Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Three three-dimensional coordination polymers, viz. poly[[diaqua-μ4-oxydi­acetato-di-μ4-sulfato-dipraseodymium(III)] hemihydrate], [Pr2(C4H4O5)(SO4)2(H2O)2]·0.5H2O, (I), poly[[di­aquadi-μ3-oxydi­acetato-μ3-sulfato-dineodymium(III)] 1.32-hydrate], [Nd2(C4H4O5)2(SO4)(H2O)2]·1.32H2O, (II), and poly[[di­aquadi-μ3-oxydi­acetato-μ3-sulfato-disamarium(III)] 1.32-hydrate], [Sm2(C4H4O5)2(SO4)(H2O)2]·1.32H2O, (III), were obtained by hydro­thermal reactions of the respective lanthanide oxides and ZnSO4 with oxydi­acetic acid (odaH2). The Nd3+ and Sm3+ compounds form isomorphous crystal structures in which the lanthanide cations are nine-coordinate, having a tricapped trigonal prismatic coordination. The Pr3+ compound has an entirely different crystal structure in which two types of coordination polyhedra are observed, viz. nine-coordinate (trigonal prism) and ten-coordinate (bicapped square anti­prism). The sulfate anions show various coordination modes, one of which has only rarely been observed crystallographically to date.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113031806/fn3156sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113031806/fn3156Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113031806/fn3156IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113031806/fn3156IIIsup4.hkl
Contains datablock III

CCDC references: 930447; 930448; 930449

Introduction top

Lanthanide chemistry has been a thriving area of research due to the unique properties of lanthanide ions, such as high coordination numbers, subtle differences in reactivity seen along the series, luminescence and magnetism (Bünzil, 2006; Bünzil & Piguet, 2005; Cahill et al., 2007; Sorace et al., 2011). The structural variety seen among lanthanide coordination compounds depends on the ligands and the synthetic method employed. The use of ligands with multiple binding sites may give rise to clusters as well as to coordination polymers. Due to their high coordination numbers and their marked preference for hard donors, carb­oxy­lic acids serve as good building blocks in the construction of multi-dimensional lanthanide coordination polymers. By introducing other ligands into the synthesis, the dimensionality and properties of such compounds can be varied. Previously, there have been many reports of polymeric lanthanide (Ln) complexes with oda2- (odaH2 is oxydi­acetic acid), including heterometallic coordination polymers (Baggio et al., 1998; Kremer et al., 2008; Mao et al., 1997; Rizzi et al., 2002; Wang et al., 2007). Our previous work with the Ln–Mn–oda2- system resulted in a cubic architecture reminiscent of Prussian blue (Prasad et al., 2007). In order to study the effect of strongly coordinating SO42- dianions (towards lanthanides) on the polymeric structures, hydro­thermal reactions were performed with Ln2O3 [Ln = Pr for (I), Nd for (II) and Sm for (III)], ZnSO4 and odaH2. The crystals formed have the following formulae: [Pr2(oda)(SO4)2(H2O)2].0.5H2O for (I), and [Ln2(oda)2(SO4)(H2O)2].1.32H2O [Ln = Nd for (II) and Sm for (III)]. In these compounds, the SO42- dianion acts as a versatile bridging ligand along with oda2- to form three-dimensional networks. The SO42- dianions have entirely different coordination modes in (I) and (II)/(III) and one of the bridging modes has been only rarely observed to date.

Experimental top

Synthesis and crystallization top

Reagent-grade chemicals were purchased from Merck (ZnSO4.7H2O) or Alfa Aesar (lanthanide oxides and oxydi­acetic acid) and were used without further purification.

For the preparation of (I), a mixture of Pr2O3 (0.044 g, 0.133 mmol), ZnSO4.7H2O (0.110 g, 0.383 mmol), oxydi­acetic acid (0.100 g, 0.746 mmol) and water (10 ml) was sealed in a glass tube and heated at 433 K. After 1 d, pale-green crystals of (I) had formed in the hot solution (yield 0.010 g, 0.015 mmol, 6%). IR (KBr disk, ν, cm-1): 3391, 1586, 1493, 1443, 1373, 1321, 1213, 1130 and 1045.

Compound (II) was prepared by a similar method to that used for (I). Using Nd2O3 (0.044 g, 0.131 mmol), pale-violet crystals of (II) formed in the hot solution (yield 0.030 g, 0.021 mmol, 8%). IR (KBr disk, ν, cm-1): 3366, 1587, 1480, 1435, 1316, 1240, 1132 and 1028.

Compound (III) was also prepared by a similar method to that used for (I). Using Sm2O3 (0.044 g, 0.126 mmol), pale-yellow [Colourless in CIF - please clarify] crystals of (III) formed in the hot solution (yield 0.025 g, 0.017 mmol, 7%). IR (KBr disk, ν, cm-1): 3346, 1586, 1480, 1435, 1315, 1240, 1132 and 1028.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms of the oda2- ligand were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The positions of the water H atoms were determined from difference Fourier maps and refined using a riding model, with Uiso(H) = 1.5Ueq(O). The large displacement parameters of some of the solvent water molecules indicated fractional site-occupation factors which were therefore refined. Accordingly, the site occupancy of the solvent water molecule in (I) is 0.5, and the disordered water molecule on the inversion centre in (II) and (III) has a site occupancy of 0.32.

Results and discussion top

Compound (I) has a three-dimensional network structure, in which the O atoms of the SO42- dianions and oda2- ligands act as the bridging nodes. In the asymmetric unit there are two Pr3+ cations, one oda2- ligand and two SO42- dianions, and two coordinated water molecules and half a solvent water molecule. The two Pr3+ cations have different coordination environments. Atom Pr1 is ten-coordinated and is in a highly distorted bicapped square anti­prismatic geometry, while Pr2 is nine-coordinated with a distorted tricapped trigonal prismatic geometry. As shown in Fig. 1, the Pr1 coordination consists of five O atoms from two symmetry-related oda2- ligands [O1, O1ii, O2ii, O3 and O4; symmetry code: (ii) -x + 1, -y + 1, ??? [Please complete]], four O atoms from SO42- dianions [O6, O7, O8iii and O14iv; symmetry codes: (iii) -x, -y + 1, -z + 2; (iv) x - 1, y, z] and one water molecule (O10). The Pr2 coordination consists of three O atoms from two symmetry-related oda2- ligands [O4, O5 and O5v; symmetry code: (v) -x + 1, -y, -z + 2], five O atoms from two SO42- dianions [O9vi, O11, O11iv, O12 and O13i; symmetry codes: (i) x + 1, y, z; (vi) -x + 1, -y + 1, -z + 2] and one coordinated water molecule (O15). The oda2- ligand bridges four Pr3+ cations by using all five of its donor sites to form nine bonds, the carboxyl­ate O atoms being used twice. Each of the two SO42- dianions provides four bonds, two chelating and two bridging. Compound (I) has a highly connected three-dimensional network structure formed by the coordination of the Pr3+ cations with both oda2- and SO42- dianions. The highly compact three-dimensional network that results is depicted in Fig. 2.

Compounds (II) and (III) form isostructural three-dimensional networks. However, both the structure and the stoichiometry are entirely different from that of (I). The asymmetric unit consists of two lanthanide cations, two oda2- ligands and one SO42- dianion, and two coordinated water molecules and 1.32 solvent water molecules. The two Nd3+ (Sm3+) atoms are nine-coordinated, with distorted tricapped trigonal prismatic geometries, but have different coordination environments (Figs. 3 and 4). Atom Nd1 (Sm1) is coordinated to six O atoms from three symmetry-related oda2- ligands [O1, O3, O4, O7, O9iii and O10iii; symmetry code: (iii) x - 1, y, z], one O atom from an SO42- dianion (O14iii) and two coordinated water molecules (O15 and O16). The coordination environment of Nd2 (Sm2) consists of six O atoms from three symmetry-related oda2- ligands [O2iv, O4i, O5i, O6, O8 and O9; symmetry codes: (i) -x + 1, -y + 2, -z + 2; (iv) x + 1/2, -y + 3/2, z + 1/2] and three O atoms from two symmetry-related SO42- dianions [O11, O11ii and O12; symmetry code: (ii) -x + 2, -y + 2, -z + 2]. The asymmetric unit is assembled into a tetra­nuclear cluster with the formula [Ln4(oda)4(SO4)2(H2O)4] [Ln = Nd for (II) and Sm for (III)] (Fig. 5a) and ultimately into a three-dimensional network, a projection of which is shown in Fig. 5(b). In this network, the tetra­nuclear clusters are crosslinked to form four-membered rings.

Structural analysis has shown that SO42- dianions play a very important and direct role in the control of structures. In the present compounds, there are three different types of SO42- dianion coordination, as shown in Fig. 6. In (I), the two SO42- dianions are coordinated to Pr3+ in different ways, one in mode A and the other in mode B, while in (II) and (III) the SO42- dianions are coordinated in mode C. A search of the Cambridge Structural Database (CSD, Version 5.34; Allen, 2002) was performed to check how common these modes are and it was found that modes A and C are observed frequently, but mode B (Akkari et al., 2006; Ding et al., 2012; Ouellette et al., 2011; Yuan et al., 2004) has been only rarely observed to date. Compounds (I), (II) and (III) are the first complexes containing lanthanide cations, oda2- ligands and SO42- dianions, and even with other metals there is only a single structure reported (Graziani et al., 1983). The driving factor for the formation of such versatile structures might be the early coordination of SO42- to Ln3+, which hinders the formation of the tris-chelate [Ln(oda)3]3-, which is the basic building block in the previously reported coordination compounds (Kremer et al., 2008). Another important fact to note is the role of ZnSO4, which acts as the SO42- dianion source. Reactions using other SO42- salts did not yield any of the present compounds, indicating the importance of ZnSO4 in the synthesis. Compound (I) has a higher SO42- content and an entirely different structure compared with (II) and (III), which are isomorphous. This is in contrast with the other Ln–oda complexes reported, which are usually isostructural for almost the entire lanthanide series, further indicating the pivotal role played by SO42- dianions in the present structures. The SO42- dianion in these compounds tends to reach saturation as a donor, binding to four or five metal atoms at the same time, leading to very rarely observed coordination modes.

Related literature top

For related literature, see: Akkari et al. (2006); Allen (2002); Bünzil (2006); Bünzil & Piguet (2005); Baggio et al. (1998); Cahill et al. (2007); Ding et al. (2012); Graziani et al. (1983); Kremer et al. (2008); Mao et al. (1997); Ouellette et al. (2011); Prasad et al. (2007); Rizzi et al. (2002); Sorace et al. (2011); Wang et al. (2007); Yuan et al. (2004).

Computing details top

For all compounds, data collection: SMART APEX (Bruker, 2007); cell refinement: SMART APEX (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z + 2; (iv) x - 1, y, z; (v) -x + 1, -y, -z + 2; (vi) -x + 1, -y + 1, -z + 2.]
[Figure 2] Fig. 2. The formation of the three-dimensional coordination network in (I), with H atoms omitted for clarity. (a) A view of the two-dimensional network formed by linking of the one-dimensional chains of Pr3+ cations and oda2- ligands by SO42- dianions (S atoms have been omitted and O atoms are shown in blue in the electronic version of the paper). (b) A view showing the linking of the two-dimensional network shown in (a) by SO42- dianions to form the three-dimensional network. [Colour code in the electronic version of the paper: Pr pale violet, S yellow, O (sulfate) blue, O (oda2- and water) red and C grey.
[Figure 3] Fig. 3. A view of (II), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x + 2, -y + 2, -z + 2; (iii) x - 1, y, z; (iv) x + 1/2, -y + 3/2, z + 1/2.]
[Figure 4] Fig. 4. A view of (III), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x + 2, -y + 2, -z + 2; (iii) x - 1, y, z; (iv) x + 1/2, -y + 3/2, z + 1/2.]
[Figure 5] Fig. 5. (a) A view of the tetranuclear building block of (II) and (III). O atoms which are connected to neighbouring units are shown as yellow globes. (b) A view, projected on the bc plane, of the coordination network in (II) and (III) formed by the linking of the units shown above. H atoms have been omitted. [Colour code in the electronic version of the paper: Nd (Sm) green, S yellow, O (sulfate) red, O (water) pink and C grey.]
[Figure 6] Fig. 6. The various coordination modes of the sulfate anions in (I), (II) and (III).
(I) Poly[[diaqua-µ4-oxydiacetato-di-µ4-sulfato-dipraseodymium(III)] hemihydrate] top
Crystal data top
[Pr2(C4H4O5)(SO4)2(H2O)2]·0.5H2OZ = 2
Mr = 651.05F(000) = 614
Triclinic, P1Dx = 3.145 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.618 (2) ÅCell parameters from 6036 reflections
b = 8.527 (3) Åθ = 2.6–28.1°
c = 13.111 (4) ŵ = 7.40 mm1
α = 86.340 (5)°T = 298 K
β = 89.487 (5)°Needle, pale green
γ = 68.617 (5)°0.60 × 0.10 × 0.08 mm
V = 687.4 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3119 independent reflections
Radiation source: sealed tube3020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.316, Tmax = 0.553k = 1011
7509 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0214P)2 + 1.2502P]
where P = (Fo2 + 2Fc2)/3
3119 reflections(Δ/σ)max = 0.003
217 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Pr2(C4H4O5)(SO4)2(H2O)2]·0.5H2Oγ = 68.617 (5)°
Mr = 651.05V = 687.4 (4) Å3
Triclinic, P1Z = 2
a = 6.618 (2) ÅMo Kα radiation
b = 8.527 (3) ŵ = 7.40 mm1
c = 13.111 (4) ÅT = 298 K
α = 86.340 (5)°0.60 × 0.10 × 0.08 mm
β = 89.487 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3119 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3020 reflections with I > 2σ(I)
Tmin = 0.316, Tmax = 0.553Rint = 0.019
7509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.14Δρmax = 0.76 e Å3
3119 reflectionsΔρmin = 1.03 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pr10.38812 (3)0.47758 (2)0.663048 (12)0.00975 (6)
Pr20.26110 (3)0.25533 (2)1.005609 (12)0.00847 (6)
S10.79216 (13)0.56048 (10)0.73700 (6)0.01177 (16)
S20.21987 (12)0.30505 (10)1.08640 (6)0.00974 (15)
C10.7432 (5)0.2345 (4)0.4939 (3)0.0163 (7)
C20.7278 (8)0.0917 (5)0.5610 (3)0.0293 (10)
H2A0.64540.03640.52670.035*
H2B0.87170.00930.57700.035*
C30.6373 (7)0.0305 (5)0.7295 (3)0.0254 (9)
H3A0.78820.03370.74740.030*
H3B0.57270.04620.70560.030*
C40.5190 (5)0.1142 (4)0.8207 (2)0.0122 (6)
O10.6705 (4)0.3802 (3)0.52743 (19)0.0209 (5)
O20.8178 (4)0.2112 (3)0.40645 (19)0.0224 (6)
O30.6226 (4)0.1582 (3)0.65198 (18)0.0203 (5)
O40.4085 (4)0.2691 (3)0.81568 (18)0.0136 (5)
O50.5324 (4)0.0231 (3)0.90248 (18)0.0143 (5)
O60.7400 (4)0.4089 (3)0.7645 (2)0.0194 (5)
O70.6332 (4)0.6569 (3)0.65608 (18)0.0172 (5)
O81.0134 (4)0.5124 (4)0.6998 (2)0.0255 (6)
O90.7664 (4)0.6622 (3)0.82478 (19)0.0191 (5)
O100.2188 (5)0.3368 (4)0.5404 (2)0.0288 (6)
H10A0.23120.33850.47270.043*
H10B0.18010.26930.56400.043*
O110.1514 (4)0.4377 (3)1.03282 (18)0.0138 (5)
O120.0202 (4)0.1508 (3)1.09050 (19)0.0145 (5)
O130.3887 (4)0.2799 (3)1.02581 (19)0.0171 (5)
O140.2943 (4)0.3515 (3)1.18773 (19)0.0190 (5)
O150.0571 (4)0.1639 (3)0.87499 (19)0.0194 (5)
H15A0.04000.23440.83860.029*
H15B0.05210.06270.89480.029*
O1W1.1591 (15)0.0947 (11)0.6575 (6)0.061 (2)0.50
H1A1.05840.09930.68990.092*0.50
H1B1.19250.01290.62190.092*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01011 (10)0.01046 (9)0.00872 (9)0.00378 (7)0.00145 (6)0.00098 (6)
Pr20.00855 (9)0.00876 (9)0.00814 (9)0.00313 (7)0.00141 (6)0.00112 (6)
S10.0105 (4)0.0152 (4)0.0106 (4)0.0056 (3)0.0016 (3)0.0032 (3)
S20.0089 (4)0.0108 (4)0.0105 (4)0.0046 (3)0.0019 (3)0.0018 (3)
C10.0123 (16)0.0165 (17)0.0150 (17)0.0002 (13)0.0016 (13)0.0015 (13)
C20.050 (3)0.0170 (18)0.0143 (18)0.0038 (18)0.0186 (17)0.0031 (15)
C30.040 (2)0.0141 (17)0.0147 (18)0.0017 (16)0.0101 (16)0.0021 (14)
C40.0130 (15)0.0127 (15)0.0110 (15)0.0053 (12)0.0022 (12)0.0017 (12)
O10.0282 (14)0.0141 (12)0.0172 (13)0.0042 (11)0.0069 (10)0.0011 (10)
O20.0259 (14)0.0205 (13)0.0133 (12)0.0001 (11)0.0066 (10)0.0023 (10)
O30.0323 (14)0.0113 (11)0.0102 (12)0.0002 (10)0.0108 (10)0.0006 (9)
O40.0164 (12)0.0104 (11)0.0126 (11)0.0035 (9)0.0043 (9)0.0002 (9)
O50.0168 (12)0.0115 (11)0.0106 (11)0.0006 (9)0.0037 (9)0.0003 (9)
O60.0172 (13)0.0166 (12)0.0259 (14)0.0084 (10)0.0054 (10)0.0027 (10)
O70.0199 (12)0.0207 (13)0.0121 (12)0.0089 (10)0.0019 (9)0.0010 (10)
O80.0141 (13)0.0353 (16)0.0306 (15)0.0115 (12)0.0083 (11)0.0127 (13)
O90.0210 (13)0.0250 (13)0.0134 (12)0.0099 (11)0.0011 (10)0.0068 (10)
O100.0386 (17)0.0413 (17)0.0157 (13)0.0244 (14)0.0055 (12)0.0088 (12)
O110.0128 (11)0.0098 (11)0.0193 (12)0.0053 (9)0.0020 (9)0.0009 (9)
O120.0120 (11)0.0111 (11)0.0192 (12)0.0032 (9)0.0019 (9)0.0009 (9)
O130.0139 (12)0.0236 (13)0.0171 (12)0.0105 (10)0.0010 (9)0.0040 (10)
O140.0188 (13)0.0265 (14)0.0138 (12)0.0098 (11)0.0048 (10)0.0084 (10)
O150.0224 (13)0.0170 (12)0.0203 (13)0.0092 (10)0.0054 (10)0.0021 (10)
O1W0.096 (7)0.061 (5)0.049 (5)0.052 (5)0.030 (5)0.020 (4)
Geometric parameters (Å, º) top
Pr1—O8i2.435 (3)S2—O121.485 (2)
Pr1—O14ii2.453 (2)S2—O111.499 (2)
Pr1—O12.518 (3)C1—O21.243 (4)
Pr1—O62.549 (3)C1—O11.265 (4)
Pr1—O102.558 (3)C1—C21.490 (5)
Pr1—O42.561 (2)C1—Pr1iii2.975 (3)
Pr1—O72.601 (2)C2—O31.418 (4)
Pr1—O2iii2.609 (3)C2—H2A0.9700
Pr1—O32.610 (3)C2—H2B0.9700
Pr1—O1iii2.673 (3)C3—O31.418 (4)
Pr1—C1iii2.975 (3)C3—C41.495 (5)
Pr1—S13.1782 (12)C3—H3A0.9700
Pr2—O9iv2.360 (2)C3—H3B0.9700
Pr2—O13v2.420 (2)C4—O41.252 (4)
Pr2—O11ii2.466 (2)C4—O51.267 (4)
Pr2—O5vi2.501 (2)O1—Pr1iii2.673 (3)
Pr2—O152.518 (3)O2—Pr1iii2.609 (3)
Pr2—O122.558 (2)O5—Pr2vi2.501 (2)
Pr2—O52.584 (2)O8—Pr1v2.435 (3)
Pr2—O112.637 (2)O9—Pr2iv2.360 (2)
Pr2—O42.677 (2)O10—H10A0.8909
Pr2—C43.007 (3)O10—H10B0.7587
Pr2—S23.2319 (13)O11—Pr2ii2.466 (2)
S1—O91.457 (3)O13—Pr2i2.420 (2)
S1—O81.458 (3)O14—Pr1ii2.453 (2)
S1—O61.478 (3)O15—H15A0.8299
S1—O71.479 (3)O15—H15B0.8976
S2—O141.442 (3)O1W—H1A0.7775
S2—O131.462 (2)O1W—H1B0.8256
O8i—Pr1—O14ii74.82 (9)O15—Pr2—O466.87 (8)
O8i—Pr1—O1141.45 (9)O12—Pr2—O4135.51 (7)
O14ii—Pr1—O1142.39 (9)O5—Pr2—O449.31 (7)
O8i—Pr1—O6136.99 (9)O11—Pr2—O4116.15 (7)
O14ii—Pr1—O673.67 (9)O9iv—Pr2—C4152.11 (9)
O1—Pr1—O677.86 (9)O13v—Pr2—C473.43 (9)
O8i—Pr1—O1065.56 (9)O11ii—Pr2—C4102.29 (8)
O14ii—Pr1—O10140.38 (9)O5vi—Pr2—C486.53 (8)
O1—Pr1—O1076.58 (9)O15—Pr2—C465.42 (9)
O6—Pr1—O10138.92 (9)O12—Pr2—C4125.18 (8)
O8i—Pr1—O474.53 (9)O5—Pr2—C424.76 (8)
O14ii—Pr1—O474.59 (8)O11—Pr2—C4133.25 (8)
O1—Pr1—O4117.28 (8)O4—Pr2—C424.59 (8)
O6—Pr1—O469.40 (8)O9iv—Pr2—S271.41 (6)
O10—Pr1—O494.90 (9)O13v—Pr2—S2151.23 (6)
O8i—Pr1—O7138.79 (9)O11ii—Pr2—S290.66 (6)
O14ii—Pr1—O773.89 (8)O5vi—Pr2—S298.99 (6)
O1—Pr1—O769.64 (8)O15—Pr2—S269.99 (7)
O6—Pr1—O754.38 (8)O12—Pr2—S226.60 (5)
O10—Pr1—O7138.90 (8)O5—Pr2—S2131.41 (6)
O4—Pr1—O7120.95 (8)O11—Pr2—S227.25 (5)
O8i—Pr1—O2iii78.57 (10)O4—Pr2—S2130.82 (5)
O14ii—Pr1—O2iii73.35 (9)C4—Pr2—S2135.34 (7)
O1—Pr1—O2iii100.13 (8)O9—S1—O8109.82 (16)
O6—Pr1—O2iii118.49 (9)O9—S1—O6110.54 (16)
O10—Pr1—O2iii97.36 (10)O8—S1—O6110.44 (16)
O4—Pr1—O2iii142.41 (8)O9—S1—O7109.51 (15)
O7—Pr1—O2iii67.24 (9)O8—S1—O7110.95 (16)
O8i—Pr1—O3109.98 (9)O6—S1—O7105.51 (14)
O14ii—Pr1—O3129.82 (8)O9—S1—Pr1118.47 (11)
O1—Pr1—O359.02 (8)O8—S1—Pr1131.70 (12)
O6—Pr1—O371.04 (8)O6—S1—Pr151.97 (10)
O10—Pr1—O368.31 (10)O7—S1—Pr154.02 (10)
O4—Pr1—O360.24 (7)O14—S2—O13111.15 (15)
O7—Pr1—O3110.55 (9)O14—S2—O12111.04 (15)
O2iii—Pr1—O3156.26 (8)O13—S2—O12110.18 (15)
O8i—Pr1—O1iii98.61 (9)O14—S2—O11110.58 (15)
O14ii—Pr1—O1iii121.56 (9)O13—S2—O11109.51 (14)
O1—Pr1—O1iii57.55 (10)O12—S2—O11104.16 (14)
O6—Pr1—O1iii122.74 (8)O14—S2—Pr2124.33 (11)
O10—Pr1—O1iii66.12 (9)O13—S2—Pr2124.50 (11)
O4—Pr1—O1iii160.81 (8)O12—S2—Pr250.48 (9)
O7—Pr1—O1iii76.13 (8)O11—S2—Pr253.69 (9)
O2iii—Pr1—O1iii48.90 (8)O2—C1—O1121.4 (3)
O3—Pr1—O1iii107.36 (8)O2—C1—C2120.7 (3)
O8i—Pr1—C1iii92.71 (10)O1—C1—C2117.8 (3)
O14ii—Pr1—C1iii96.41 (9)O2—C1—Pr1iii60.98 (18)
O1—Pr1—C1iii76.55 (9)O1—C1—Pr1iii63.94 (18)
O6—Pr1—C1iii119.19 (9)C2—C1—Pr1iii158.5 (3)
O10—Pr1—C1iii85.08 (10)O3—C2—C1107.9 (3)
O4—Pr1—C1iii165.83 (8)O3—C2—H2A110.1
O7—Pr1—C1iii65.11 (9)C1—C2—H2A110.1
O2iii—Pr1—C1iii24.62 (8)O3—C2—H2B110.1
O3—Pr1—C1iii131.83 (8)C1—C2—H2B110.1
O1iii—Pr1—C1iii25.15 (8)H2A—C2—H2B108.4
O8i—Pr1—S1144.16 (7)O3—C3—C4108.0 (3)
O14ii—Pr1—S169.36 (6)O3—C3—H3A110.1
O1—Pr1—S174.04 (7)C4—C3—H3A110.1
O6—Pr1—S127.17 (6)O3—C3—H3B110.1
O10—Pr1—S1150.26 (7)C4—C3—H3B110.1
O4—Pr1—S194.41 (6)H3A—C3—H3B108.4
O7—Pr1—S127.39 (6)O4—C4—O5121.3 (3)
O2iii—Pr1—S192.25 (7)O4—C4—C3120.8 (3)
O3—Pr1—S192.33 (7)O5—C4—C3117.9 (3)
O1iii—Pr1—S1101.00 (6)O4—C4—Pr262.82 (17)
C1iii—Pr1—S192.50 (7)O5—C4—Pr258.63 (16)
O9iv—Pr2—O13v80.10 (9)C3—C4—Pr2174.2 (2)
O9iv—Pr2—O11ii81.83 (9)C1—O1—Pr1125.9 (2)
O13v—Pr2—O11ii81.20 (8)C1—O1—Pr1iii90.9 (2)
O9iv—Pr2—O5vi80.13 (8)Pr1—O1—Pr1iii122.45 (10)
O13v—Pr2—O5vi79.60 (9)C1—O2—Pr1iii94.4 (2)
O11ii—Pr2—O5vi155.58 (8)C2—O3—C3112.6 (3)
O9iv—Pr2—O15140.95 (9)C2—O3—Pr1122.4 (2)
O13v—Pr2—O15138.74 (8)C3—O3—Pr1124.6 (2)
O11ii—Pr2—O15104.20 (8)C4—O4—Pr1125.8 (2)
O5vi—Pr2—O15100.18 (8)C4—O4—Pr292.59 (19)
O9iv—Pr2—O1274.10 (8)Pr1—O4—Pr2141.60 (9)
O13v—Pr2—O12145.18 (8)C4—O5—Pr2vi144.7 (2)
O11ii—Pr2—O12117.02 (8)C4—O5—Pr296.62 (19)
O5vi—Pr2—O1273.32 (8)Pr2vi—O5—Pr2118.06 (9)
O15—Pr2—O1268.83 (8)S1—O6—Pr1100.86 (12)
O9iv—Pr2—O5136.68 (8)S1—O7—Pr198.59 (12)
O13v—Pr2—O573.50 (8)S1—O8—Pr1v167.29 (17)
O11ii—Pr2—O5125.81 (8)S1—O9—Pr2iv161.89 (17)
O5vi—Pr2—O561.94 (9)Pr1—O10—H10A126.4
O15—Pr2—O570.49 (8)Pr1—O10—H10B116.4
O12—Pr2—O5110.77 (8)H10A—O10—H10B115.2
O9iv—Pr2—O1173.55 (8)S2—O11—Pr2ii143.41 (14)
O13v—Pr2—O11138.34 (8)S2—O11—Pr299.06 (11)
O11ii—Pr2—O1163.76 (9)Pr2ii—O11—Pr2116.24 (9)
O5vi—Pr2—O11125.34 (7)S2—O12—Pr2102.92 (12)
O15—Pr2—O1174.98 (8)S2—O13—Pr2i152.72 (15)
O12—Pr2—O1153.84 (7)S2—O14—Pr1ii158.40 (17)
O5—Pr2—O11145.46 (8)Pr2—O15—H15A121.0
O9iv—Pr2—O4149.81 (8)Pr2—O15—H15B110.3
O13v—Pr2—O474.63 (8)H15A—O15—H15B121.7
O11ii—Pr2—O478.25 (7)H1A—O1W—H1B109.7
O5vi—Pr2—O4110.68 (7)
O2—C1—C2—O3175.7 (3)O9—S1—O7—Pr1111.57 (13)
O1—C1—C2—O31.6 (5)O8—S1—O7—Pr1127.04 (14)
Pr1iii—C1—C2—O387.5 (7)O6—S1—O7—Pr17.41 (15)
O3—C3—C4—O48.1 (5)O9—S1—O8—Pr1v11.2 (9)
O3—C3—C4—O5172.7 (3)O6—S1—O8—Pr1v133.4 (9)
O2—C1—O1—Pr1153.8 (3)O7—S1—O8—Pr1v110.0 (9)
C2—C1—O1—Pr123.6 (5)Pr1—S1—O8—Pr1v169.9 (8)
Pr1iii—C1—O1—Pr1132.4 (2)O8—S1—O9—Pr2iv100.3 (5)
O2—C1—O1—Pr1iii21.4 (3)O6—S1—O9—Pr2iv21.8 (6)
C2—C1—O1—Pr1iii155.9 (3)O7—S1—O9—Pr2iv137.7 (5)
O1—C1—O2—Pr1iii22.0 (4)Pr1—S1—O9—Pr2iv78.8 (5)
C2—C1—O2—Pr1iii155.3 (3)O14—S2—O11—Pr2ii46.8 (3)
C1—C2—O3—C3168.3 (3)O13—S2—O11—Pr2ii76.0 (3)
C1—C2—O3—Pr119.1 (5)O12—S2—O11—Pr2ii166.2 (2)
C4—C3—O3—C2179.2 (3)Pr2—S2—O11—Pr2ii165.0 (3)
C4—C3—O3—Pr16.7 (5)O14—S2—O11—Pr2118.15 (13)
O5—C4—O4—Pr1174.4 (2)O13—S2—O11—Pr2119.04 (13)
C3—C4—O4—Pr16.4 (5)O12—S2—O11—Pr21.21 (14)
Pr2—C4—O4—Pr1178.7 (2)O14—S2—O12—Pr2117.78 (14)
O5—C4—O4—Pr24.4 (3)O13—S2—O12—Pr2118.63 (13)
C3—C4—O4—Pr2174.8 (3)O11—S2—O12—Pr21.27 (15)
O4—C4—O5—Pr2vi164.6 (2)O14—S2—O13—Pr2i7.7 (4)
C3—C4—O5—Pr2vi16.2 (6)O12—S2—O13—Pr2i115.8 (3)
Pr2—C4—O5—Pr2vi169.2 (4)O11—S2—O13—Pr2i130.2 (3)
O4—C4—O5—Pr24.6 (3)Pr2—S2—O13—Pr2i171.1 (3)
C3—C4—O5—Pr2174.6 (3)O13—S2—O14—Pr1ii120.8 (4)
O9—S1—O6—Pr1110.68 (14)O12—S2—O14—Pr1ii116.2 (4)
O8—S1—O6—Pr1127.58 (14)O11—S2—O14—Pr1ii1.1 (5)
O7—S1—O6—Pr17.62 (15)Pr2—S2—O14—Pr1ii60.4 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+1, y, z; (vi) x+1, y, z+2.
(II) Poly[[diaquadi-µ3-oxydiacetato-µ3-sulfato-dineodymium(III)] 1.32-hydrate] top
Crystal data top
[Nd2(C4H4O5)2(SO4)(H2O)2]·1.32H2OF(000) = 1348.8
Mr = 708.51Dx = 2.624 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6880 reflections
a = 10.542 (3) Åθ = 2.3–28.2°
b = 16.520 (5) ŵ = 5.93 mm1
c = 10.885 (4) ÅT = 298 K
β = 108.921 (5)°Block, pale violet
V = 1793.4 (10) Å30.40 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4230 independent reflections
Radiation source: sealed tube4132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.197, Tmax = 0.344k = 2121
19838 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.018P)2 + 2.2749P]
where P = (Fo2 + 2Fc2)/3
4230 reflections(Δ/σ)max = 0.003
259 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Nd2(C4H4O5)2(SO4)(H2O)2]·1.32H2OV = 1793.4 (10) Å3
Mr = 708.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.542 (3) ŵ = 5.93 mm1
b = 16.520 (5) ÅT = 298 K
c = 10.885 (4) Å0.40 × 0.20 × 0.18 mm
β = 108.921 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4230 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4132 reflections with I > 2σ(I)
Tmin = 0.197, Tmax = 0.344Rint = 0.022
19838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.15Δρmax = 0.71 e Å3
4230 reflectionsΔρmin = 0.42 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.211726 (14)0.831008 (8)0.841567 (14)0.01832 (5)
Nd20.878731 (14)0.906051 (8)1.035860 (13)0.01736 (5)
S11.19320 (7)0.89778 (4)1.15487 (6)0.02096 (14)
C10.2777 (3)0.77853 (17)0.5732 (3)0.0254 (6)
C20.2404 (3)0.86445 (18)0.5300 (3)0.0266 (6)
H2A0.31440.89120.51200.032*
H2B0.16310.86520.45180.032*
C30.1886 (3)0.98804 (17)0.6143 (3)0.0252 (6)
H3A0.11630.99800.53390.030*
H3B0.26901.01420.60880.030*
C40.1528 (3)1.02177 (16)0.7270 (3)0.0205 (5)
C50.5468 (3)0.89503 (17)0.9024 (3)0.0258 (6)
C60.5802 (3)0.8734 (2)0.7817 (3)0.0356 (8)
H6A0.55350.81800.75660.043*
H6B0.53200.90870.71070.043*
C70.7643 (3)0.8582 (3)0.7037 (3)0.0378 (8)
H7A0.73600.89760.63400.045*
H7B0.72550.80630.67010.045*
C80.9143 (3)0.85207 (19)0.7517 (3)0.0251 (6)
O10.2541 (3)0.75360 (13)0.6716 (2)0.0340 (5)
O20.3303 (3)0.73772 (13)0.5060 (2)0.0361 (5)
O30.2103 (2)0.90460 (12)0.6328 (2)0.0286 (5)
O40.1582 (2)0.97619 (11)0.82212 (18)0.0218 (4)
O50.1205 (2)1.09411 (12)0.7268 (2)0.0297 (5)
O60.6417 (2)0.91260 (14)1.0027 (2)0.0326 (5)
O70.4265 (2)0.89353 (15)0.8941 (3)0.0365 (5)
O80.72004 (19)0.88212 (14)0.80760 (19)0.0256 (4)
O90.97639 (19)0.86234 (12)0.87117 (18)0.0223 (4)
O100.9756 (2)0.83545 (16)0.6743 (2)0.0358 (6)
O111.1117 (2)0.96942 (12)1.0871 (2)0.0241 (4)
O121.0914 (2)0.84140 (13)1.1701 (2)0.0317 (5)
O131.2906 (2)0.92120 (15)1.2754 (2)0.0362 (5)
O141.2605 (2)0.86208 (15)1.0681 (2)0.0300 (5)
O150.0930 (3)0.70812 (16)0.8891 (3)0.0543 (7)
H15A0.09990.66450.85040.081*
H15B0.01430.71990.84980.081*
O160.3820 (3)0.72519 (14)0.9313 (2)0.0415 (6)
H16A0.40670.70621.01530.062*
H16B0.38490.68500.87740.062*
O1W0.0470 (3)0.58536 (18)0.7203 (3)0.0519 (7)
H1A0.03420.59330.69230.078*
H1B0.06690.58740.63960.078*
O2W0.50001.00000.50000.166 (6)0.64
H2C0.56001.01230.58000.249*0.32
H2D0.50821.06000.52000.249*0.32
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.02005 (8)0.01898 (8)0.01601 (8)0.00118 (5)0.00596 (6)0.00065 (5)
Nd20.01705 (8)0.01954 (8)0.01663 (8)0.00206 (5)0.00705 (6)0.00222 (5)
S10.0187 (3)0.0289 (3)0.0150 (3)0.0007 (3)0.0050 (3)0.0018 (3)
C10.0312 (15)0.0223 (14)0.0202 (14)0.0055 (12)0.0050 (12)0.0035 (11)
C20.0398 (17)0.0251 (14)0.0180 (13)0.0091 (12)0.0138 (12)0.0000 (11)
C30.0393 (17)0.0195 (13)0.0219 (14)0.0051 (12)0.0169 (13)0.0026 (11)
C40.0207 (13)0.0213 (13)0.0204 (13)0.0006 (10)0.0079 (11)0.0016 (10)
C50.0205 (14)0.0234 (14)0.0346 (17)0.0001 (11)0.0105 (12)0.0007 (12)
C60.0143 (13)0.059 (2)0.0311 (17)0.0030 (14)0.0043 (12)0.0091 (16)
C70.0238 (15)0.069 (2)0.0194 (15)0.0001 (16)0.0051 (12)0.0084 (15)
C80.0220 (14)0.0328 (15)0.0216 (14)0.0017 (12)0.0085 (12)0.0025 (12)
O10.0580 (15)0.0213 (10)0.0243 (11)0.0074 (10)0.0155 (11)0.0017 (8)
O20.0552 (15)0.0246 (11)0.0340 (12)0.0156 (10)0.0219 (11)0.0005 (9)
O30.0515 (14)0.0183 (10)0.0232 (11)0.0082 (9)0.0221 (10)0.0015 (8)
O40.0341 (11)0.0168 (9)0.0187 (9)0.0020 (8)0.0144 (8)0.0015 (7)
O50.0480 (14)0.0192 (10)0.0273 (11)0.0067 (9)0.0195 (10)0.0018 (8)
O60.0222 (11)0.0456 (14)0.0317 (12)0.0024 (9)0.0109 (9)0.0074 (10)
O70.0191 (10)0.0426 (13)0.0492 (15)0.0037 (9)0.0131 (10)0.0031 (11)
O80.0158 (9)0.0409 (12)0.0202 (10)0.0048 (8)0.0060 (8)0.0056 (9)
O90.0193 (9)0.0306 (10)0.0173 (9)0.0015 (8)0.0065 (8)0.0020 (8)
O100.0231 (11)0.0647 (17)0.0203 (11)0.0025 (10)0.0077 (9)0.0121 (10)
O110.0222 (10)0.0228 (10)0.0255 (10)0.0003 (8)0.0051 (8)0.0040 (8)
O120.0261 (11)0.0307 (11)0.0381 (13)0.0014 (9)0.0102 (10)0.0126 (9)
O130.0298 (12)0.0555 (15)0.0181 (11)0.0004 (10)0.0008 (9)0.0020 (10)
O140.0232 (10)0.0475 (13)0.0193 (10)0.0083 (9)0.0068 (8)0.0027 (9)
O150.0575 (18)0.0305 (13)0.075 (2)0.0050 (12)0.0222 (16)0.0096 (13)
O160.0655 (17)0.0352 (13)0.0199 (11)0.0261 (12)0.0083 (11)0.0031 (9)
O1W0.0309 (13)0.073 (2)0.0539 (17)0.0018 (13)0.0158 (13)0.0034 (14)
O2W0.153 (12)0.219 (16)0.107 (9)0.095 (11)0.017 (9)0.003 (10)
Geometric parameters (Å, º) top
Nd1—O72.383 (2)C3—H3A0.9700
Nd1—O14i2.406 (2)C3—H3B0.9700
Nd1—O12.407 (2)C4—O51.242 (3)
Nd1—O42.457 (2)C4—O41.266 (3)
Nd1—O162.469 (2)C4—Nd2iv2.958 (3)
Nd1—O152.525 (3)C5—O71.242 (4)
Nd1—O10i2.565 (2)C5—O61.253 (4)
Nd1—O32.573 (2)C5—C61.510 (4)
Nd1—O9i2.654 (2)C6—O81.416 (3)
Nd1—C8i2.986 (3)C6—H6A0.9700
Nd2—O62.408 (2)C6—H6B0.9700
Nd2—O2ii2.429 (2)C7—O81.413 (4)
Nd2—O92.448 (2)C7—C81.499 (4)
Nd2—O11iii2.474 (2)C7—H7A0.9700
Nd2—O122.486 (2)C7—H7B0.9700
Nd2—O82.536 (2)C8—O101.247 (4)
Nd2—O112.560 (2)C8—O91.263 (3)
Nd2—O5iv2.581 (2)C8—Nd1v2.986 (3)
Nd2—O4iv2.5915 (19)O2—Nd2vi2.429 (2)
Nd2—C4iv2.958 (3)O4—Nd2iv2.5915 (19)
Nd2—S3.1469 (12)O5—Nd2iv2.581 (2)
S—O131.432 (2)O9—Nd1v2.654 (2)
S—O121.470 (2)O10—Nd1v2.565 (2)
S—O141.476 (2)O11—Nd2iii2.474 (2)
S—O111.507 (2)O14—Nd1v2.406 (2)
C1—O11.246 (4)O15—H15A0.8494
C1—O21.249 (3)O15—H15B0.8242
C1—C21.507 (4)O16—H16A0.9210
C2—O31.422 (3)O16—H16B0.8936
C2—H2A0.9700O1W—H1A0.8202
C2—H2B0.9700O1W—H1B0.9675
C3—O31.401 (3)O2W—H2C0.9179
C3—C41.503 (4)O2W—H2D1.0125
O7—Nd1—O14i77.92 (8)O9—Nd2—S69.61 (5)
O7—Nd1—O190.93 (9)O11iii—Nd2—S92.09 (5)
O14i—Nd1—O1150.46 (8)O12—Nd2—S27.16 (5)
O7—Nd1—O476.79 (8)O8—Nd2—S131.97 (5)
O14i—Nd1—O481.19 (7)O11—Nd2—S28.31 (5)
O1—Nd1—O4123.17 (7)O5iv—Nd2—S85.82 (6)
O7—Nd1—O1672.52 (9)O4iv—Nd2—S97.41 (5)
O14i—Nd1—O1681.90 (7)C4iv—Nd2—S93.42 (6)
O1—Nd1—O1668.63 (8)O13—S—O12113.63 (14)
O4—Nd1—O16147.40 (8)O13—S—O14110.06 (14)
O7—Nd1—O15142.63 (9)O12—S—O14109.80 (14)
O14i—Nd1—O1585.25 (9)O13—S—O11111.21 (14)
O1—Nd1—O1587.59 (9)O12—S—O11103.39 (12)
O4—Nd1—O15133.40 (8)O14—S—O11108.47 (13)
O16—Nd1—O1572.23 (10)O13—S—Nd2135.41 (10)
O7—Nd1—O10i141.80 (8)O12—S—Nd250.50 (9)
O14i—Nd1—O10i123.87 (7)O14—S—Nd2114.52 (9)
O1—Nd1—O10i81.31 (8)O11—S—Nd253.65 (8)
O4—Nd1—O10i76.58 (8)O1—C1—O2125.1 (3)
O16—Nd1—O10i135.64 (9)O1—C1—C2118.4 (2)
O15—Nd1—O10i74.75 (9)O2—C1—C2116.5 (3)
O7—Nd1—O374.94 (8)O3—C2—C1107.2 (2)
O14i—Nd1—O3137.95 (8)O3—C2—H2A110.3
O1—Nd1—O361.42 (7)C1—C2—H2A110.3
O4—Nd1—O361.79 (6)O3—C2—H2B110.3
O16—Nd1—O3118.64 (8)C1—C2—H2B110.3
O15—Nd1—O3134.39 (9)H2A—C2—H2B108.5
O10i—Nd1—O368.48 (8)O3—C3—C4108.6 (2)
O7—Nd1—O9i137.64 (7)O3—C3—H3A110.0
O14i—Nd1—O9i74.43 (7)C4—C3—H3A110.0
O1—Nd1—O9i127.63 (7)O3—C3—H3B110.0
O4—Nd1—O9i67.82 (6)C4—C3—H3B110.0
O16—Nd1—O9i132.71 (8)H3A—C3—H3B108.3
O15—Nd1—O9i65.60 (8)O5—C4—O4120.9 (3)
O10i—Nd1—O9i49.48 (7)O5—C4—C3119.7 (2)
O3—Nd1—O9i106.09 (7)O4—C4—C3119.4 (2)
O7—Nd1—C8i147.44 (8)O5—C4—Nd2iv60.40 (15)
O14i—Nd1—C8i99.42 (7)O4—C4—Nd2iv60.95 (14)
O1—Nd1—C8i104.30 (8)C3—C4—Nd2iv172.2 (2)
O4—Nd1—C8i70.77 (8)O7—C5—O6125.2 (3)
O16—Nd1—C8i139.77 (9)O7—C5—C6117.0 (3)
O15—Nd1—C8i67.86 (9)O6—C5—C6117.9 (3)
O10i—Nd1—C8i24.49 (7)O8—C6—C5108.9 (3)
O3—Nd1—C8i87.19 (8)O8—C6—H6A109.9
O9i—Nd1—C8i25.00 (7)C5—C6—H6A109.9
O6—Nd2—O2ii82.02 (9)O8—C6—H6B109.9
O6—Nd2—O9124.46 (7)C5—C6—H6B109.9
O2ii—Nd2—O974.55 (7)H6A—C6—H6B108.3
O6—Nd2—O11iii95.96 (7)O8—C7—C8108.9 (2)
O2ii—Nd2—O11iii141.66 (7)O8—C7—H7A109.9
O9—Nd2—O11iii75.44 (7)C8—C7—H7A109.9
O6—Nd2—O12143.29 (8)O8—C7—H7B109.9
O2ii—Nd2—O1276.63 (8)C8—C7—H7B109.9
O9—Nd2—O1277.89 (8)H7A—C7—H7B108.3
O11iii—Nd2—O12119.21 (7)O10—C8—O9121.1 (3)
O6—Nd2—O862.45 (7)O10—C8—C7119.8 (3)
O2ii—Nd2—O870.93 (8)O9—C8—C7119.1 (3)
O9—Nd2—O862.42 (7)O10—C8—Nd1v58.49 (15)
O11iii—Nd2—O874.29 (7)O9—C8—Nd1v62.63 (15)
O12—Nd2—O8133.75 (7)C7—C8—Nd1v177.0 (2)
O6—Nd2—O11152.86 (7)C1—O1—Nd1128.60 (19)
O2ii—Nd2—O11125.05 (8)C1—O2—Nd2vi124.3 (2)
O9—Nd2—O1171.25 (7)C3—O3—C2114.4 (2)
O11iii—Nd2—O1164.74 (8)C3—O3—Nd1123.09 (16)
O12—Nd2—O1155.16 (7)C2—O3—Nd1122.38 (16)
O8—Nd2—O11123.97 (6)C4—O4—Nd1126.80 (17)
O6—Nd2—O5iv79.41 (8)C4—O4—Nd2iv93.76 (16)
O2ii—Nd2—O5iv93.74 (7)Nd1—O4—Nd2iv139.12 (8)
O9—Nd2—O5iv150.15 (7)C4—O5—Nd2iv94.86 (17)
O11iii—Nd2—O5iv123.70 (7)C5—O6—Nd2128.1 (2)
O12—Nd2—O5iv72.66 (8)C5—O7—Nd1153.4 (2)
O8—Nd2—O5iv140.12 (7)C7—O8—C6113.9 (2)
O11—Nd2—O5iv95.23 (7)C7—O8—Nd2122.93 (17)
O6—Nd2—O4iv72.93 (7)C6—O8—Nd2121.65 (18)
O2ii—Nd2—O4iv138.43 (7)C8—O9—Nd2126.36 (18)
O9—Nd2—O4iv146.98 (6)C8—O9—Nd1v92.38 (16)
O11iii—Nd2—O4iv74.86 (7)Nd2—O9—Nd1v141.08 (8)
O12—Nd2—O4iv104.67 (7)C8—O10—Nd1v97.02 (18)
O8—Nd2—O4iv121.50 (7)S—O11—Nd2iii143.22 (12)
O11—Nd2—O4iv83.23 (7)S—O11—Nd298.04 (10)
O5iv—Nd2—O4iv49.90 (6)Nd2iii—O11—Nd2115.26 (8)
O6—Nd2—C4iv73.02 (8)S—O12—Nd2102.34 (11)
O2ii—Nd2—C4iv115.64 (7)S—O14—Nd1v138.92 (12)
O9—Nd2—C4iv161.96 (7)Nd1—O15—H15A116.9
O11iii—Nd2—C4iv99.94 (7)Nd1—O15—H15B100.7
O12—Nd2—C4iv89.74 (8)H15A—O15—H15B100.2
O8—Nd2—C4iv133.84 (7)Nd1—O16—H16A124.7
O11—Nd2—C4iv90.94 (7)Nd1—O16—H16B116.2
O5iv—Nd2—C4iv24.73 (7)H16A—O16—H16B109.8
O4iv—Nd2—C4iv25.29 (7)H1A—O1W—H1B99.5
O6—Nd2—S165.23 (6)H2C—O2W—H2D66.1
O2ii—Nd2—S99.22 (7)
O1—C1—C2—O312.5 (4)C6—C5—O7—Nd152.1 (6)
O2—C1—C2—O3167.6 (3)C8—C7—O8—C6167.3 (3)
O3—C3—C4—O5175.3 (3)C8—C7—O8—Nd21.2 (4)
O3—C3—C4—O45.9 (4)C5—C6—O8—C7176.0 (3)
O7—C5—C6—O8177.2 (3)C5—C6—O8—Nd29.7 (4)
O6—C5—C6—O83.1 (4)O10—C8—O9—Nd2174.6 (2)
O8—C7—C8—O10176.6 (3)C7—C8—O9—Nd26.8 (4)
O8—C7—C8—O94.8 (5)Nd1v—C8—O9—Nd2176.0 (2)
O2—C1—O1—Nd1161.5 (2)O10—C8—O9—Nd1v1.5 (3)
C2—C1—O1—Nd118.6 (4)C7—C8—O9—Nd1v177.1 (3)
O1—C1—O2—Nd2vi7.0 (5)O9—C8—O10—Nd1v1.5 (3)
C2—C1—O2—Nd2vi172.9 (2)C7—C8—O10—Nd1v177.1 (3)
C4—C3—O3—C2177.8 (2)O13—S—O11—Nd2iii73.2 (2)
C4—C3—O3—Nd16.1 (3)O12—S—O11—Nd2iii164.55 (19)
C1—C2—O3—C3173.0 (3)O14—S—O11—Nd2iii48.0 (2)
C1—C2—O3—Nd13.1 (3)Nd2—S—O11—Nd2iii155.3 (2)
O5—C4—O4—Nd1177.8 (2)O13—S—O11—Nd2131.52 (12)
C3—C4—O4—Nd13.4 (4)O12—S—O11—Nd29.22 (13)
Nd2iv—C4—O4—Nd1174.5 (2)O14—S—O11—Nd2107.31 (12)
O5—C4—O4—Nd2iv7.7 (3)O13—S—O12—Nd2130.30 (13)
C3—C4—O4—Nd2iv171.1 (2)O14—S—O12—Nd2105.96 (12)
O4—C4—O5—Nd2iv7.7 (3)O11—S—O12—Nd29.63 (13)
C3—C4—O5—Nd2iv171.0 (2)O13—S—O14—Nd1v162.7 (2)
O7—C5—O6—Nd2174.0 (2)O12—S—O14—Nd1v71.5 (2)
C6—C5—O6—Nd25.6 (4)O11—S—O14—Nd1v40.8 (2)
O6—C5—O7—Nd1127.5 (5)Nd2—S—O14—Nd1v16.8 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+2, y+2, z+2; (iv) x+1, y+2, z+2; (v) x+1, y, z; (vi) x1/2, y+3/2, z1/2.
(III) Poly[[diaquadi-µ3-oxydiacetato-µ3-sulfato-disamarium(III)] 1.32-hydrate] top
Crystal data top
[Sm2(C4H4O5)2(SO4)(H2O)2]·1.32H2OF(000) = 1364.8
Mr = 720.75Dx = 2.714 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6577 reflections
a = 10.4709 (17) Åθ = 2.3–28.1°
b = 16.441 (3) ŵ = 6.80 mm1
c = 10.8721 (18) ÅT = 298 K
β = 109.528 (2)°Block, pale yellow
V = 1764.0 (5) Å30.38 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4177 independent reflections
Radiation source: sealed tube3978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.192, Tmax = 0.337k = 2121
19764 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0235P)2 + 1.3713P]
where P = (Fo2 + 2Fc2)/3
4177 reflections(Δ/σ)max = 0.004
259 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Sm2(C4H4O5)2(SO4)(H2O)2]·1.32H2OV = 1764.0 (5) Å3
Mr = 720.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4709 (17) ŵ = 6.80 mm1
b = 16.441 (3) ÅT = 298 K
c = 10.8721 (18) Å0.38 × 0.18 × 0.16 mm
β = 109.528 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4177 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3978 reflections with I > 2σ(I)
Tmin = 0.192, Tmax = 0.337Rint = 0.029
19764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.09Δρmax = 0.55 e Å3
4177 reflectionsΔρmin = 1.07 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10.208765 (13)0.831653 (8)0.841267 (12)0.01657 (5)
Sm20.876426 (13)0.906940 (8)1.032500 (12)0.01542 (5)
S11.19114 (6)0.89549 (4)1.15395 (6)0.01881 (13)
C10.2693 (3)0.77705 (16)0.5744 (3)0.0210 (5)
C20.2343 (3)0.86410 (17)0.5311 (3)0.0230 (6)
H2A0.30970.88990.51350.028*
H2B0.15590.86570.45210.028*
C30.1879 (3)0.98916 (16)0.6172 (3)0.0225 (5)
H3A0.11581.00070.53590.027*
H3B0.27051.01440.61410.027*
C40.1519 (3)1.02248 (16)0.7304 (3)0.0189 (5)
C50.5436 (3)0.89659 (17)0.9012 (3)0.0246 (6)
C60.5749 (3)0.8745 (2)0.7796 (3)0.0331 (7)
H6A0.54870.81860.75540.040*
H6B0.52450.90950.70800.040*
C70.7595 (3)0.8605 (2)0.7016 (3)0.0353 (7)
H7A0.73200.90060.63230.042*
H7B0.71880.80880.66670.042*
C80.9110 (3)0.85280 (18)0.7513 (3)0.0221 (5)
O10.2453 (2)0.75324 (12)0.6733 (2)0.0301 (5)
O20.3200 (2)0.73454 (12)0.5070 (2)0.0311 (5)
O30.2061 (2)0.90490 (11)0.6341 (2)0.0281 (5)
O40.1550 (2)0.97602 (11)0.82424 (18)0.0202 (4)
O50.1214 (2)1.09591 (11)0.7318 (2)0.0271 (5)
O60.6406 (2)0.91571 (13)1.0010 (2)0.0296 (5)
O70.4230 (2)0.89445 (14)0.8944 (2)0.0341 (5)
O80.71622 (18)0.88431 (13)0.80509 (19)0.0236 (4)
O90.97360 (18)0.86166 (12)0.87167 (17)0.0199 (4)
O100.9725 (2)0.83665 (15)0.6740 (2)0.0334 (5)
O111.11123 (19)0.96923 (11)1.08828 (19)0.0222 (4)
O121.0863 (2)0.83910 (12)1.1647 (2)0.0280 (5)
O131.2900 (2)0.91652 (14)1.2774 (2)0.0333 (5)
O141.2588 (2)0.86067 (14)1.06651 (19)0.0273 (4)
O150.0936 (3)0.70877 (15)0.8857 (3)0.0471 (6)
H15A0.10960.66460.85130.071*
H15B0.00200.71530.83930.071*
O160.3804 (3)0.72700 (13)0.9299 (2)0.0375 (6)
H16A0.41710.71051.00470.056*
H16B0.37570.68660.88420.056*
O1W0.0443 (3)0.58554 (16)0.7161 (3)0.0472 (7)
H1A0.03020.59550.66670.071*
H1B0.09630.57590.66850.071*
O2W0.50001.00000.50000.155 (5)0.64
H2C0.55941.02360.56300.233*0.32
H2D0.42001.00000.48000.233*0.32
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01847 (7)0.01733 (8)0.01420 (7)0.00124 (5)0.00585 (5)0.00032 (5)
Sm20.01568 (7)0.01718 (7)0.01473 (7)0.00193 (4)0.00686 (5)0.00185 (4)
S10.0167 (3)0.0262 (3)0.0134 (3)0.0002 (2)0.0048 (2)0.0012 (2)
C10.0240 (13)0.0210 (13)0.0166 (12)0.0032 (10)0.0050 (10)0.0026 (10)
C20.0335 (15)0.0212 (13)0.0172 (13)0.0066 (11)0.0125 (11)0.0002 (10)
C30.0347 (15)0.0158 (12)0.0208 (13)0.0032 (11)0.0145 (12)0.0011 (10)
C40.0204 (12)0.0192 (12)0.0183 (12)0.0012 (10)0.0081 (10)0.0014 (10)
C50.0191 (13)0.0231 (14)0.0318 (16)0.0004 (10)0.0088 (12)0.0019 (11)
C60.0136 (13)0.054 (2)0.0299 (16)0.0030 (12)0.0043 (11)0.0087 (14)
C70.0217 (14)0.063 (2)0.0201 (15)0.0007 (14)0.0059 (12)0.0085 (15)
C80.0190 (13)0.0292 (14)0.0181 (13)0.0012 (11)0.0062 (10)0.0035 (11)
O10.0500 (13)0.0211 (10)0.0207 (10)0.0077 (9)0.0138 (10)0.0023 (8)
O20.0431 (13)0.0235 (11)0.0320 (12)0.0111 (9)0.0196 (10)0.0024 (9)
O30.0533 (14)0.0158 (9)0.0228 (11)0.0073 (8)0.0229 (10)0.0012 (7)
O40.0300 (10)0.0172 (9)0.0172 (9)0.0018 (7)0.0127 (8)0.0003 (7)
O50.0448 (13)0.0173 (10)0.0243 (11)0.0061 (8)0.0184 (10)0.0015 (8)
O60.0199 (10)0.0406 (12)0.0285 (11)0.0018 (8)0.0082 (9)0.0067 (9)
O70.0189 (10)0.0401 (12)0.0463 (14)0.0026 (9)0.0151 (10)0.0023 (10)
O80.0153 (9)0.0351 (11)0.0202 (10)0.0040 (8)0.0054 (7)0.0057 (8)
O90.0189 (9)0.0268 (10)0.0142 (9)0.0014 (7)0.0060 (7)0.0035 (7)
O100.0244 (11)0.0589 (15)0.0177 (10)0.0018 (10)0.0080 (9)0.0122 (9)
O110.0209 (9)0.0223 (9)0.0224 (10)0.0005 (7)0.0058 (8)0.0017 (8)
O120.0225 (10)0.0287 (11)0.0337 (12)0.0007 (8)0.0106 (9)0.0121 (9)
O130.0260 (11)0.0512 (14)0.0179 (10)0.0004 (9)0.0008 (8)0.0041 (9)
O140.0226 (10)0.0421 (12)0.0186 (10)0.0054 (9)0.0086 (8)0.0014 (9)
O150.0524 (16)0.0264 (12)0.0642 (18)0.0046 (11)0.0219 (14)0.0079 (12)
O160.0574 (15)0.0315 (12)0.0184 (10)0.0224 (11)0.0060 (10)0.0028 (9)
O1W0.0297 (12)0.0652 (18)0.0491 (16)0.0045 (11)0.0162 (12)0.0019 (13)
O2W0.134 (10)0.186 (13)0.116 (9)0.081 (10)0.004 (8)0.007 (9)
Geometric parameters (Å, º) top
Sm1—O72.359 (2)C3—H3A0.9700
Sm1—O12.369 (2)C3—H3B0.9700
Sm1—O14i2.375 (2)C4—O51.250 (3)
Sm1—O42.4320 (18)C4—O41.266 (3)
Sm1—O162.441 (2)C4—Sm2iv2.931 (3)
Sm1—O152.482 (2)C5—O71.241 (3)
Sm1—O10i2.535 (2)C5—O61.254 (4)
Sm1—O32.546 (2)C5—C61.509 (4)
Sm1—O9i2.6382 (19)C6—O81.421 (3)
Sm1—C8i2.960 (3)C6—H6A0.9700
Sm2—O62.382 (2)C6—H6B0.9700
Sm2—O2ii2.393 (2)C7—O81.402 (3)
Sm2—O92.4159 (18)C7—C81.500 (4)
Sm2—O11iii2.4494 (19)C7—H7A0.9700
Sm2—O122.455 (2)C7—H7B0.9700
Sm2—O82.5085 (19)C8—O101.247 (3)
Sm2—O112.5425 (19)C8—O91.261 (3)
Sm2—O5iv2.555 (2)C8—Sm1v2.960 (3)
Sm2—O4iv2.5653 (18)O2—Sm2vi2.393 (2)
Sm2—C4iv2.931 (3)O4—Sm2iv2.5653 (18)
Sm2—S3.1192 (8)O5—Sm2iv2.555 (2)
S—O131.437 (2)O9—Sm1v2.6382 (18)
S—O121.471 (2)O10—Sm1v2.535 (2)
S—O141.478 (2)O11—Sm2iii2.4495 (19)
S—O111.510 (2)O14—Sm1v2.375 (2)
C1—O11.246 (3)O15—H15A0.8591
C1—O21.252 (3)O15—H15B0.9287
C1—C21.513 (4)O16—H16A0.8206
C2—O31.419 (3)O16—H16B0.8212
C2—H2A0.9700O1W—H1A0.8022
C2—H2B0.9700O1W—H1B0.8819
C3—O31.402 (3)O2W—H2C0.8496
C3—C41.505 (3)O2W—H2D0.7920
O7—Sm1—O192.39 (8)O9—Sm2—S69.32 (5)
O7—Sm1—O14i78.20 (8)O11iii—Sm2—S92.27 (5)
O1—Sm1—O14i150.16 (7)O12—Sm2—S27.43 (5)
O7—Sm1—O476.60 (7)O8—Sm2—S132.23 (4)
O1—Sm1—O4124.42 (6)O11—Sm2—S28.69 (4)
O14i—Sm1—O481.27 (7)O5iv—Sm2—S85.44 (5)
O7—Sm1—O1672.40 (8)O4iv—Sm2—S96.90 (5)
O1—Sm1—O1668.51 (7)C4iv—Sm2—S93.13 (5)
O14i—Sm1—O1681.65 (7)O13—S—O12113.66 (14)
O4—Sm1—O16147.02 (8)O13—S—O14110.10 (13)
O7—Sm1—O15142.45 (9)O12—S—O14109.74 (13)
O1—Sm1—O1585.49 (9)O13—S—O11111.15 (13)
O14i—Sm1—O1585.22 (9)O12—S—O11103.50 (11)
O4—Sm1—O15133.95 (8)O14—S—O11108.41 (12)
O16—Sm1—O1571.99 (9)O13—S—Sm2135.26 (10)
O7—Sm1—O10i141.41 (8)O12—S—Sm250.28 (8)
O1—Sm1—O10i80.50 (7)O14—S—Sm2114.64 (9)
O14i—Sm1—O10i124.00 (7)O11—S—Sm253.94 (7)
O4—Sm1—O10i76.60 (7)O1—C1—O2125.2 (3)
O16—Sm1—O10i135.98 (8)O1—C1—C2117.9 (2)
O15—Sm1—O10i75.21 (9)O2—C1—C2116.9 (2)
O7—Sm1—O374.82 (8)O3—C2—C1107.1 (2)
O1—Sm1—O362.11 (7)O3—C2—H2A110.3
O14i—Sm1—O3138.63 (7)C1—C2—H2A110.3
O4—Sm1—O362.43 (6)O3—C2—H2B110.3
O16—Sm1—O3118.15 (7)C1—C2—H2B110.3
O15—Sm1—O3134.03 (8)H2A—C2—H2B108.5
O10i—Sm1—O368.32 (8)O3—C3—C4108.2 (2)
O7—Sm1—O9i137.59 (7)O3—C3—H3A110.1
O1—Sm1—O9i126.61 (7)C4—C3—H3A110.1
O14i—Sm1—O9i74.14 (6)O3—C3—H3B110.1
O4—Sm1—O9i67.99 (6)C4—C3—H3B110.1
O16—Sm1—O9i132.60 (7)H3A—C3—H3B108.4
O15—Sm1—O9i65.99 (8)O5—C4—O4120.7 (2)
O10i—Sm1—O9i49.90 (6)O5—C4—C3119.8 (2)
O3—Sm1—O9i106.72 (6)O4—C4—C3119.5 (2)
O7—Sm1—C8i147.13 (8)O5—C4—Sm2iv60.36 (14)
O1—Sm1—C8i103.47 (8)O4—C4—Sm2iv60.87 (13)
O14i—Sm1—C8i99.32 (7)C3—C4—Sm2iv171.69 (19)
O4—Sm1—C8i70.66 (7)O7—C5—O6124.9 (3)
O16—Sm1—C8i140.19 (8)O7—C5—C6117.2 (3)
O15—Sm1—C8i68.47 (9)O6—C5—C6118.0 (2)
O10i—Sm1—C8i24.70 (7)O8—C6—C5108.6 (2)
O3—Sm1—C8i87.33 (8)O8—C6—H6A110.0
O9i—Sm1—C8i25.19 (7)C5—C6—H6A110.0
O6—Sm2—O2ii80.68 (8)O8—C6—H6B110.0
O6—Sm2—O9125.60 (7)C5—C6—H6B110.0
O2ii—Sm2—O976.36 (7)H6A—C6—H6B108.3
O6—Sm2—O11iii96.35 (7)O8—C7—C8108.7 (2)
O2ii—Sm2—O11iii143.23 (7)O8—C7—H7A109.9
O9—Sm2—O11iii75.98 (6)C8—C7—H7A109.9
O6—Sm2—O12142.56 (7)O8—C7—H7B109.9
O2ii—Sm2—O1276.37 (8)C8—C7—H7B109.9
O9—Sm2—O1276.84 (7)H7A—C7—H7B108.3
O11iii—Sm2—O12119.61 (6)O10—C8—O9121.2 (3)
O6—Sm2—O863.11 (7)O10—C8—C7119.8 (3)
O2ii—Sm2—O871.56 (7)O9—C8—C7119.0 (2)
O9—Sm2—O862.97 (6)O10—C8—Sm1v58.21 (15)
O11iii—Sm2—O874.49 (7)O9—C8—Sm1v62.98 (14)
O12—Sm2—O8133.03 (7)C7—C8—Sm1v177.5 (2)
O6—Sm2—O11152.07 (7)C1—O1—Sm1128.71 (18)
O2ii—Sm2—O11126.93 (7)C1—O2—Sm2vi127.71 (19)
O9—Sm2—O1171.89 (6)C3—O3—C2114.8 (2)
O11iii—Sm2—O1164.72 (7)C3—O3—Sm1122.95 (16)
O12—Sm2—O1155.82 (6)C2—O3—Sm1122.08 (15)
O8—Sm2—O11124.72 (6)C4—O4—Sm1126.39 (16)
O6—Sm2—O5iv78.83 (7)C4—O4—Sm2iv93.59 (15)
O2ii—Sm2—O5iv91.00 (7)Sm1—O4—Sm2iv139.40 (8)
O9—Sm2—O5iv148.81 (7)C4—O5—Sm2iv94.48 (16)
O11iii—Sm2—O5iv124.64 (6)C5—O6—Sm2127.59 (19)
O12—Sm2—O5iv72.47 (7)C5—O7—Sm1153.2 (2)
O8—Sm2—O5iv139.86 (7)C7—O8—C6114.0 (2)
O11—Sm2—O5iv94.85 (7)C7—O8—Sm2122.90 (16)
O6—Sm2—O4iv72.80 (7)C6—O8—Sm2121.25 (17)
O2ii—Sm2—O4iv136.27 (6)C8—O9—Sm2126.01 (17)
O9—Sm2—O4iv147.27 (6)C8—O9—Sm1v91.82 (15)
O11iii—Sm2—O4iv75.08 (6)Sm2—O9—Sm1v141.71 (8)
O12—Sm2—O4iv104.89 (7)C8—O10—Sm1v97.08 (17)
O8—Sm2—O4iv122.04 (6)S—O11—Sm2iii143.19 (11)
O11—Sm2—O4iv82.14 (6)S—O11—Sm297.37 (9)
O5iv—Sm2—O4iv50.56 (6)Sm2iii—O11—Sm2115.28 (7)
O6—Sm2—C4iv72.40 (7)S—O12—Sm2102.30 (10)
O2ii—Sm2—C4iv113.14 (7)S—O14—Sm1v138.86 (12)
O9—Sm2—C4iv161.70 (7)Sm1—O15—H15A115.1
O11iii—Sm2—C4iv100.45 (7)Sm1—O15—H15B106.3
O12—Sm2—C4iv89.94 (7)H15A—O15—H15B100.2
O8—Sm2—C4iv134.01 (7)Sm1—O16—H16A131.6
O11—Sm2—C4iv90.27 (7)Sm1—O16—H16B116.4
O5iv—Sm2—C4iv25.16 (6)H16A—O16—H16B104.2
O4iv—Sm2—C4iv25.54 (6)H1A—O1W—H1B107.2
O6—Sm2—S164.26 (6)H2C—O2W—H2D130.1
O2ii—Sm2—S100.10 (6)
O1—C1—C2—O312.2 (4)C6—C5—O7—Sm149.6 (6)
O2—C1—C2—O3168.0 (3)C8—C7—O8—C6165.4 (3)
O3—C3—C4—O5175.0 (3)C8—C7—O8—Sm20.6 (4)
O3—C3—C4—O46.2 (4)C5—C6—O8—C7176.1 (3)
O7—C5—C6—O8177.3 (3)C5—C6—O8—Sm211.0 (4)
O6—C5—C6—O82.6 (4)O10—C8—O9—Sm2173.0 (2)
O8—C7—C8—O10175.9 (3)C7—C8—O9—Sm28.1 (4)
O8—C7—C8—O95.2 (4)Sm1v—C8—O9—Sm2173.7 (2)
O2—C1—O1—Sm1161.3 (2)O10—C8—O9—Sm1v0.7 (3)
C2—C1—O1—Sm118.9 (4)C7—C8—O9—Sm1v178.2 (3)
O1—C1—O2—Sm2vi4.0 (4)O9—C8—O10—Sm1v0.7 (3)
C2—C1—O2—Sm2vi175.76 (19)C7—C8—O10—Sm1v178.2 (3)
C4—C3—O3—C2177.1 (2)O13—S—O11—Sm2iii75.6 (2)
C4—C3—O3—Sm17.9 (3)O12—S—O11—Sm2iii162.00 (18)
C1—C2—O3—C3172.5 (2)O14—S—O11—Sm2iii45.5 (2)
C1—C2—O3—Sm12.5 (3)Sm2—S—O11—Sm2iii153.0 (2)
O5—C4—O4—Sm1179.28 (19)O13—S—O11—Sm2131.33 (11)
C3—C4—O4—Sm11.9 (3)O12—S—O11—Sm28.96 (12)
Sm2iv—C4—O4—Sm1172.4 (2)O14—S—O11—Sm2107.53 (11)
O5—C4—O4—Sm2iv8.3 (3)O13—S—O12—Sm2130.10 (12)
C3—C4—O4—Sm2iv170.5 (2)O14—S—O12—Sm2106.13 (11)
O4—C4—O5—Sm2iv8.3 (3)O11—S—O12—Sm29.42 (13)
C3—C4—O5—Sm2iv170.4 (2)O13—S—O14—Sm1v164.25 (18)
O7—C5—O6—Sm2172.2 (2)O12—S—O14—Sm1v69.9 (2)
C6—C5—O6—Sm27.9 (4)O11—S—O14—Sm1v42.5 (2)
O6—C5—O7—Sm1130.4 (4)Sm2—S—O14—Sm1v15.5 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+2, y+2, z+2; (iv) x+1, y+2, z+2; (v) x+1, y, z; (vi) x1/2, y+3/2, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Pr2(C4H4O5)(SO4)2(H2O)2]·0.5H2O[Nd2(C4H4O5)2(SO4)(H2O)2]·1.32H2O[Sm2(C4H4O5)2(SO4)(H2O)2]·1.32H2O
Mr651.05708.51720.75
Crystal system, space groupTriclinic, P1Monoclinic, P21/nMonoclinic, P21/n
Temperature (K)298298298
a, b, c (Å)6.618 (2), 8.527 (3), 13.111 (4)10.542 (3), 16.520 (5), 10.885 (4)10.4709 (17), 16.441 (3), 10.8721 (18)
α, β, γ (°)86.340 (5), 89.487 (5), 68.617 (5)90, 108.921 (5), 9090, 109.528 (2), 90
V3)687.4 (4)1793.4 (10)1764.0 (5)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)7.405.936.80
Crystal size (mm)0.60 × 0.10 × 0.080.40 × 0.20 × 0.180.38 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.316, 0.5530.197, 0.3440.192, 0.337
No. of measured, independent and
observed [I > 2σ(I)] reflections
7509, 3119, 3020 19838, 4230, 4132 19764, 4177, 3978
Rint0.0190.0220.029
(sin θ/λ)max1)0.6650.6660.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.050, 1.14 0.020, 0.046, 1.15 0.019, 0.047, 1.09
No. of reflections311942304177
No. of parameters217259259
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 1.030.71, 0.420.55, 1.07

Computer programs: SMART APEX (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012).

Selected geometric parameters (Å, º) for (I) top
Pr1—O8i2.435 (3)Pr2—O9iv2.360 (2)
Pr1—O14ii2.453 (2)Pr2—O13v2.420 (2)
Pr1—O12.518 (3)Pr2—O11ii2.466 (2)
Pr1—O62.549 (3)Pr2—O5vi2.501 (2)
Pr1—O102.558 (3)Pr2—O152.518 (3)
Pr1—O42.561 (2)Pr2—O122.558 (2)
Pr1—O72.601 (2)Pr2—O52.584 (2)
Pr1—O2iii2.609 (3)Pr2—O112.637 (2)
Pr1—O32.610 (3)Pr2—O42.677 (2)
Pr1—O1iii2.673 (3)
O8i—Pr1—O14ii74.82 (9)O4—Pr1—O1iii160.81 (8)
O8i—Pr1—O1141.45 (9)O7—Pr1—O1iii76.13 (8)
O14ii—Pr1—O1142.39 (9)O2iii—Pr1—O1iii48.90 (8)
O8i—Pr1—O6136.99 (9)O3—Pr1—O1iii107.36 (8)
O14ii—Pr1—O673.67 (9)O9iv—Pr2—O13v80.10 (9)
O1—Pr1—O677.86 (9)O9iv—Pr2—O11ii81.83 (9)
O8i—Pr1—O1065.56 (9)O13v—Pr2—O11ii81.20 (8)
O14ii—Pr1—O10140.38 (9)O9iv—Pr2—O5vi80.13 (8)
O1—Pr1—O1076.58 (9)O13v—Pr2—O5vi79.60 (9)
O6—Pr1—O10138.92 (9)O11ii—Pr2—O5vi155.58 (8)
O8i—Pr1—O474.53 (9)O9iv—Pr2—O15140.95 (9)
O14ii—Pr1—O474.59 (8)O13v—Pr2—O15138.74 (8)
O1—Pr1—O4117.28 (8)O11ii—Pr2—O15104.20 (8)
O6—Pr1—O469.40 (8)O5vi—Pr2—O15100.18 (8)
O10—Pr1—O494.90 (9)O9iv—Pr2—O1274.10 (8)
O8i—Pr1—O7138.79 (9)O13v—Pr2—O12145.18 (8)
O14ii—Pr1—O773.89 (8)O11ii—Pr2—O12117.02 (8)
O1—Pr1—O769.64 (8)O5vi—Pr2—O1273.32 (8)
O6—Pr1—O754.38 (8)O15—Pr2—O1268.83 (8)
O10—Pr1—O7138.90 (8)O9iv—Pr2—O5136.68 (8)
O4—Pr1—O7120.95 (8)O13v—Pr2—O573.50 (8)
O8i—Pr1—O2iii78.57 (10)O11ii—Pr2—O5125.81 (8)
O14ii—Pr1—O2iii73.35 (9)O5vi—Pr2—O561.94 (9)
O1—Pr1—O2iii100.13 (8)O15—Pr2—O570.49 (8)
O6—Pr1—O2iii118.49 (9)O12—Pr2—O5110.77 (8)
O10—Pr1—O2iii97.36 (10)O9iv—Pr2—O1173.55 (8)
O4—Pr1—O2iii142.41 (8)O13v—Pr2—O11138.34 (8)
O7—Pr1—O2iii67.24 (9)O11ii—Pr2—O1163.76 (9)
O8i—Pr1—O3109.98 (9)O5vi—Pr2—O11125.34 (7)
O14ii—Pr1—O3129.82 (8)O15—Pr2—O1174.98 (8)
O1—Pr1—O359.02 (8)O12—Pr2—O1153.84 (7)
O6—Pr1—O371.04 (8)O5—Pr2—O11145.46 (8)
O10—Pr1—O368.31 (10)O9iv—Pr2—O4149.81 (8)
O4—Pr1—O360.24 (7)O13v—Pr2—O474.63 (8)
O7—Pr1—O3110.55 (9)O11ii—Pr2—O478.25 (7)
O2iii—Pr1—O3156.26 (8)O5vi—Pr2—O4110.68 (7)
O8i—Pr1—O1iii98.61 (9)O15—Pr2—O466.87 (8)
O14ii—Pr1—O1iii121.56 (9)O12—Pr2—O4135.51 (7)
O1—Pr1—O1iii57.55 (10)O5—Pr2—O449.31 (7)
O6—Pr1—O1iii122.74 (8)O11—Pr2—O4116.15 (7)
O10—Pr1—O1iii66.12 (9)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+1, y, z; (vi) x+1, y, z+2.
Selected geometric parameters (Å, º) for (II) top
Nd1—O72.383 (2)Nd2—O62.408 (2)
Nd1—O14i2.406 (2)Nd2—O2ii2.429 (2)
Nd1—O12.407 (2)Nd2—O92.448 (2)
Nd1—O42.457 (2)Nd2—O11iii2.474 (2)
Nd1—O162.469 (2)Nd2—O122.486 (2)
Nd1—O152.525 (3)Nd2—O82.536 (2)
Nd1—O10i2.565 (2)Nd2—O112.560 (2)
Nd1—O32.573 (2)Nd2—O5iv2.581 (2)
Nd1—O9i2.654 (2)Nd2—O4iv2.5915 (19)
O7—Nd1—O14i77.92 (8)O6—Nd2—O2ii82.02 (9)
O7—Nd1—O190.93 (9)O6—Nd2—O9124.46 (7)
O14i—Nd1—O1150.46 (8)O2ii—Nd2—O974.55 (7)
O7—Nd1—O476.79 (8)O6—Nd2—O11iii95.96 (7)
O14i—Nd1—O481.19 (7)O2ii—Nd2—O11iii141.66 (7)
O1—Nd1—O4123.17 (7)O9—Nd2—O11iii75.44 (7)
O7—Nd1—O1672.52 (9)O6—Nd2—O12143.29 (8)
O14i—Nd1—O1681.90 (7)O2ii—Nd2—O1276.63 (8)
O1—Nd1—O1668.63 (8)O9—Nd2—O1277.89 (8)
O4—Nd1—O16147.40 (8)O11iii—Nd2—O12119.21 (7)
O7—Nd1—O15142.63 (9)O6—Nd2—O862.45 (7)
O14i—Nd1—O1585.25 (9)O2ii—Nd2—O870.93 (8)
O1—Nd1—O1587.59 (9)O9—Nd2—O862.42 (7)
O4—Nd1—O15133.40 (8)O11iii—Nd2—O874.29 (7)
O16—Nd1—O1572.23 (10)O12—Nd2—O8133.75 (7)
O7—Nd1—O10i141.80 (8)O6—Nd2—O11152.86 (7)
O14i—Nd1—O10i123.87 (7)O2ii—Nd2—O11125.05 (8)
O1—Nd1—O10i81.31 (8)O9—Nd2—O1171.25 (7)
O4—Nd1—O10i76.58 (8)O11iii—Nd2—O1164.74 (8)
O16—Nd1—O10i135.64 (9)O12—Nd2—O1155.16 (7)
O15—Nd1—O10i74.75 (9)O8—Nd2—O11123.97 (6)
O7—Nd1—O374.94 (8)O6—Nd2—O5iv79.41 (8)
O14i—Nd1—O3137.95 (8)O2ii—Nd2—O5iv93.74 (7)
O1—Nd1—O361.42 (7)O9—Nd2—O5iv150.15 (7)
O4—Nd1—O361.79 (6)O11iii—Nd2—O5iv123.70 (7)
O16—Nd1—O3118.64 (8)O12—Nd2—O5iv72.66 (8)
O15—Nd1—O3134.39 (9)O8—Nd2—O5iv140.12 (7)
O10i—Nd1—O368.48 (8)O11—Nd2—O5iv95.23 (7)
O7—Nd1—O9i137.64 (7)O6—Nd2—O4iv72.93 (7)
O14i—Nd1—O9i74.43 (7)O2ii—Nd2—O4iv138.43 (7)
O1—Nd1—O9i127.63 (7)O9—Nd2—O4iv146.98 (6)
O4—Nd1—O9i67.82 (6)O11iii—Nd2—O4iv74.86 (7)
O16—Nd1—O9i132.71 (8)O12—Nd2—O4iv104.67 (7)
O15—Nd1—O9i65.60 (8)O8—Nd2—O4iv121.50 (7)
O10i—Nd1—O9i49.48 (7)O11—Nd2—O4iv83.23 (7)
O3—Nd1—O9i106.09 (7)O5iv—Nd2—O4iv49.90 (6)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+2, y+2, z+2; (iv) x+1, y+2, z+2.
Selected geometric parameters (Å, º) for (III) top
Sm1—O72.359 (2)Sm2—O62.382 (2)
Sm1—O12.369 (2)Sm2—O2ii2.393 (2)
Sm1—O14i2.375 (2)Sm2—O92.4159 (18)
Sm1—O42.4320 (18)Sm2—O11iii2.4494 (19)
Sm1—O162.441 (2)Sm2—O122.455 (2)
Sm1—O152.482 (2)Sm2—O82.5085 (19)
Sm1—O10i2.535 (2)Sm2—O112.5425 (19)
Sm1—O32.546 (2)Sm2—O5iv2.555 (2)
Sm1—O9i2.6382 (19)Sm2—O4iv2.5653 (18)
Sm1—C8i2.960 (3)
O7—Sm1—O192.39 (8)O6—Sm2—O2ii80.68 (8)
O7—Sm1—O14i78.20 (8)O6—Sm2—O9125.60 (7)
O1—Sm1—O14i150.16 (7)O2ii—Sm2—O976.36 (7)
O7—Sm1—O476.60 (7)O6—Sm2—O11iii96.35 (7)
O1—Sm1—O4124.42 (6)O2ii—Sm2—O11iii143.23 (7)
O14i—Sm1—O481.27 (7)O9—Sm2—O11iii75.98 (6)
O7—Sm1—O1672.40 (8)O6—Sm2—O12142.56 (7)
O1—Sm1—O1668.51 (7)O2ii—Sm2—O1276.37 (8)
O14i—Sm1—O1681.65 (7)O9—Sm2—O1276.84 (7)
O4—Sm1—O16147.02 (8)O11iii—Sm2—O12119.61 (6)
O7—Sm1—O15142.45 (9)O6—Sm2—O863.11 (7)
O1—Sm1—O1585.49 (9)O2ii—Sm2—O871.56 (7)
O14i—Sm1—O1585.22 (9)O9—Sm2—O862.97 (6)
O4—Sm1—O15133.95 (8)O11iii—Sm2—O874.49 (7)
O16—Sm1—O1571.99 (9)O12—Sm2—O8133.03 (7)
O7—Sm1—O10i141.41 (8)O6—Sm2—O11152.07 (7)
O1—Sm1—O10i80.50 (7)O2ii—Sm2—O11126.93 (7)
O14i—Sm1—O10i124.00 (7)O9—Sm2—O1171.89 (6)
O4—Sm1—O10i76.60 (7)O11iii—Sm2—O1164.72 (7)
O16—Sm1—O10i135.98 (8)O12—Sm2—O1155.82 (6)
O15—Sm1—O10i75.21 (9)O8—Sm2—O11124.72 (6)
O7—Sm1—O374.82 (8)O6—Sm2—O5iv78.83 (7)
O1—Sm1—O362.11 (7)O2ii—Sm2—O5iv91.00 (7)
O14i—Sm1—O3138.63 (7)O9—Sm2—O5iv148.81 (7)
O4—Sm1—O362.43 (6)O11iii—Sm2—O5iv124.64 (6)
O16—Sm1—O3118.15 (7)O12—Sm2—O5iv72.47 (7)
O15—Sm1—O3134.03 (8)O8—Sm2—O5iv139.86 (7)
O10i—Sm1—O368.32 (8)O11—Sm2—O5iv94.85 (7)
O7—Sm1—O9i137.59 (7)O6—Sm2—O4iv72.80 (7)
O1—Sm1—O9i126.61 (7)O2ii—Sm2—O4iv136.27 (6)
O14i—Sm1—O9i74.14 (6)O9—Sm2—O4iv147.27 (6)
O4—Sm1—O9i67.99 (6)O11iii—Sm2—O4iv75.08 (6)
O16—Sm1—O9i132.60 (7)O12—Sm2—O4iv104.89 (7)
O15—Sm1—O9i65.99 (8)O8—Sm2—O4iv122.04 (6)
O10i—Sm1—O9i49.90 (6)O11—Sm2—O4iv82.14 (6)
O3—Sm1—O9i106.72 (6)O5iv—Sm2—O4iv50.56 (6)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+2, y+2, z+2; (iv) x+1, y+2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds