi70.5
In1viii—In3—Ge1ix108.479 (15)Ge2xv—Eu2—Ge2xvi70.5
Ge1viii—In3—Ge1ix108.479 (15)In2ii—Eu2—Ge2xvi180.000 (12)
In1vii—In3—Rb1x66.541 (9)In2xvii—Eu2—Ge2xvi70.5
Ge1v—In3—Rb1x169.262 (15)In2xviii—Eu2—Ge2xvi109.5
In1v—In3—Rb1x169.262 (15)In2i—Eu2—Ge2xvi70.5
Ge1vii—In3—Rb1x66.541 (9)In2xix—Eu2—Ge2xvi109.5
In1viii—In3—Rb1x66.541 (9)Ge2ii—Eu2—Ge2xvi180.000 (12)
Ge1viii—In3—Rb1x66.541 (9)In2xv—Eu2—Ge2xvii109.5
In1ix—In3—Rb1x79.262 (15)Ge2xv—Eu2—Ge2xvii109.5
Ge1ix—In3—Rb1x79.262 (15)In2ii—Eu2—Ge2xvii109.5
In1vii—In3—Rb1xi169.262 (15)In2xvi—Eu2—Ge2xvii70.5
Ge1v—In3—Rb1xi66.541 (9)In2xviii—Eu2—Ge2xvii180.00 (4)
In1v—In3—Rb1xi66.541 (9)In2i—Eu2—Ge2xvii109.5
Ge1vii—In3—Rb1xi169.262 (15)In2xix—Eu2—Ge2xvii70.5
In1viii—In3—Rb1xi79.262 (15)Ge2ii—Eu2—Ge2xvii109.5
Ge1viii—In3—Rb1xi79.262 (15)Ge2xvi—Eu2—Ge2xvii70.5
In1ix—In3—Rb1xi66.541 (9)In2xv—Eu2—Ge2xviii70.5
Ge1ix—In3—Rb1xi66.541 (9)Ge2xv—Eu2—Ge2xviii70.5
Rb1x—In3—Rb1xi120.0In2ii—Eu2—Ge2xviii70.5
In1vii—In3—Rb1v79.262 (15)In2xvi—Eu2—Ge2xviii109.5
Ge1v—In3—Rb1v66.541 (9)In2xvii—Eu2—Ge2xviii180.000 (12)
In1v—In3—Rb1v66.541 (9)In2i—Eu2—Ge2xviii70.5
Ge1vii—In3—Rb1v79.262 (15)In2xix—Eu2—Ge2xviii109.5
In1viii—In3—Rb1v169.262 (15)Ge2ii—Eu2—Ge2xviii70.5
Ge1viii—In3—Rb1v169.262 (15)Ge2xvi—Eu2—Ge2xviii109.5
In1ix—In3—Rb1v66.541 (9)Ge2xvii—Eu2—Ge2xviii180.000 (12)
Ge1ix—In3—Rb1v66.541 (9)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) y, z, x; (iv) x, y+1, z; (v) z, x, y; (vi) y+1/2, x+1/2, z+1/2; (vii) z+1/2, y+1/2, x+1/2; (viii) z+1/2, y1/2, x+1/2; (ix) z, x, y+1; (x) y+1, z, x+1; (xi) z, x, y+1; (xii) x+1/2, z+1/2, y+1/2; (xiii) x+1/2, z+1/2, y+1/2; (xiv) x+1/2, z+1/2, y1/2; (xv) x, y, z; (xvi) x, y, z; (xvii) x, y, z; (xviii) x, y, z; (xix) x, y, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaRb7.39Eu0.61In8.88Ge37.12Rb6.30Eu1.70In9.76Ge36.24Rb6.24Eu1.76In10.16Ge35.84
Mr4438.464548.104568.98
Crystal system, space groupCubic, Pm3nCubic, Pm3nCubic, Pm3n
Temperature (K)200200200
a (Å)11.0292 (9) 11.0592 (3) 11.0614 (7)
V3)1341.63 (19)1352.61 (6)1353.41 (15)
Z111
Radiation typeMo KαMo KαMo Kα
µ (mm1)31.5131.4131.35
Crystal size (mm)0.16 × 0.11 × 0.110.08 × 0.06 × 0.050.05 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Bruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.081, 0.1370.199, 0.2770.327, 0.374
No. of measured, independent and
observed [I > 2σ(I)] reflections
12572, 324, 298 16518, 324, 295 16786, 324, 272
Rint0.0570.0650.107
(sin θ/λ)max1)0.6630.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.042, 1.18 0.016, 0.031, 1.15 0.021, 0.044, 1.11
No. of reflections324324324
No. of parameters202020
Δρmax, Δρmin (e Å3)0.72, 1.080.43, 0.710.75, 1.07

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2007).

Distribution of the framework (Ge, In) and guest atoms (Rb, Eu) in the three Rb8–xEux(In,Ge)46 compounds (0.6 x 1.8) top
FormulaGe–In (site 24k)Ge–In (site 16i)Ge–In (site 6c)Rb–Eu (site 6d)Rb–Eu (site 2a)Unit-cell volume (Å3)
Rb7.39Eu0.61In8.88Ge37.1294 (1):691 (1):90:100100:030 (1):701341.63
Rb6.30Eu1.70In9.76Ge36.2497 (1):381 (1):190:100100:015 (1):851352.61
Rb6.24Eu1.76In10.16Ge35.8496 (1):479 (1):210:100100:012 (1):881353.41
Selected interatomic distances (Å) for the type-I clathrates Rb8-xEux(In,Ge)46 (0 x 1.8) top
Rb7.39Eu0.61In8.88Ge37.12Rb6.30Eu1.70In9.76Ge36.24Rb6.24Eu1.76In10.16Ge35.84Rb8In7.81Ge38.19a
Ge1/In1–Ge1/In12.549 (1)2.520 (1)2.524 (1)2.568
Ge1/In1–Ge2/In2 (2x)2.5185 (4)2.5239 (4)2.5248 (5)2.486
Ge1/In1–In32.6486 (6)2.6712 (5)2.6703 (7)2.642
Ge2/In2–Ge1/In1 (3×)2.5185 (4)2.5239 (4)2.5248 (5)2.486
Ge2/In2–Ge2/In22.534 (1)2.563 (1)2.559 (2)2.536
In3–Ge1/In1 (4×)2.6286 (6)2.6712 (5)2.6703 (7)2.642
Note: (a) all three sites are occupied by a mixture of Ge and In (von Schnering et al., 1998).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds