Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The syntheses and single-crystal and electronic structures of three new ternary lithium rare earth germanides, RE5−xLixGe4 (RE = Nd, Sm and Gd; x ≃ 1), namely tetra­samarium lithium tetra­germanide (Sm3.97Li1.03Ge4), tetra­neodymium lithium tetra­germanide (Nd3.97Li1.03Ge4) and tetra­gadolinium lithium tetra­germanide (Gd3.96Li1.03Ge4), are reported. All three compounds crystallize in the ortho­rhom­bic space group Pnma and adopt the Gd5Si4 structure type (Pearson code oP36). There are six atoms in the asymmetric unit: Li1 in Wyckoff site 4c, RE1 in 8d, RE2 in 8d, Ge1 in 8d, Ge2 in 4c and Ge3 in 4c. One of the RE sites, i.e. RE2, is statistically occupied by RE and Li atoms, accounting for the small deviation from ideal RE4LiGe4 stoichiometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112050032/fn3120sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112050032/fn3120Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112050032/fn3120IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112050032/fn3120IIIsup4.hkl
Contains datablock III

Comment top

Following the discovery of giant magnetocaloric effects in Gd5Si2Ge2 in 1997 (Pecharsky & Gschneidner, 1997a), great effort has been devoted to the synthesis and study of the structures and physical properties of rare earth silicides and germanides with the Gd5Si4 or Sm5Ge4 structure types, and also of their intermediates (Kyunghan et al., 1997; Misra & Miller, 2008)

Many articles have already discussed the structural similarities and differences between the Gd5Si4 and Sm5Ge4 structures, which are isopointal but not isostructural (Pecharsky & Gschneidner, 1997b) (Fig. 1). Summarizing these findings briefly, we must point out that there are two pairs of Si—Si bonds in Gd5Si4 but only one type of Ge—Ge bond in Sm5Ge4 (Pecharsky & Gschneidner, 1997b). Furthermore, there are many factors, such as temperature, pressure and chemical make-up, which can cause one of the interslab bonds to form or cleave reversibly (Levin et al., 2002; Magen et al., 2003).

Our previous work on Mg substitutions in RE5Ge4 has already demonstrated that the structure is amenable to variations. For brevity, RE will denote a rare earth metal throughout this article. Note that RE3+ ions are replaced with Mg2+, which allows for structural changes that are also coupled with the magnetic properties of the resultant RE5–xMgxGe4 materials (Tobash et al., 2009). Importantly, our study has also shown that Mg first replaces the rare earth metal at the 4c site. Mg also replaces some of the RE2 at site 8d, leading to the final formula RE5-xMgxGe4 (x 2).

The `phase width' can be easily understood from the point of view of the Zintl–Klemm concept (Kauzlarich, 1996). In RE5Ge4 (Sm5Ge4 type), two of the Ge atoms are dimerized and two remain as isolated Ge atoms. The Ge dimer needs six electrons (three on each Ge) to satisfy the octet rule and the isolated Ge atom needs four electrons. Accordingly, the overall electron count for the RE5Ge4 structure will be (RE3+)5(Ge3-)2(Ge4-)2(e-). For RE3Mg2Ge4, the total number of valence electrons contributed by the cations decreases, leading to a structural distortion that brings the isolated Ge atoms together to form an additional dimer. The electronic structure change here can be rationalized as (RE3+)3(Mg2+)2(Ge3-)4(e-). The ideal electron count will be realised for the formula RE2Mg3Ge4, but our studies have not shown evidence for extending the stoichiometry much beyond RE5-xMgxGe4 (x 2) (Tobash et al., 2009). This suggests that metal–metal bonding and efficient packing are also critical for the stabilization of the phase, and the Zintl–Klemm concept is just a good starting point for consideration. Nonetheless, the ideas above can help to explain the fewer substitutions of RE3+ by Li+ cations, as discussed next.

Since Li+ is very similar to Mg2+ in terms of ionic size (Shannon, 1976), it is not surprising that the crystal chemistry observed when replacing the rare earth metal with lithium mirrors the results obtained with Mg. The RE5-xLixGe4 structure (Gd5Si4 type) is the same as that of RE5-xMgxGe4 and has been considered in detail elsewhere (Pavlyuk et al. 1990; Xie et al. 2008; Peter et al. 2012; Fornasini et al. 2012). It can be broken down into two simpler building units (Fig. 2). One is the framework made by the rare earth metals, which is a combination of trigonal prisms and parallelepipeds, with Ge atoms located at the centres of the trigonal prisms. The second building unit is the pentagonal ring (Fig. 2c) made by Li and Ge atoms (paired in the ac plane). The interatomic distances within the Ge1—Ge1 [Symmetry code?] and Ge2—Ge3 dumbbells fall in the range 2.633 (2)–2.528 (3) Å. There does not appear to be any correlation between the refined Ge—Ge contacts and the decreasing unit-cell volumes due to the lanthanide contraction. We also note that the Ge—Ge distances are slightly longer than the sum of the corresponding Pauling radii (Pauling, 1960), which suggests the Ge—Ge interactions to be best regarded as covalent two-centre–two-electron bonds. Therefore, the electron count for the RE4LiGe4 structure can be represented as (RE3+)4(Li+)(Ge3-)4(e-). Such an electronic structure also accounts for the different homogeneity range of RE5-xLixGe4 compared with RE5-xMgxGe4. For instance, if we apply the same electron count for RE3Li2Ge4, we now have only 11 electrons from the cations, which are not sufficient to supply the electrons needed to form two pairs of Ge—Ge dimers (12 negative charges).

Li substitutions in RE5Ge4 were known before our work commenced, the first report being the example of Tm4LiGe4, which was characterized by Pavlyuk et al. (1990) on the basis of single-crystal X-ray diffraction data. The same paper also identifies the isotypic RE4LiGe4 (RE = Y, Gd, Er Lu) from powder X-ray diffraction data without discussing the possible homogeneity range. Very recently, Fornasini et al. (2012) reported the Nd4LiGe4 structure, also refined from single-crystal X-ray diffraction data, but they also did not comment on the small RE/Li disorder we have identified in our sample. The compound Yb2Li0.5Ge2 (Yb4LiGe4) has been studied twice in the last four years, first by Xie et al. (2008) and then by Peter et al. (2012). Yb4LiGe4 was suggested to be a mixed-valent Yb2+/Yb3+ system, similar to Yb5-xMgxGe4 (Tobash & Bobev, 2006), but again with no mention of the homogeneity range.

It should also be noted that we have chosen to discuss the present structures not as line [Linear?] compounds RE4LiGe4, as done previously, but rather as RE5-xLixGe4. The deviation from the idealized formula RE4LiGe4 is very small indeed, making it not very conspicuous, but the signs of the narrow phase width cannot be ignored.

Powder patterns of the products of reactions with different amounts of lithium metal as a starting material revealed peak shifts, which indicate that the unit-cell volumes change as a function of the nominal composition. Unfortunately, these were not phase-pure materials and further structural analysis was severely hindered. Fornasini et al. (2012) also commented on the heterogeneity of the samples. Some of the common RE–Li–Ge phases identified in this process include RELiGe2 (RE = La–Nd, Sm and Eu; Pavlyuk et al., 1986; Bobev et al., 2012), RE2Li2Ge3 and RE3Li4Ge4 (Pavlyuk et al., 1989; Guo, You & Bobev, 2012), and RE7Li8Ge10 and RE11Li12Ge16 (RE = La–Nd, Sm; Guo, You, Jung & Bobev, 2012). The fact that Pavlyuk et al. (1990) reported a smaller unit cell for their Gd4LiGe4 sample than ours is yet another indicator that the amount of Li in RE5-xLixGe4 can be varied within a certain range. The major difficulty in establishing the solubility limits arises from the fact that Li and the rare earth metals have very different melting points, so obtaining equilibrium conditions is nearly impossible. Since the studied crystals were chosen from reactions with an excess of Li, we may speculate that RE5-xLixGe4 (x 1) most likely represents the Li-richest compositions that can be synthesized under the given conditions.

When the occupancy factors of the Wyckoff sites 8d were freed to vary durning trial refinements, for RE1 in all three cases the freed variable was always close to 100%, while the RE2 site consistently refined with 97% occupancy. A very similar observation was made with regard to the RE5–xMgxGe4 (x 2) structure (Tobash et al., 2009), so we have assumed that Li can also partially substitute the RE2 atoms just like Mg does. Single-crystal X-ray data for the latter metal show that the substitution effect is well pronounced and easy to identify, while the very light Li makes it hard to detect or characterize. However, the refinement of a mixed occupied RE2/Li2 site was found to be statistically significant according to the Hamilton test (Hamilton, 1965). Specifically, at a significance level of 0.005, for model A (RE5-xLixGe4) and for model B (RE4LiGe4), respectively, the hypothesis that the former is better than the latter can be verified based on R = 1.004 < RB/RA = 1.013, where R is the interpolated value at the given significance level.

All of the above confirms that the title compounds are better described as solid solutions RE5-xLixGe4 (x 1) with narrow homogeneity ranges, rather than line [Linear?] compounds RE4LiGe4.

Related literature top

For related literature, see: Bobev et al. (2012); Bruker (2002); Fornasini et al. (2012); Gelato & Parthé (1987); Guo, You & Bobev (2012); Guo, You, Jung & Bobev (2012); Hamilton (1965); Kauzlarich (1996); Kyunghan et al. (1997); Levin et al. (2002); Magen et al. (2003); Misra & Miller (2008); Pauling (1960); Pavlyuk et al. (1986, 1989, 1990); Pecharsky & Gschneidner (1997a, 1997b); Peter et al. (2012); Shannon (1976); Sheldrick (2008b); Tobash & Bobev (2006); Tobash et al. (2009); Xie et al. (2008).

Experimental top

All starting materials were purchased from common chemical vendors [pure elements from Alfa or Aldrich (>99.9 wt%)] and stored and handled inside an argon-filled glove box to prevent their deterioration from moisture and oxygen. All reactions were carried out by loading stoichiometric amounts of the respective elements inside Nb containers, which were then sealed with an arc welder. Subsequently, the Nb containers were flame sealed in evacuated (ca 10 -5 Torr; 1 Torr = 133.322 Pa) fused silica jackets. The synthesis followed the conventional solid-state route through direct fusion, but the process was somewhat complicated due to the very high melting points of the rare earth metals. The general synthetic route was that the reactions were heated in a tube furnace to 1358 K (200 K h-1), kept for 5 h and then cooled slowly to 573 K (10 K h-1). The title compounds were first identified as side products of reactions aimed at synthesizing NdLiGe2 and SmLiGe2. As mentioned in our previous work [Reference?], due to the high melting points of Nd (1300 K) and Sm (1315 K) it is necessary to increase the synthetic temperature. However, this also increases the possibility of Li leaking out of the Nb container, which would destroy the stoichiometric ratio and could lead to other phases. If Li were to leak outside the Nb tube and condense in the silica tube, it could be dangerous and the furnace should be stopped immediately.

Refinement top

Crystals were selected under an optical microscope and cut under oil to the desired small dimensions. They were then mounted on glass fibres and quickly placed under a cold nitrogen stream (ca 200 K) on a Bruker SMART CCD-based diffractometer.

The crystals diffracted strongly and an exposure time of 8–12 s per frame was sufficient. Data acquisition and integration were performed with the programs SMART (Bruker, 2002) and SAINT (Bruker, 2002), respectively. Structures were solved readily using direct methods and refined on F2 using the SHELXL package (Sheldrick, 2008b). Refined parameters included the scale factor, extinction coefficients and atomic positions, with the corresponding anisotropic displacement parameters. Li had to be refined with an isotropic displacement parameter in the case of the Nd and Gd compounds, likely because of the inferior crystal quality compared with the Sm analogue. This is not without a precedent for elements with such a low Z number in structures dominated by very heavy elements. The atomic positions were standardized using STRUCTURE TIDY (Gelato & Parthé, 1987) prior to the final refinement step.

Structure refinements using the coordinates from the parent Sm5Ge4 type did not converge and it was obvious that the RE3 site (site 4c) was occupied by a much lighter atom. Therefore, in the next least-squares refinement cycles, RE3 was assigned as Li1, and its occupancy factor was allowed to vary. This time the refinements converged, and the site-occupancy factor for Li1 was very close to the full value. In the next round of least-squares refinement, all atoms (Li excluded in the case of the Nd and Gd compounds) were refined with anisotropic displacement parameters (ADP) and with fixed occupancies. Refinements converged at much lower R values. Subsequent refinement with free RE and Ge site-occupancy factors (done for an individual site, while the remaining site-occupancy factors were kept fixed) proved that the RE2 sites in all three structures are slightly underoccupied (within 6–8σ). All remaining crystallographic sites proved to be fully occupied, with the corresponding deviations from full occupancy less than 2σ.

Since Li is too light when refined together with RE atoms at the RE2 sites, its occupancy factor was very small. The actual solubility limits were not probed, as obtaining phase-pure samples was hindered by the very different melting points of Li and the rare earth metals. However, we note that such a stoichiometry breadth (and substitution pattern) is not unusual for germanide compounds with this structure type, as evidenced by studies of RE5-xMgxGe4 (Tobash et al., 2009).

The highest residual density for the Sm compound is located 1.86 Å from Ge1 and the deepest hole is 1.84 Å from Ge2. For the Nd and Gd analogues, the peaks are close to Nd2 (1.9 Å) and Gd1 (0.85 Å), while the holes are located near Nd1 (0.84 Å) and Ge2 (0.72 Å), respectively.

Computing details top

For all compounds, data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
Fig. 1. Side-by-side comparison of the Sm5Ge4 and Gd5Si4 structures. The rare earth metals are shown as large spheres (green in the electronic version of the paper), Ge/Si atoms as light spheres (orange in the electronic version) and Li atoms as dark spheres (blue). The `interslab' dimers and broken dimers are outlined.

Fig. 2. (a) A representation of the RE5–xLixGe4 structure, viewed approximately down the [100] direction. The rare earth metals are shown as green spheres, Ge atoms as orange spheres and Li atoms as blue spheres. [Green and orange are not distinguishable in black and white - can alternatives be used, or different sizes?] (b) A representation of the first building unit, comprised of a trigonal prism (shaded, orange in the electronic version) and a parallelepiped (hollow framework of rare earth metals) (c) A view of the chain of vertex/edge-shared pentagonal rings built by Li atoms and Ge—Ge dimers.
(I) Tetrasamarium lithium tetragermanide top
Crystal data top
Sm3.97Li1.03Ge4F(000) = 1508
Mr = 893.68Dx = 6.940 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2nCell parameters from 958 reflections
a = 7.2846 (16) Åθ = 4.1–23.5°
b = 14.938 (3) ŵ = 40.51 mm1
c = 7.8594 (17) ÅT = 200 K
V = 855.3 (3) Å3Irregular, grey
Z = 40.04 × 0.03 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1188 independent reflections
Radiation source: fine-focus sealed tube968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 29.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.316, Tmax = 0.408k = 2020
11551 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.001
S = 1.02Δρmax = 1.93 e Å3
1188 reflectionsΔρmin = 2.07 e Å3
48 parametersExtinction correction: SHELXL97 (Sheldrick, 2008b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00082 (5)
Crystal data top
Sm3.97Li1.03Ge4V = 855.3 (3) Å3
Mr = 893.68Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.2846 (16) ŵ = 40.51 mm1
b = 14.938 (3) ÅT = 200 K
c = 7.8594 (17) Å0.04 × 0.03 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1188 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
968 reflections with I > 2σ(I)
Tmin = 0.316, Tmax = 0.408Rint = 0.085
11551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02848 parameters
wR(F2) = 0.0510 restraints
S = 1.02Δρmax = 1.93 e Å3
1188 reflectionsΔρmin = 2.07 e Å3
Special details top

Experimental. Data collection is performed with two batch runs at ϕ = 0.00 ° (456 frames), and at ϕ = 90.00 ° (456 frames). Frame width = 0.40 ° in ω. Data is merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10.01938 (6)0.59890 (3)0.18707 (5)0.00832 (12)
Sm20.32672 (6)0.12815 (3)0.17864 (5)0.00764 (14)0.983 (2)
Li20.32672 (6)0.12815 (3)0.17864 (5)0.00764 (14)0.017 (2)
Ge10.16093 (12)0.03620 (6)0.46727 (11)0.0091 (2)
Ge20.01671 (16)0.25000.08118 (16)0.0091 (3)
Ge30.27599 (16)0.25000.86645 (15)0.0083 (3)
Li10.158 (3)0.25000.528 (3)0.015 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.0078 (2)0.0092 (2)0.0080 (2)0.00064 (16)0.00022 (16)0.00073 (16)
Sm20.0077 (2)0.0076 (2)0.0076 (2)0.00000 (15)0.00011 (17)0.00003 (16)
Li20.0077 (2)0.0076 (2)0.0076 (2)0.00000 (15)0.00011 (17)0.00003 (16)
Ge10.0089 (4)0.0099 (4)0.0085 (4)0.0015 (3)0.0003 (3)0.0017 (3)
Ge20.0078 (6)0.0094 (6)0.0102 (6)0.0000.0014 (5)0.000
Ge30.0079 (6)0.0078 (6)0.0092 (6)0.0000.0009 (5)0.000
Li10.011 (11)0.022 (11)0.013 (10)0.0000.003 (9)0.000
Geometric parameters (Å, º) top
Sm1—Ge1i3.0472 (11)Ge1—Sm1xvi3.5161 (11)
Sm1—Ge3ii3.0504 (10)Ge2—Ge3xi2.5329 (17)
Sm1—Ge2iii3.0999 (11)Ge2—Li1viii2.75 (2)
Sm1—Ge3iv3.1467 (10)Ge2—Li2viii2.9652 (11)
Sm1—Ge1v3.1595 (11)Ge2—Sm2viii2.9652 (11)
Sm1—Ge1vi3.1600 (10)Ge2—Li2vii2.9652 (11)
Sm1—Li1iv3.432 (15)Ge2—Sm2vii2.9652 (11)
Sm1—Li1ii3.490 (16)Ge2—Li2vi2.9999 (11)
Sm1—Ge1vii3.5160 (11)Ge2—Sm2vi2.9999 (11)
Sm1—Sm1viii3.7742 (8)Ge2—Sm1xvii3.0999 (11)
Sm1—Sm1ix3.7743 (8)Ge2—Sm1iii3.0999 (11)
Sm1—Sm2vii3.8194 (9)Ge3—Ge2xviii2.5329 (17)
Sm2—Ge12.9139 (10)Ge3—Li12.80 (2)
Sm2—Ge2ix2.9651 (11)Ge3—Li1xix2.90 (2)
Sm2—Ge1x2.9658 (10)Ge3—Sm1xiv3.0504 (10)
Sm2—Ge23.0000 (11)Ge3—Sm1xx3.0504 (10)
Sm2—Ge1ix3.0214 (11)Ge3—Li2xviii3.0773 (11)
Sm2—Ge3xi3.0773 (11)Ge3—Sm2xviii3.0773 (11)
Sm2—Li1ix3.432 (17)Ge3—Li2xxi3.0773 (11)
Sm2—Li13.516 (17)Ge3—Sm2xxi3.0773 (11)
Sm2—Li2vi3.6405 (11)Ge3—Sm1xv3.1467 (10)
Sm2—Sm2vi3.6405 (11)Ge3—Sm1iv3.1467 (10)
Sm2—Sm2viii3.8111 (8)Li1—Ge2ix2.75 (2)
Sm2—Li2viii3.8111 (8)Li1—Ge3xxii2.90 (2)
Ge1—Ge1xii2.6328 (18)Li1—Ge1vi3.229 (3)
Ge1—Li2xiii2.9657 (10)Li1—Li2viii3.432 (17)
Ge1—Sm2xiii2.9657 (10)Li1—Sm2viii3.432 (17)
Ge1—Li2viii3.0214 (11)Li1—Li2vii3.432 (17)
Ge1—Sm2viii3.0214 (11)Li1—Sm2vii3.432 (17)
Ge1—Sm1xiv3.0472 (11)Li1—Sm1xv3.432 (15)
Ge1—Sm1xv3.1595 (11)Li1—Sm1iv3.432 (15)
Ge1—Sm1vi3.1600 (10)Li1—Sm1xiv3.490 (16)
Ge1—Li13.229 (3)
Ge1i—Sm1—Ge3ii96.66 (3)Sm2viii—Ge1—Sm1xvi136.75 (3)
Ge1i—Sm1—Ge2iii84.43 (3)Sm1xiv—Ge1—Sm1xvi78.72 (3)
Ge3ii—Sm1—Ge2iii79.45 (3)Sm1xv—Ge1—Sm1xvi140.85 (3)
Ge1i—Sm1—Ge3iv131.86 (3)Sm1vi—Ge1—Sm1xvi68.61 (2)
Ge3ii—Sm1—Ge3iv82.25 (2)Li1—Ge1—Sm1xvi128.6 (4)
Ge2iii—Sm1—Ge3iv47.84 (3)Ge3xi—Ge2—Li1viii120.0 (4)
Ge1i—Sm1—Ge1v135.57 (3)Ge3xi—Ge2—Li2viii140.56 (2)
Ge3ii—Sm1—Ge1v91.44 (3)Li1viii—Ge2—Li2viii75.8 (3)
Ge2iii—Sm1—Ge1v139.94 (3)Ge3xi—Ge2—Sm2viii140.56 (2)
Ge3iv—Sm1—Ge1v92.49 (3)Li1viii—Ge2—Sm2viii75.8 (3)
Ge1i—Sm1—Ge1vi87.099 (19)Li2viii—Ge2—Sm2viii0.000 (19)
Ge3ii—Sm1—Ge1vi89.49 (3)Ge3xi—Ge2—Li2vii140.55 (2)
Ge2iii—Sm1—Ge1vi165.17 (3)Li1viii—Ge2—Li2vii75.8 (3)
Ge3iv—Sm1—Ge1vi140.75 (3)Li2viii—Ge2—Li2vii75.74 (4)
Ge1v—Sm1—Ge1vi49.24 (3)Sm2viii—Ge2—Li2vii75.74 (4)
Ge1i—Sm1—Li1iv149.3 (3)Ge3xi—Ge2—Sm2vii140.55 (2)
Ge3ii—Sm1—Li1iv52.8 (3)Li1viii—Ge2—Sm2vii75.8 (3)
Ge2iii—Sm1—Li1iv86.2 (2)Li2viii—Ge2—Sm2vii75.74 (4)
Ge3iv—Sm1—Li1iv50.1 (3)Sm2viii—Ge2—Sm2vii75.74 (4)
Ge1v—Sm1—Li1iv58.5 (2)Li2vii—Ge2—Sm2vii0.000 (14)
Ge1vi—Sm1—Li1iv95.1 (3)Ge3xi—Ge2—Li2vi66.97 (4)
Ge1i—Sm1—Li1ii58.7 (2)Li1viii—Ge2—Li2vi142.641 (19)
Ge3ii—Sm1—Li1ii50.1 (3)Li2viii—Ge2—Li2vi124.15 (4)
Ge2iii—Sm1—Li1ii48.9 (3)Sm2viii—Ge2—Li2vi124.15 (4)
Ge3iv—Sm1—Li1ii87.0 (2)Li2vii—Ge2—Li2vi79.42 (2)
Ge1v—Sm1—Li1ii141.2 (3)Sm2vii—Ge2—Li2vi79.42 (2)
Ge1vi—Sm1—Li1ii116.3 (3)Ge3xi—Ge2—Sm2vi66.97 (4)
Li1iv—Sm1—Li1ii93.6 (3)Li1viii—Ge2—Sm2vi142.641 (19)
Ge1i—Sm1—Ge1vii101.28 (3)Li2viii—Ge2—Sm2vi124.15 (4)
Ge3ii—Sm1—Ge1vii161.28 (3)Sm2viii—Ge2—Sm2vi124.15 (4)
Ge2iii—Sm1—Ge1vii96.91 (3)Li2vii—Ge2—Sm2vi79.42 (2)
Ge3iv—Sm1—Ge1vii81.83 (3)Sm2vii—Ge2—Sm2vi79.42 (2)
Ge1v—Sm1—Ge1vii79.500 (18)Li2vi—Ge2—Sm2vi0.00 (2)
Ge1vi—Sm1—Ge1vii96.67 (3)Ge3xi—Ge2—Sm266.97 (4)
Li1iv—Sm1—Ge1vii108.8 (3)Li1viii—Ge2—Sm2142.641 (19)
Li1ii—Sm1—Ge1vii138.4 (3)Li2viii—Ge2—Sm279.42 (2)
Ge1i—Sm1—Sm1viii152.39 (2)Sm2viii—Ge2—Sm279.42 (2)
Ge3ii—Sm1—Sm1viii110.52 (3)Li2vii—Ge2—Sm2124.15 (4)
Ge2iii—Sm1—Sm1viii95.53 (2)Sm2vii—Ge2—Sm2124.15 (4)
Ge3iv—Sm1—Sm1viii51.33 (2)Li2vi—Ge2—Sm274.71 (4)
Ge1v—Sm1—Sm1viii51.207 (19)Sm2vi—Ge2—Sm274.71 (4)
Ge1vi—Sm1—Sm1viii97.60 (2)Ge3xi—Ge2—Sm1xvii67.05 (3)
Li1iv—Sm1—Sm1viii57.7 (3)Li1viii—Ge2—Sm1xvii73.0 (3)
Li1ii—Sm1—Sm1viii138.0 (2)Li2viii—Ge2—Sm1xvii86.93 (2)
Ge1vii—Sm1—Sm1viii51.225 (18)Sm2viii—Ge2—Sm1xvii86.93 (2)
Ge1i—Sm1—Sm1ix53.92 (2)Li2vii—Ge2—Sm1xvii147.18 (4)
Ge3ii—Sm1—Sm1ix53.65 (2)Sm2vii—Ge2—Sm1xvii147.18 (4)
Ge2iii—Sm1—Sm1ix105.07 (2)Li2vi—Ge2—Sm1xvii132.79 (4)
Ge3iv—Sm1—Sm1ix134.02 (2)Sm2vi—Ge2—Sm1xvii132.79 (4)
Ge1v—Sm1—Sm1ix100.13 (3)Sm2—Ge2—Sm1xvii78.21 (2)
Ge1vi—Sm1—Sm1ix60.16 (2)Ge3xi—Ge2—Sm1iii67.05 (3)
Li1iv—Sm1—Sm1ix101.1 (3)Li1viii—Ge2—Sm1iii73.0 (3)
Li1ii—Sm1—Sm1ix56.2 (3)Li2viii—Ge2—Sm1iii147.18 (4)
Ge1vii—Sm1—Sm1ix143.813 (17)Sm2viii—Ge2—Sm1iii147.18 (4)
Sm1viii—Sm1—Sm1ix149.61 (3)Li2vii—Ge2—Sm1iii86.93 (2)
Ge1i—Sm1—Sm2vii99.47 (2)Sm2vii—Ge2—Sm1iii86.93 (2)
Ge3ii—Sm1—Sm2vii135.15 (3)Li2vi—Ge2—Sm1iii78.21 (2)
Ge2iii—Sm1—Sm2vii143.46 (2)Sm2vi—Ge2—Sm1iii78.21 (2)
Ge3iv—Sm1—Sm2vii115.01 (3)Sm2—Ge2—Sm1iii132.79 (4)
Ge1v—Sm1—Sm2vii49.186 (17)Sm1xvii—Ge2—Sm1iii93.47 (4)
Ge1vi—Sm1—Sm2vii50.22 (2)Ge2xviii—Ge3—Li1113.9 (4)
Li1iv—Sm1—Sm2vii105.4 (2)Ge2xviii—Ge3—Li1xix121.6 (4)
Li1ii—Sm1—Sm2vii157.0 (2)Li1—Ge3—Li1xix124.5 (6)
Ge1vii—Sm1—Sm2vii46.585 (17)Ge2xviii—Ge3—Sm1xiv132.25 (2)
Sm1viii—Sm1—Sm2vii64.721 (11)Li1—Ge3—Sm1xiv73.2 (3)
Sm1ix—Sm1—Sm2vii106.391 (13)Li1xix—Ge3—Sm1xiv70.3 (3)
Ge1—Sm2—Ge2ix89.27 (3)Ge2xviii—Ge3—Sm1xx132.25 (2)
Ge1—Sm2—Ge1x93.35 (2)Li1—Ge3—Sm1xx73.2 (3)
Ge2ix—Sm2—Ge1x148.28 (3)Li1xix—Ge3—Sm1xx70.3 (3)
Ge1—Sm2—Ge299.95 (3)Sm1xiv—Ge3—Sm1xx95.46 (4)
Ge2ix—Sm2—Ge298.13 (3)Ge2xviii—Ge3—Li2xviii63.79 (3)
Ge1x—Sm2—Ge2112.47 (3)Li1—Ge3—Li2xviii142.72 (9)
Ge1—Sm2—Ge1ix114.53 (3)Li1xix—Ge3—Li2xviii70.0 (3)
Ge2ix—Sm2—Ge1ix98.31 (3)Sm1xiv—Ge3—Li2xviii82.65 (2)
Ge1x—Sm2—Ge1ix52.16 (3)Sm1xx—Ge3—Li2xviii138.38 (4)
Ge2—Sm2—Ge1ix141.77 (3)Ge2xviii—Ge3—Sm2xviii63.79 (3)
Ge1—Sm2—Ge3xi148.18 (3)Li1—Ge3—Sm2xviii142.72 (9)
Ge2ix—Sm2—Ge3xi101.57 (3)Li1xix—Ge3—Sm2xviii70.0 (3)
Ge1x—Sm2—Ge3xi92.68 (3)Sm1xiv—Ge3—Sm2xviii82.65 (2)
Ge2—Sm2—Ge3xi49.24 (3)Sm1xx—Ge3—Sm2xviii138.38 (4)
Ge1ix—Sm2—Ge3xi93.61 (3)Li2xviii—Ge3—Sm2xviii0.00 (2)
Ge1—Sm2—Li1ix155.5 (3)Ge2xviii—Ge3—Li2xxi63.79 (3)
Ge2ix—Sm2—Li1ix69.3 (3)Li1—Ge3—Li2xxi142.72 (9)
Ge1x—Sm2—Li1ix98.8 (2)Li1xix—Ge3—Li2xxi70.0 (3)
Ge2—Sm2—Li1ix95.0 (3)Sm1xiv—Ge3—Li2xxi138.38 (4)
Ge1ix—Sm2—Li1ix59.65 (19)Sm1xx—Ge3—Li2xxi82.65 (2)
Ge3xi—Sm2—Li1ix52.7 (3)Li2xviii—Ge3—Li2xxi72.53 (3)
Ge1—Sm2—Li159.42 (17)Sm2xviii—Ge3—Li2xxi72.53 (3)
Ge2ix—Sm2—Li149.3 (3)Ge2xviii—Ge3—Sm2xxi63.79 (3)
Ge1x—Sm2—Li1151.2 (2)Li1—Ge3—Sm2xxi142.72 (9)
Ge2—Sm2—Li167.8 (3)Li1xix—Ge3—Sm2xxi70.0 (3)
Ge1ix—Sm2—Li1144.4 (3)Sm1xiv—Ge3—Sm2xxi138.38 (4)
Ge3xi—Sm2—Li1105.9 (2)Sm1xx—Ge3—Sm2xxi82.65 (2)
Li1ix—Sm2—Li1109.9 (3)Li2xviii—Ge3—Sm2xxi72.53 (3)
Ge1—Sm2—Li2vi118.125 (19)Sm2xviii—Ge3—Sm2xxi72.53 (3)
Ge2ix—Sm2—Li2vi52.129 (18)Li2xxi—Ge3—Sm2xxi0.000 (16)
Ge1x—Sm2—Li2vi145.88 (2)Ge2xviii—Ge3—Sm1xv65.11 (3)
Ge2—Sm2—Li2vi52.644 (18)Li1—Ge3—Sm1xv70.3 (3)
Ge1ix—Sm2—Li2vi117.039 (19)Li1xix—Ge3—Sm1xv133.91 (4)
Ge3xi—Sm2—Li2vi53.735 (17)Sm1xiv—Ge3—Sm1xv75.02 (2)
Li1ix—Sm2—Li2vi57.97 (18)Sm1xx—Ge3—Sm1xv143.43 (4)
Li1—Sm2—Li2vi58.82 (17)Li2xviii—Ge3—Sm1xv76.37 (2)
Ge1—Sm2—Sm2vi118.125 (19)Sm2xviii—Ge3—Sm1xv76.37 (2)
Ge2ix—Sm2—Sm2vi52.129 (18)Li2xxi—Ge3—Sm1xv127.81 (4)
Ge1x—Sm2—Sm2vi145.88 (2)Sm2xxi—Ge3—Sm1xv127.81 (4)
Ge2—Sm2—Sm2vi52.644 (18)Ge2xviii—Ge3—Sm1iv65.11 (3)
Ge1ix—Sm2—Sm2vi117.039 (19)Li1—Ge3—Sm1iv70.3 (3)
Ge3xi—Sm2—Sm2vi53.735 (17)Li1xix—Ge3—Sm1iv133.91 (4)
Li1ix—Sm2—Sm2vi57.97 (18)Sm1xiv—Ge3—Sm1iv143.43 (4)
Li1—Sm2—Sm2vi58.82 (17)Sm1xx—Ge3—Sm1iv75.02 (2)
Li2vi—Sm2—Sm2vi0.000 (19)Li2xviii—Ge3—Sm1iv127.81 (4)
Ge1—Sm2—Sm2viii51.30 (2)Sm2xviii—Ge3—Sm1iv127.81 (4)
Ge2ix—Sm2—Sm2viii104.99 (3)Li2xxi—Ge3—Sm1iv76.37 (2)
Ge1x—Sm2—Sm2viii101.18 (2)Sm2xxi—Ge3—Sm1iv76.37 (2)
Ge2—Sm2—Sm2viii49.89 (2)Sm1xv—Ge3—Sm1iv91.67 (4)
Ge1ix—Sm2—Sm2viii151.860 (19)Ge2ix—Li1—Ge390.3 (6)
Ge3xi—Sm2—Sm2viii96.89 (3)Ge2ix—Li1—Ge3xxii178.4 (8)
Li1ix—Sm2—Sm2viii144.2 (2)Ge3—Li1—Ge3xxii91.3 (6)
Li1—Sm2—Sm2viii55.7 (3)Ge2ix—Li1—Ge187.0 (4)
Li2vi—Sm2—Sm2viii90.0Ge3—Li1—Ge198.0 (4)
Sm2vi—Sm2—Sm2viii90.0Ge3xxii—Li1—Ge192.8 (4)
Ge1—Sm2—Li2viii51.30 (2)Ge2ix—Li1—Ge1vi87.0 (4)
Ge2ix—Sm2—Li2viii104.99 (3)Ge3—Li1—Ge1vi98.0 (4)
Ge1x—Sm2—Li2viii101.18 (2)Ge3xxii—Li1—Ge1vi92.8 (4)
Ge2—Sm2—Li2viii49.89 (2)Ge1—Li1—Ge1vi163.0 (7)
Ge1ix—Sm2—Li2viii151.860 (19)Ge2ix—Li1—Li2viii121.4 (5)
Ge3xi—Sm2—Li2viii96.89 (3)Ge3—Li1—Li2viii131.8 (5)
Li1ix—Sm2—Li2viii144.2 (2)Ge3xxii—Li1—Li2viii57.4 (3)
Li1—Sm2—Li2viii55.7 (3)Ge1—Li1—Li2viii53.84 (18)
Li2vi—Sm2—Li2viii90.0Ge1vi—Li1—Li2viii117.3 (5)
Sm2vi—Sm2—Li2viii90.0Ge2ix—Li1—Sm2viii121.4 (5)
Sm2viii—Sm2—Li2viii0.000 (17)Ge3—Li1—Sm2viii131.8 (5)
Ge1xii—Ge1—Sm2135.63 (5)Ge3xxii—Li1—Sm2viii57.4 (3)
Ge1xii—Ge1—Li2xiii65.01 (3)Ge1—Li1—Sm2viii53.84 (18)
Sm2—Ge1—Li2xiii144.46 (3)Ge1vi—Li1—Sm2viii117.3 (5)
Ge1xii—Ge1—Sm2xiii65.01 (3)Li2viii—Li1—Sm2viii0.000 (15)
Sm2—Ge1—Sm2xiii144.46 (3)Ge2ix—Li1—Li2vii121.4 (6)
Li2xiii—Ge1—Sm2xiii0.00 (2)Ge3—Li1—Li2vii131.8 (5)
Ge1xii—Ge1—Li2viii62.83 (4)Ge3xxii—Li1—Li2vii57.4 (3)
Sm2—Ge1—Li2viii79.88 (3)Ge1—Li1—Li2vii117.3 (5)
Li2xiii—Ge1—Li2viii127.84 (3)Ge1vi—Li1—Li2vii53.84 (18)
Sm2xiii—Ge1—Li2viii127.84 (3)Li2viii—Li1—Li2vii64.1 (4)
Ge1xii—Ge1—Sm2viii62.83 (4)Sm2viii—Li1—Li2vii64.1 (4)
Sm2—Ge1—Sm2viii79.88 (3)Ge2ix—Li1—Sm2vii121.4 (6)
Li2xiii—Ge1—Sm2viii127.84 (3)Ge3—Li1—Sm2vii131.8 (5)
Sm2xiii—Ge1—Sm2viii127.84 (3)Ge3xxii—Li1—Sm2vii57.4 (3)
Li2viii—Ge1—Sm2viii0.000 (9)Ge1—Li1—Sm2vii117.3 (5)
Ge1xii—Ge1—Sm1xiv134.11 (5)Ge1vi—Li1—Sm2vii53.84 (18)
Sm2—Ge1—Sm1xiv88.84 (3)Li2viii—Li1—Sm2vii64.1 (4)
Li2xiii—Ge1—Sm1xiv85.05 (3)Sm2viii—Li1—Sm2vii64.1 (4)
Sm2xiii—Ge1—Sm1xiv85.05 (3)Li2vii—Li1—Sm2vii0.000 (10)
Li2viii—Ge1—Sm1xiv133.73 (3)Ge2ix—Li1—Sm1xv124.2 (5)
Sm2viii—Ge1—Sm1xiv133.73 (3)Ge3—Li1—Sm1xv59.7 (3)
Ge1xii—Ge1—Sm1xv65.39 (4)Ge3xxii—Li1—Sm1xv56.8 (3)
Sm2—Ge1—Sm1xv134.58 (3)Ge1—Li1—Sm1xv56.53 (13)
Li2xiii—Ge1—Sm1xv77.08 (3)Ge1vi—Li1—Sm1xv138.5 (6)
Sm2xiii—Ge1—Sm1xv77.08 (3)Li2viii—Li1—Sm1xv72.2 (3)
Li2viii—Ge1—Sm1xv81.75 (3)Sm2viii—Li1—Sm1xv72.2 (3)
Sm2viii—Ge1—Sm1xv81.75 (3)Li2vii—Li1—Sm1xv113.1 (6)
Sm1xiv—Ge1—Sm1xv74.88 (2)Sm2vii—Li1—Sm1xv113.1 (6)
Ge1xii—Ge1—Sm1vi65.37 (4)Ge2ix—Li1—Sm1iv124.2 (5)
Sm2—Ge1—Sm1vi83.90 (3)Ge3—Li1—Sm1iv59.7 (3)
Li2xiii—Ge1—Sm1vi82.62 (3)Ge3xxii—Li1—Sm1iv56.8 (3)
Sm2xiii—Ge1—Sm1vi82.62 (3)Ge1—Li1—Sm1iv138.5 (6)
Li2viii—Ge1—Sm1vi76.29 (3)Ge1vi—Li1—Sm1iv56.53 (13)
Sm2viii—Ge1—Sm1vi76.29 (3)Li2viii—Li1—Sm1iv113.1 (6)
Sm1xiv—Ge1—Sm1vi147.22 (3)Sm2viii—Li1—Sm1iv113.1 (6)
Sm1xv—Ge1—Sm1vi130.76 (3)Li2vii—Li1—Sm1iv72.2 (3)
Ge1xii—Ge1—Li1111.8 (4)Sm2vii—Li1—Sm1iv72.2 (3)
Sm2—Ge1—Li169.6 (4)Sm1xv—Li1—Sm1iv82.2 (4)
Li2xiii—Ge1—Li1137.4 (4)Ge2ix—Li1—Sm1xiv58.1 (3)
Sm2xiii—Ge1—Li1137.4 (4)Ge3—Li1—Sm1xiv56.8 (3)
Li2viii—Ge1—Li166.5 (4)Ge3xxii—Li1—Sm1xiv122.9 (5)
Sm2viii—Ge1—Li166.5 (4)Ge1—Li1—Sm1xiv53.77 (15)
Sm1xiv—Ge1—Li167.5 (4)Ge1vi—Li1—Sm1xiv133.5 (6)
Sm1xv—Ge1—Li165.0 (4)Li2viii—Li1—Sm1xiv107.46 (6)
Sm1vi—Ge1—Li1137.1 (4)Sm2viii—Li1—Sm1xiv107.46 (6)
Ge1xii—Ge1—Sm1xvi119.54 (5)Li2vii—Li1—Sm1xiv170.5 (5)
Sm2—Ge1—Sm1xvi72.19 (2)Sm2vii—Li1—Sm1xiv170.5 (5)
Li2xiii—Ge1—Sm1xvi72.27 (2)Sm1xv—Li1—Sm1xiv66.1 (2)
Sm2xiii—Ge1—Sm1xvi72.27 (2)Sm1iv—Li1—Sm1xiv116.4 (6)
Li2viii—Ge1—Sm1xvi136.75 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y+1/2, z+1; (vi) x, y+1/2, z; (vii) x1/2, y+1/2, z+1/2; (viii) x1/2, y, z+1/2; (ix) x+1/2, y, z+1/2; (x) x+1/2, y, z1/2; (xi) x, y, z1; (xii) x, y, z+1; (xiii) x+1/2, y, z+1/2; (xiv) x+1/2, y1/2, z+1/2; (xv) x, y1/2, z+1; (xvi) x+1/2, y+1/2, z+1/2; (xvii) x, y1/2, z; (xviii) x, y, z+1; (xix) x+1/2, y, z+3/2; (xx) x+1/2, y+1, z+1/2; (xxi) x, y+1/2, z+1; (xxii) x1/2, y, z+3/2.
(II) Tetraneodymium lithium tetragermanide top
Crystal data top
Nd3.97Li1.03Ge4F(000) = 1477
Mr = 870.14Dx = 6.548 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2nCell parameters from 387 reflections
a = 7.3649 (12) Åθ = 5.1–18.0°
b = 15.092 (2) ŵ = 36.23 mm1
c = 7.9406 (13) ÅT = 200 K
V = 882.6 (2) Å3Irregular, black
Z = 40.03 × 0.03 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1094 independent reflections
Radiation source: fine-focus sealed tube823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
ϕ and ω scansθmax = 27.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.410, Tmax = 0.531k = 1919
10856 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0075P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max < 0.001
S = 1.05Δρmax = 2.69 e Å3
1094 reflectionsΔρmin = 2.16 e Å3
45 parametersExtinction correction: SHELXL97 (Sheldrick, 2008b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00024 (4)
Crystal data top
Nd3.97Li1.03Ge4V = 882.6 (2) Å3
Mr = 870.14Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.3649 (12) ŵ = 36.23 mm1
b = 15.092 (2) ÅT = 200 K
c = 7.9406 (13) Å0.03 × 0.03 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1094 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
823 reflections with I > 2σ(I)
Tmin = 0.410, Tmax = 0.531Rint = 0.124
10856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03645 parameters
wR(F2) = 0.0600 restraints
S = 1.05Δρmax = 2.69 e Å3
1094 reflectionsΔρmin = 2.16 e Å3
Special details top

Experimental. Data collection is performed with two batch runs at ϕ = 0.00 ° (456 frames), and at ϕ = 90.00 ° (456 frames). Frame width = 0.40 ° in ω. Data is merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.02129 (8)0.59950 (4)0.18745 (8)0.01011 (19)
Nd20.32566 (9)0.12811 (4)0.17943 (8)0.0092 (2)0.985 (3)
Li20.32566 (9)0.12811 (4)0.17943 (8)0.0092 (2)0.015 (3)
Ge10.15859 (17)0.03601 (8)0.46828 (15)0.0106 (3)
Ge20.0155 (2)0.25000.0794 (2)0.0109 (4)
Ge30.2731 (2)0.25000.8672 (2)0.0104 (4)
Li10.163 (4)0.25000.528 (3)0.008 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0101 (3)0.0114 (3)0.0089 (3)0.0004 (3)0.0006 (3)0.0002 (3)
Nd20.0095 (3)0.0096 (3)0.0085 (3)0.0002 (2)0.0002 (3)0.0001 (3)
Li20.0095 (3)0.0096 (3)0.0085 (3)0.0002 (2)0.0002 (3)0.0001 (3)
Ge10.0107 (6)0.0123 (7)0.0088 (6)0.0011 (5)0.0002 (5)0.0013 (5)
Ge20.0116 (9)0.0116 (10)0.0095 (9)0.0000.0003 (7)0.000
Ge30.0124 (10)0.0105 (10)0.0082 (9)0.0000.0002 (7)0.000
Geometric parameters (Å, º) top
Nd1—Ge3i3.0806 (14)Ge2—Ge3xii2.537 (2)
Nd1—Ge1ii3.0831 (14)Ge2—Li1vii2.73 (3)
Nd1—Ge2iii3.1179 (14)Ge2—Li2vii3.0013 (15)
Nd1—Ge3iv3.1699 (14)Ge2—Nd2vii3.0013 (15)
Nd1—Ge1v3.1853 (14)Ge2—Li2ix3.0013 (15)
Nd1—Ge1vi3.1903 (14)Ge2—Nd2ix3.0013 (15)
Nd1—Li1iv3.48 (2)Ge2—Nd2vi3.0387 (16)
Nd1—Li1i3.49 (2)Ge2—Li2vi3.0387 (16)
Nd1—Nd1vii3.8141 (7)Ge2—Nd1xvii3.1179 (14)
Nd1—Nd1viii3.8141 (7)Ge2—Nd1iii3.1179 (14)
Nd1—Nd2ix3.8721 (10)Ge3—Ge2xviii2.537 (2)
Nd1—Nd2x3.8990 (10)Ge3—Li12.82 (3)
Nd2—Ge12.9507 (14)Ge3—Li1xix2.99 (3)
Nd2—Ge1xi2.9932 (14)Ge3—Nd1xv3.0805 (14)
Nd2—Ge2viii3.0013 (16)Ge3—Nd1xx3.0805 (14)
Nd2—Ge23.0386 (16)Ge3—Li2xviii3.1115 (15)
Nd2—Ge1viii3.0529 (14)Ge3—Nd2xviii3.1115 (15)
Nd2—Ge3xii3.1115 (15)Ge3—Li2xxi3.1115 (15)
Nd2—Li1viii3.50 (2)Ge3—Nd2xxi3.1115 (15)
Nd2—Li13.53 (2)Ge3—Nd1xvi3.1698 (14)
Nd2—Li2vi3.6793 (14)Ge3—Nd1iv3.1698 (14)
Nd2—Nd2vi3.6793 (14)Li1—Ge2viii2.73 (3)
Nd2—Nd2vii3.8492 (7)Li1—Ge3xxii2.99 (3)
Nd2—Nd2viii3.8493 (7)Li1—Nd1xvi3.48 (2)
Ge1—Ge1xiii2.625 (3)Li1—Nd1iv3.48 (2)
Ge1—Li2xiv2.9933 (14)Li1—Nd1xv3.49 (2)
Ge1—Nd2xiv2.9933 (14)Li1—Nd1xx3.49 (2)
Ge1—Li2vii3.0528 (14)Li1—Li2vii3.50 (2)
Ge1—Nd2vii3.0528 (14)Li1—Nd2vii3.50 (2)
Ge1—Nd1xv3.0831 (14)Li1—Li2ix3.50 (2)
Ge1—Nd1xvi3.1854 (14)Li1—Nd2ix3.50 (2)
Ge1—Nd1vi3.1903 (14)
Ge3i—Nd1—Ge1ii96.59 (4)Nd1xvi—Ge1—Nd1vi131.37 (4)
Ge3i—Nd1—Ge2iii79.65 (4)Ge3xii—Ge2—Li1vii120.3 (5)
Ge1ii—Nd1—Ge2iii84.80 (4)Ge3xii—Ge2—Li2vii140.54 (3)
Ge3i—Nd1—Ge3iv82.61 (3)Li1vii—Ge2—Li2vii75.9 (4)
Ge1ii—Nd1—Ge3iv131.95 (4)Ge3xii—Ge2—Nd2vii140.54 (3)
Ge2iii—Nd1—Ge3iv47.59 (4)Li1vii—Ge2—Nd2vii75.9 (4)
Ge3i—Nd1—Ge1v91.64 (4)Li2vii—Ge2—Nd2vii0.00 (3)
Ge1ii—Nd1—Ge1v135.15 (5)Ge3xii—Ge2—Li2ix140.54 (3)
Ge2iii—Nd1—Ge1v140.01 (4)Li1vii—Ge2—Li2ix75.9 (4)
Ge3iv—Nd1—Ge1v92.78 (4)Li2vii—Ge2—Li2ix75.61 (5)
Ge3i—Nd1—Ge1vi89.60 (4)Nd2vii—Ge2—Li2ix75.61 (5)
Ge1ii—Nd1—Ge1vi87.30 (2)Ge3xii—Ge2—Nd2ix140.54 (3)
Ge2iii—Nd1—Ge1vi165.82 (4)Li1vii—Ge2—Nd2ix75.9 (4)
Ge3iv—Nd1—Ge1vi140.52 (4)Li2vii—Ge2—Nd2ix75.61 (5)
Ge1v—Nd1—Ge1vi48.63 (4)Nd2vii—Ge2—Nd2ix75.61 (5)
Ge3i—Nd1—Li1iv53.8 (4)Li2ix—Ge2—Nd2ix0.00 (3)
Ge1ii—Nd1—Li1iv150.2 (4)Ge3xii—Ge2—Nd267.14 (5)
Ge2iii—Nd1—Li1iv86.1 (3)Li1vii—Ge2—Nd2142.73 (3)
Ge3iv—Nd1—Li1iv49.8 (4)Li2vii—Ge2—Nd279.18 (3)
Ge1v—Nd1—Li1iv58.4 (3)Nd2vii—Ge2—Nd279.18 (3)
Ge1vi—Nd1—Li1iv95.0 (3)Li2ix—Ge2—Nd2123.67 (6)
Ge3i—Nd1—Li1i50.3 (4)Nd2ix—Ge2—Nd2123.67 (6)
Ge1ii—Nd1—Li1i59.2 (3)Ge3xii—Ge2—Nd2vi67.14 (5)
Ge2iii—Nd1—Li1i48.4 (4)Li1vii—Ge2—Nd2vi142.73 (3)
Ge3iv—Nd1—Li1i86.5 (3)Li2vii—Ge2—Nd2vi123.67 (6)
Ge1v—Nd1—Li1i141.7 (4)Nd2vii—Ge2—Nd2vi123.67 (6)
Ge1vi—Nd1—Li1i117.4 (4)Li2ix—Ge2—Nd2vi79.18 (3)
Li1iv—Nd1—Li1i94.1 (4)Nd2ix—Ge2—Nd2vi79.18 (3)
Ge3i—Nd1—Nd1vii110.73 (4)Nd2—Ge2—Nd2vi74.52 (5)
Ge1ii—Nd1—Nd1vii152.30 (3)Ge3xii—Ge2—Li2vi67.14 (5)
Ge2iii—Nd1—Nd1vii95.34 (4)Li1vii—Ge2—Li2vi142.73 (3)
Ge3iv—Nd1—Nd1vii51.34 (3)Li2vii—Ge2—Li2vi123.67 (6)
Ge1v—Nd1—Nd1vii51.31 (3)Nd2vii—Ge2—Li2vi123.67 (6)
Ge1vi—Nd1—Nd1vii97.12 (3)Li2ix—Ge2—Li2vi79.18 (3)
Li1iv—Nd1—Nd1vii56.9 (4)Nd2ix—Ge2—Li2vi79.18 (3)
Li1i—Nd1—Nd1vii137.6 (3)Nd2—Ge2—Li2vi74.52 (5)
Ge3i—Nd1—Nd1viii53.46 (3)Nd2vi—Ge2—Li2vi0.000 (19)
Ge1ii—Nd1—Nd1viii53.75 (3)Ge3xii—Ge2—Nd1xvii67.28 (4)
Ge2iii—Nd1—Nd1viii105.12 (4)Li1vii—Ge2—Nd1xvii72.9 (4)
Ge3iv—Nd1—Nd1viii134.11 (3)Li2vii—Ge2—Nd1xvii86.94 (3)
Ge1v—Nd1—Nd1viii100.25 (4)Nd2vii—Ge2—Nd1xvii86.94 (3)
Ge1vi—Nd1—Nd1viii60.79 (3)Li2ix—Ge2—Nd1xvii147.11 (6)
Li1iv—Nd1—Nd1viii102.0 (4)Nd2ix—Ge2—Nd1xvii147.11 (6)
Li1i—Nd1—Nd1viii56.7 (4)Nd2—Ge2—Nd1xvii78.58 (3)
Nd1vii—Nd1—Nd1viii149.80 (4)Nd2vi—Ge2—Nd1xvii133.16 (6)
Ge3i—Nd1—Nd2ix135.28 (4)Li2vi—Ge2—Nd1xvii133.16 (6)
Ge1ii—Nd1—Nd2ix99.38 (3)Ge3xii—Ge2—Nd1iii67.28 (4)
Ge2iii—Nd1—Nd2ix143.08 (4)Li1vii—Ge2—Nd1iii72.9 (4)
Ge3iv—Nd1—Nd2ix114.74 (3)Li2vii—Ge2—Nd1iii147.11 (6)
Ge1v—Nd1—Nd2ix49.01 (2)Nd2vii—Ge2—Nd1iii147.11 (6)
Ge1vi—Nd1—Nd2ix50.09 (3)Li2ix—Ge2—Nd1iii86.94 (3)
Li1iv—Nd1—Nd2ix104.8 (3)Nd2ix—Ge2—Nd1iii86.94 (3)
Li1i—Nd1—Nd2ix157.6 (3)Nd2—Ge2—Nd1iii133.16 (6)
Nd1vii—Nd1—Nd2ix64.511 (14)Nd2vi—Ge2—Nd1iii78.58 (3)
Nd1viii—Nd1—Nd2ix106.748 (17)Li2vi—Ge2—Nd1iii78.58 (3)
Ge3i—Nd1—Nd2x125.92 (3)Nd1xvii—Ge2—Nd1iii93.52 (5)
Ge1ii—Nd1—Nd2x96.54 (3)Ge2xviii—Ge3—Li1114.9 (5)
Ge2iii—Nd1—Nd2x49.81 (3)Ge2xviii—Ge3—Li1xix122.2 (5)
Ge3iv—Nd1—Nd2x50.96 (3)Li1—Ge3—Li1xix123.0 (7)
Ge1v—Nd1—Nd2x113.70 (3)Ge2xviii—Ge3—Nd1xv132.47 (3)
Ge1vi—Nd1—Nd2x143.22 (3)Li1—Ge3—Nd1xv72.4 (3)
Li1iv—Nd1—Nd2x99.1 (4)Li1xix—Ge3—Nd1xv70.0 (3)
Li1i—Nd1—Nd2x95.3 (4)Ge2xviii—Ge3—Nd1xx132.47 (3)
Nd1vii—Nd1—Nd2x64.02 (2)Li1—Ge3—Nd1xx72.4 (3)
Nd1viii—Nd1—Nd2x145.83 (3)Li1xix—Ge3—Nd1xx70.0 (3)
Nd2ix—Nd1—Nd2x93.346 (18)Nd1xv—Ge3—Nd1xx95.01 (5)
Ge1—Nd2—Ge1xi93.54 (3)Ge2xviii—Ge3—Li2xviii64.15 (5)
Ge1—Nd2—Ge2viii89.25 (4)Li1—Ge3—Li2xviii143.03 (10)
Ge1xi—Nd2—Ge2viii147.84 (4)Li1xix—Ge3—Li2xviii70.0 (4)
Ge1—Nd2—Ge2100.08 (4)Nd1xv—Ge3—Li2xviii82.65 (3)
Ge1xi—Nd2—Ge2112.56 (4)Nd1xx—Ge3—Li2xviii138.07 (6)
Ge2viii—Nd2—Ge298.39 (3)Ge2xviii—Ge3—Nd2xviii64.15 (5)
Ge1—Nd2—Ge1viii114.78 (5)Li1—Ge3—Nd2xviii143.03 (10)
Ge1xi—Nd2—Ge1viii51.46 (4)Li1xix—Ge3—Nd2xviii70.0 (4)
Ge2viii—Nd2—Ge1viii98.63 (4)Nd1xv—Ge3—Nd2xviii82.65 (3)
Ge2—Nd2—Ge1viii141.16 (5)Nd1xx—Ge3—Nd2xviii138.07 (6)
Ge1—Nd2—Ge3xii147.78 (5)Li2xviii—Ge3—Nd2xviii0.00 (3)
Ge1xi—Nd2—Ge3xii92.74 (4)Ge2xviii—Ge3—Li2xxi64.14 (5)
Ge2viii—Nd2—Ge3xii101.77 (4)Li1—Ge3—Li2xxi143.03 (10)
Ge2—Nd2—Ge3xii48.71 (5)Li1xix—Ge3—Li2xxi70.0 (4)
Ge1viii—Nd2—Ge3xii93.61 (4)Nd1xv—Ge3—Li2xxi138.07 (6)
Ge1—Nd2—Li1viii155.3 (4)Nd1xx—Ge3—Li2xxi82.65 (3)
Ge1xi—Nd2—Li1viii98.3 (3)Li2xviii—Ge3—Li2xxi72.49 (5)
Ge2viii—Nd2—Li1viii69.3 (4)Nd2xviii—Ge3—Li2xxi72.49 (5)
Ge2—Nd2—Li1viii95.3 (3)Ge2xviii—Ge3—Nd2xxi64.14 (5)
Ge1viii—Nd2—Li1viii59.3 (2)Li1—Ge3—Nd2xxi143.03 (10)
Ge3xii—Nd2—Li1viii53.4 (4)Li1xix—Ge3—Nd2xxi70.0 (4)
Ge1—Nd2—Li159.7 (2)Nd1xv—Ge3—Nd2xxi138.07 (6)
Ge1xi—Nd2—Li1152.0 (3)Nd1xx—Ge3—Nd2xxi82.65 (3)
Ge2viii—Nd2—Li148.6 (4)Li2xviii—Ge3—Nd2xxi72.49 (5)
Ge2—Nd2—Li168.5 (4)Nd2xviii—Ge3—Nd2xxi72.49 (5)
Ge1viii—Nd2—Li1144.2 (4)Li2xxi—Ge3—Nd2xxi0.00 (3)
Ge3xii—Nd2—Li1105.9 (3)Ge2xviii—Ge3—Nd1xvi65.13 (4)
Li1viii—Nd2—Li1109.5 (4)Li1—Ge3—Nd1xvi70.9 (4)
Ge1—Nd2—Li2vi118.10 (3)Li1xix—Ge3—Nd1xvi134.03 (5)
Ge1xi—Nd2—Li2vi145.84 (3)Nd1xv—Ge3—Nd1xvi75.20 (2)
Ge2viii—Nd2—Li2vi52.20 (2)Nd1xx—Ge3—Nd1xvi143.24 (6)
Ge2—Nd2—Li2vi52.74 (2)Li2xviii—Ge3—Nd1xvi76.73 (3)
Ge1viii—Nd2—Li2vi117.08 (3)Nd2xviii—Ge3—Nd1xvi76.73 (3)
Ge3xii—Nd2—Li2vi53.75 (2)Li2xxi—Ge3—Nd1xvi128.16 (6)
Li1viii—Nd2—Li2vi58.3 (2)Nd2xxi—Ge3—Nd1xvi128.16 (6)
Li1—Nd2—Li2vi58.6 (2)Ge2xviii—Ge3—Nd1iv65.13 (4)
Ge1—Nd2—Nd2vi118.10 (3)Li1—Ge3—Nd1iv70.9 (4)
Ge1xi—Nd2—Nd2vi145.84 (3)Li1xix—Ge3—Nd1iv134.02 (5)
Ge2viii—Nd2—Nd2vi52.20 (2)Nd1xv—Ge3—Nd1iv143.24 (6)
Ge2—Nd2—Nd2vi52.74 (2)Nd1xx—Ge3—Nd1iv75.20 (2)
Ge1viii—Nd2—Nd2vi117.08 (3)Li2xviii—Ge3—Nd1iv128.16 (6)
Ge3xii—Nd2—Nd2vi53.75 (2)Nd2xviii—Ge3—Nd1iv128.16 (6)
Li1viii—Nd2—Nd2vi58.3 (2)Li2xxi—Ge3—Nd1iv76.73 (3)
Li1—Nd2—Nd2vi58.6 (2)Nd2xxi—Ge3—Nd1iv76.73 (3)
Li2vi—Nd2—Nd2vi0.00 (3)Nd1xvi—Ge3—Nd1iv91.54 (5)
Ge1—Nd2—Nd2vii51.30 (3)Ge2viii—Li1—Ge391.4 (8)
Ge1xi—Nd2—Nd2vii101.55 (3)Ge2viii—Li1—Ge3xxii178.1 (10)
Ge2viii—Nd2—Nd2vii105.06 (4)Ge3—Li1—Ge3xxii90.5 (7)
Ge2—Nd2—Nd2vii49.98 (3)Ge2viii—Li1—Nd1xvi124.9 (6)
Ge1viii—Nd2—Nd2vii151.67 (3)Ge3—Li1—Nd1xvi59.3 (4)
Ge3xii—Nd2—Nd2vii96.49 (4)Ge3xxii—Li1—Nd1xvi56.2 (4)
Li1viii—Nd2—Nd2vii144.6 (3)Ge2viii—Li1—Nd1iv124.9 (6)
Li1—Nd2—Nd2vii56.5 (4)Ge3—Li1—Nd1iv59.3 (4)
Li2vi—Nd2—Nd2vii90.0Ge3xxii—Li1—Nd1iv56.2 (4)
Nd2vi—Nd2—Nd2vii90.0Nd1xvi—Li1—Nd1iv81.4 (6)
Ge1—Nd2—Nd2viii99.94 (3)Ge2viii—Li1—Nd1xv58.7 (4)
Ge1xi—Nd2—Nd2viii97.24 (3)Ge3—Li1—Nd1xv57.3 (4)
Ge2viii—Nd2—Nd2viii50.84 (3)Ge3xxii—Li1—Nd1xv122.6 (6)
Ge2—Nd2—Nd2viii142.68 (2)Nd1xvi—Li1—Nd1xv66.3 (3)
Ge1viii—Nd2—Nd2viii48.97 (3)Nd1iv—Li1—Nd1xv116.6 (7)
Ge3xii—Nd2—Nd2viii110.55 (4)Ge2viii—Li1—Nd1xx58.7 (4)
Li1viii—Nd2—Nd2viii57.2 (4)Ge3—Li1—Nd1xx57.3 (4)
Li1—Nd2—Nd2viii95.5 (4)Ge3xxii—Li1—Nd1xx122.6 (6)
Li2vi—Nd2—Nd2viii90.0Nd1xvi—Li1—Nd1xx116.6 (7)
Nd2vi—Nd2—Nd2viii90.0Nd1iv—Li1—Nd1xx66.3 (3)
Nd2vii—Nd2—Nd2viii146.14 (4)Nd1xv—Li1—Nd1xx81.2 (6)
Ge1xiii—Ge1—Nd2135.66 (7)Ge2viii—Li1—Li2vii121.9 (7)
Ge1xiii—Ge1—Li2xiv65.44 (5)Ge3—Li1—Li2vii130.8 (7)
Nd2—Ge1—Li2xiv144.00 (5)Ge3xxii—Li1—Li2vii56.6 (4)
Ge1xiii—Ge1—Nd2xiv65.44 (5)Nd1xvi—Li1—Li2vii71.7 (4)
Nd2—Ge1—Nd2xiv144.00 (5)Nd1iv—Li1—Li2vii111.8 (7)
Li2xiv—Ge1—Nd2xiv0.00 (3)Nd1xv—Li1—Li2vii107.55 (7)
Ge1xiii—Ge1—Li2vii63.10 (5)Nd1xx—Li1—Li2vii170.3 (6)
Nd2—Ge1—Li2vii79.74 (3)Ge2viii—Li1—Nd2vii121.9 (7)
Li2xiv—Ge1—Li2vii128.54 (4)Ge3—Li1—Nd2vii130.8 (7)
Nd2xiv—Ge1—Li2vii128.54 (4)Ge3xxii—Li1—Nd2vii56.6 (4)
Ge1xiii—Ge1—Nd2vii63.10 (5)Nd1xvi—Li1—Nd2vii71.7 (4)
Nd2—Ge1—Nd2vii79.74 (3)Nd1iv—Li1—Nd2vii111.8 (7)
Li2xiv—Ge1—Nd2vii128.54 (4)Nd1xv—Li1—Nd2vii107.55 (7)
Nd2xiv—Ge1—Nd2vii128.54 (4)Nd1xx—Li1—Nd2vii170.3 (6)
Li2vii—Ge1—Nd2vii0.00 (3)Li2vii—Li1—Nd2vii0.00 (3)
Ge1xiii—Ge1—Nd1xv134.49 (7)Ge2viii—Li1—Li2ix121.9 (7)
Nd2—Ge1—Nd1xv88.48 (4)Ge3—Li1—Li2ix130.8 (7)
Li2xiv—Ge1—Nd1xv84.91 (4)Ge3xxii—Li1—Li2ix56.6 (4)
Nd2xiv—Ge1—Nd1xv84.91 (4)Nd1xvi—Li1—Li2ix111.8 (7)
Li2vii—Ge1—Nd1xv133.60 (5)Nd1iv—Li1—Li2ix71.7 (4)
Nd2vii—Ge1—Nd1xv133.60 (5)Nd1xv—Li1—Li2ix170.3 (6)
Ge1xiii—Ge1—Nd1xvi65.78 (5)Nd1xx—Li1—Li2ix107.55 (7)
Nd2—Ge1—Nd1xvi134.33 (5)Li2vii—Li1—Li2ix63.4 (4)
Li2xiv—Ge1—Nd1xvi77.55 (3)Nd2vii—Li1—Li2ix63.4 (4)
Nd2xiv—Ge1—Nd1xvi77.55 (3)Ge2viii—Li1—Nd2ix121.9 (7)
Li2vii—Ge1—Nd1xvi81.88 (4)Ge3—Li1—Nd2ix130.8 (7)
Nd2vii—Ge1—Nd1xvi81.88 (4)Ge3xxii—Li1—Nd2ix56.6 (4)
Nd1xv—Ge1—Nd1xvi74.94 (3)Nd1xvi—Li1—Nd2ix111.8 (7)
Ge1xiii—Ge1—Nd1vi65.59 (5)Nd1iv—Li1—Nd2ix71.7 (4)
Nd2—Ge1—Nd1vi83.73 (4)Nd1xv—Li1—Nd2ix170.3 (6)
Li2xiv—Ge1—Nd1vi82.72 (4)Nd1xx—Li1—Nd2ix107.55 (7)
Nd2xiv—Ge1—Nd1vi82.72 (4)Li2vii—Li1—Nd2ix63.4 (4)
Li2vii—Ge1—Nd1vi76.63 (3)Nd2vii—Li1—Nd2ix63.4 (4)
Nd2vii—Ge1—Nd1vi76.63 (3)Li2ix—Li1—Nd2ix0.00 (2)
Nd1xv—Ge1—Nd1vi146.74 (4)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y+1/2, z+1; (vi) x, y+1/2, z; (vii) x1/2, y, z+1/2; (viii) x+1/2, y, z+1/2; (ix) x1/2, y+1/2, z+1/2; (x) x, y+1/2, z; (xi) x+1/2, y, z1/2; (xii) x, y, z1; (xiii) x, y, z+1; (xiv) x+1/2, y, z+1/2; (xv) x+1/2, y1/2, z+1/2; (xvi) x, y1/2, z+1; (xvii) x, y1/2, z; (xviii) x, y, z+1; (xix) x+1/2, y, z+3/2; (xx) x+1/2, y+1, z+1/2; (xxi) x, y+1/2, z+1; (xxii) x1/2, y, z+3/2.
(III) Tetragadolinium lithium tetragermanide top
Crystal data top
Gd3.96Li1.03Ge4F(000) = 1539
Mr = 920.66Dx = 7.393 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2nCell parameters from 999 reflections
a = 7.188 (2) Åθ = 2.8–28.1°
b = 14.816 (5) ŵ = 45.51 mm1
c = 7.767 (3) ÅT = 200 K
V = 827.2 (5) Å3Irregular, grey
Z = 40.06 × 0.05 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1044 independent reflections
Radiation source: fine-focus sealed tube800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.141
ϕ and ω scansθmax = 28.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.181, Tmax = 0.277k = 1919
10177 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max < 0.001
S = 1.01Δρmax = 2.35 e Å3
1044 reflectionsΔρmin = 2.66 e Å3
45 parametersExtinction correction: SHELXL97 (Sheldrick, 2008b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00110 (10)
Crystal data top
Gd3.96Li1.03Ge4V = 827.2 (5) Å3
Mr = 920.66Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.188 (2) ŵ = 45.51 mm1
b = 14.816 (5) ÅT = 200 K
c = 7.767 (3) Å0.06 × 0.05 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1044 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
800 reflections with I > 2σ(I)
Tmin = 0.181, Tmax = 0.277Rint = 0.141
10177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04045 parameters
wR(F2) = 0.0870 restraints
S = 1.01Δρmax = 2.35 e Å3
1044 reflectionsΔρmin = 2.66 e Å3
Special details top

Experimental. Data collection is performed with two batch runs at ϕ = 0.00 ° (456 frames), and at ϕ = 90.00 ° (456 frames). Frame width = 0.40 ° in ω. Data is merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd10.01762 (9)0.59847 (5)0.18663 (9)0.0099 (2)
Gd20.32797 (10)0.12807 (5)0.17807 (9)0.0091 (3)0.977 (4)
Li20.32797 (10)0.12807 (5)0.17807 (9)0.0091 (3)0.023 (4)
Ge10.1626 (2)0.03613 (10)0.46676 (19)0.0108 (4)
Ge20.0170 (3)0.25000.0827 (3)0.0105 (5)
Ge30.2792 (3)0.25000.8658 (3)0.0103 (5)
Li10.154 (6)0.25000.531 (6)0.035 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0106 (4)0.0096 (4)0.0094 (4)0.0003 (3)0.0001 (3)0.0006 (3)
Gd20.0106 (4)0.0079 (4)0.0088 (4)0.0000 (3)0.0005 (3)0.0000 (3)
Li20.0106 (4)0.0079 (4)0.0088 (4)0.0000 (3)0.0005 (3)0.0000 (3)
Ge10.0126 (8)0.0111 (8)0.0087 (7)0.0009 (6)0.0003 (6)0.0007 (6)
Ge20.0106 (11)0.0112 (12)0.0098 (10)0.0000.0013 (8)0.000
Ge30.0129 (11)0.0085 (11)0.0095 (10)0.0000.0002 (8)0.000
Geometric parameters (Å, º) top
Gd1—Ge1i3.0088 (18)Ge1—Gd1xvi3.4509 (18)
Gd1—Ge3ii3.0182 (17)Ge2—Ge3xi2.528 (3)
Gd1—Ge2iii3.0785 (18)Ge2—Li1viii2.75 (4)
Gd1—Ge3iv3.1240 (17)Ge2—Li2viii2.9264 (19)
Gd1—Ge1v3.1271 (18)Ge2—Gd2viii2.9264 (19)
Gd1—Ge1vi3.1301 (18)Ge2—Li2vii2.9264 (19)
Gd1—Li1iv3.37 (3)Ge2—Gd2vii2.9264 (19)
Gd1—Ge1vii3.4508 (18)Ge2—Gd2vi2.9681 (19)
Gd1—Li1ii3.48 (3)Ge2—Li2vi2.9681 (19)
Gd1—Gd1viii3.7265 (12)Ge2—Gd1xvii3.0784 (18)
Gd1—Gd1ix3.7265 (12)Ge2—Gd1iii3.0785 (18)
Gd1—Gd2vii3.7720 (14)Ge3—Ge2xviii2.528 (3)
Gd2—Ge12.8803 (17)Ge3—Li12.75 (4)
Gd2—Ge2ix2.9264 (19)Ge3—Li1xix2.81 (4)
Gd2—Ge1x2.9354 (18)Ge3—Gd1xiv3.0181 (16)
Gd2—Ge22.9681 (19)Ge3—Gd1xx3.0181 (16)
Gd2—Ge1ix2.9845 (18)Ge3—Li2xviii3.0447 (19)
Gd2—Ge3xi3.0447 (19)Ge3—Gd2xviii3.0447 (19)
Gd2—Li1ix3.37 (4)Ge3—Li2xxi3.0448 (19)
Gd2—Li13.51 (4)Ge3—Gd2xxi3.0448 (19)
Gd2—Li2vi3.6131 (18)Ge3—Gd1xv3.1240 (17)
Gd2—Gd2vi3.6131 (18)Ge3—Gd1iv3.1240 (17)
Gd2—Gd2viii3.7637 (12)Li1—Ge2ix2.75 (4)
Gd2—Li2viii3.7637 (12)Li1—Ge3xxii2.81 (4)
Ge1—Ge1xii2.623 (3)Li1—Ge1vi3.208 (7)
Ge1—Li2xiii2.9355 (18)Li1—Gd1xv3.37 (3)
Ge1—Gd2xiii2.9355 (18)Li1—Li2viii3.37 (4)
Ge1—Li2viii2.9845 (18)Li1—Gd2viii3.37 (4)
Ge1—Gd2viii2.9845 (18)Li1—Li2vii3.37 (4)
Ge1—Gd1xiv3.0088 (18)Li1—Gd2vii3.37 (4)
Ge1—Gd1xv3.1272 (18)Li1—Gd1iv3.37 (3)
Ge1—Gd1vi3.1301 (18)Li1—Gd1xiv3.48 (3)
Ge1—Li13.208 (7)
Ge1i—Gd1—Ge3ii96.91 (6)Gd2viii—Ge1—Gd1xvi136.86 (5)
Ge1i—Gd1—Ge2iii84.26 (5)Gd1xiv—Ge1—Gd1xvi78.96 (5)
Ge3ii—Gd1—Ge2iii79.04 (5)Gd1xv—Ge1—Gd1xvi140.74 (5)
Ge1i—Gd1—Ge3iv131.95 (5)Gd1vi—Ge1—Gd1xvi68.78 (4)
Ge3ii—Gd1—Ge3iv81.72 (4)Li1—Ge1—Gd1xvi129.7 (8)
Ge2iii—Gd1—Ge3iv48.10 (5)Ge3xi—Ge2—Li1viii119.6 (9)
Ge1i—Gd1—Ge1v135.60 (6)Ge3xi—Ge2—Li2viii140.30 (4)
Ge3ii—Gd1—Ge1v91.33 (5)Li1viii—Ge2—Li2viii76.3 (7)
Ge2iii—Gd1—Ge1v140.07 (5)Ge3xi—Ge2—Gd2viii140.30 (4)
Ge3iv—Gd1—Ge1v92.38 (5)Li1viii—Ge2—Gd2viii76.3 (7)
Ge1i—Gd1—Ge1vi86.82 (3)Li2viii—Ge2—Gd2viii0.00 (4)
Ge3ii—Gd1—Ge1vi89.56 (5)Ge3xi—Ge2—Li2vii140.30 (4)
Ge2iii—Gd1—Ge1vi164.54 (5)Li1viii—Ge2—Li2vii76.3 (7)
Ge3iv—Gd1—Ge1vi140.88 (5)Li2viii—Ge2—Li2vii76.24 (6)
Ge1v—Gd1—Ge1vi49.56 (5)Gd2viii—Ge2—Li2vii76.24 (6)
Ge1i—Gd1—Li1iv148.5 (7)Ge3xi—Ge2—Gd2vii140.30 (4)
Ge3ii—Gd1—Li1iv51.8 (7)Li1viii—Ge2—Gd2vii76.3 (7)
Ge2iii—Gd1—Li1iv85.8 (5)Li2viii—Ge2—Gd2vii76.24 (6)
Ge3iv—Gd1—Li1iv50.0 (7)Gd2viii—Ge2—Gd2vii76.24 (6)
Ge1v—Gd1—Li1iv59.0 (5)Li2vii—Ge2—Gd2vii0.00 (3)
Ge1vi—Gd1—Li1iv95.3 (6)Ge3xi—Ge2—Gd266.72 (6)
Ge1i—Gd1—Ge1vii101.04 (4)Li1viii—Ge2—Gd2142.51 (3)
Ge3ii—Gd1—Ge1vii161.24 (5)Li2viii—Ge2—Gd279.36 (4)
Ge2iii—Gd1—Ge1vii97.30 (5)Gd2viii—Ge2—Gd279.36 (4)
Ge3iv—Gd1—Ge1vii82.26 (5)Li2vii—Ge2—Gd2124.53 (8)
Ge1v—Gd1—Ge1vii79.64 (3)Gd2vii—Ge2—Gd2124.53 (8)
Ge1vi—Gd1—Ge1vii96.78 (5)Ge3xi—Ge2—Gd2vi66.72 (6)
Li1iv—Gd1—Ge1vii109.8 (7)Li1viii—Ge2—Gd2vi142.51 (3)
Ge1i—Gd1—Li1ii58.8 (5)Li2viii—Ge2—Gd2vi124.53 (8)
Ge3ii—Gd1—Li1ii49.6 (7)Gd2viii—Ge2—Gd2vi124.53 (8)
Ge2iii—Gd1—Li1ii49.2 (7)Li2vii—Ge2—Gd2vi79.36 (4)
Ge3iv—Gd1—Li1ii87.4 (5)Gd2vii—Ge2—Gd2vi79.36 (4)
Ge1v—Gd1—Li1ii140.6 (7)Gd2—Ge2—Gd2vi74.99 (6)
Ge1vi—Gd1—Li1ii115.3 (7)Ge3xi—Ge2—Li2vi66.72 (6)
Li1iv—Gd1—Li1ii92.6 (8)Li1viii—Ge2—Li2vi142.51 (3)
Ge1vii—Gd1—Li1ii139.0 (7)Li2viii—Ge2—Li2vi124.53 (8)
Ge1i—Gd1—Gd1viii152.47 (4)Gd2viii—Ge2—Li2vi124.53 (8)
Ge3ii—Gd1—Gd1viii110.17 (5)Li2vii—Ge2—Li2vi79.36 (4)
Ge2iii—Gd1—Gd1viii95.83 (4)Gd2vii—Ge2—Li2vi79.36 (4)
Ge3iv—Gd1—Gd1viii51.36 (4)Gd2—Ge2—Li2vi74.99 (6)
Ge1v—Gd1—Gd1viii51.17 (3)Gd2vi—Ge2—Li2vi0.00 (3)
Ge1vi—Gd1—Gd1viii97.90 (4)Ge3xi—Ge2—Gd1xvii66.89 (5)
Li1iv—Gd1—Gd1viii58.4 (7)Li1viii—Ge2—Gd1xvii72.9 (6)
Ge1vii—Gd1—Gd1viii51.54 (3)Li2viii—Ge2—Gd1xvii86.77 (4)
Li1ii—Gd1—Gd1viii138.3 (5)Gd2viii—Ge2—Gd1xvii86.77 (4)
Ge1i—Gd1—Gd1ix54.06 (4)Li2vii—Ge2—Gd1xvii147.58 (8)
Ge3ii—Gd1—Gd1ix53.95 (4)Gd2vii—Ge2—Gd1xvii147.58 (8)
Ge2iii—Gd1—Gd1ix104.92 (4)Gd2—Ge2—Gd1xvii77.68 (3)
Ge3iv—Gd1—Gd1ix133.88 (3)Gd2vi—Ge2—Gd1xvii132.41 (7)
Ge1v—Gd1—Gd1ix99.91 (4)Li2vi—Ge2—Gd1xvii132.41 (7)
Ge1vi—Gd1—Gd1ix59.68 (3)Ge3xi—Ge2—Gd1iii66.89 (5)
Li1iv—Gd1—Gd1ix100.4 (7)Li1viii—Ge2—Gd1iii72.9 (6)
Ge1vii—Gd1—Gd1ix143.56 (3)Li2viii—Ge2—Gd1iii147.58 (8)
Li1ii—Gd1—Gd1ix55.8 (7)Gd2viii—Ge2—Gd1iii147.58 (8)
Gd1viii—Gd1—Gd1ix149.36 (4)Li2vii—Ge2—Gd1iii86.77 (4)
Ge1i—Gd1—Gd2vii99.27 (4)Gd2vii—Ge2—Gd1iii86.77 (4)
Ge3ii—Gd1—Gd2vii135.10 (4)Gd2—Ge2—Gd1iii132.41 (7)
Ge2iii—Gd1—Gd2vii144.00 (4)Gd2vi—Ge2—Gd1iii77.68 (3)
Ge3iv—Gd1—Gd2vii115.40 (4)Li2vi—Ge2—Gd1iii77.68 (3)
Ge1v—Gd1—Gd2vii49.28 (3)Gd1xvii—Ge2—Gd1iii93.65 (7)
Ge1vi—Gd1—Gd2vii50.19 (3)Ge2xviii—Ge3—Li1112.7 (9)
Li1iv—Gd1—Gd2vii106.2 (5)Ge2xviii—Ge3—Li1xix121.6 (9)
Ge1vii—Gd1—Gd2vii46.74 (3)Li1—Ge3—Li1xix125.7 (13)
Li1ii—Gd1—Gd2vii156.5 (5)Ge2xviii—Ge3—Gd1xiv131.91 (3)
Gd1viii—Gd1—Gd2vii65.030 (18)Li1—Ge3—Gd1xiv73.9 (6)
Gd1ix—Gd1—Gd2vii105.96 (2)Li1xix—Ge3—Gd1xiv70.6 (6)
Ge1—Gd2—Ge2ix89.38 (6)Ge2xviii—Ge3—Gd1xx131.91 (3)
Ge1—Gd2—Ge1x93.03 (3)Li1—Ge3—Gd1xx73.9 (6)
Ge2ix—Gd2—Ge1x148.87 (5)Li1xix—Ge3—Gd1xx70.6 (6)
Ge1—Gd2—Ge299.87 (6)Gd1xiv—Ge3—Gd1xx96.13 (7)
Ge2ix—Gd2—Ge297.62 (5)Ge2xviii—Ge3—Li2xviii63.57 (6)
Ge1x—Gd2—Ge2112.47 (5)Li1—Ge3—Li2xviii142.2 (2)
Ge1—Gd2—Ge1ix114.22 (6)Li1xix—Ge3—Li2xviii70.2 (7)
Ge2ix—Gd2—Ge1ix98.45 (6)Gd1xiv—Ge3—Li2xviii82.54 (4)
Ge1x—Gd2—Ge1ix52.58 (5)Gd1xx—Ge3—Li2xviii138.85 (8)
Ge2—Gd2—Ge1ix142.25 (6)Ge2xviii—Ge3—Gd2xviii63.57 (6)
Ge1—Gd2—Ge3xi148.58 (6)Li1—Ge3—Gd2xviii142.2 (2)
Ge2ix—Gd2—Ge3xi101.13 (5)Li1xix—Ge3—Gd2xviii70.2 (7)
Ge1x—Gd2—Ge3xi92.81 (5)Gd1xiv—Ge3—Gd2xviii82.54 (4)
Ge2—Gd2—Ge3xi49.70 (6)Gd1xx—Ge3—Gd2xviii138.85 (8)
Ge1ix—Gd2—Ge3xi93.63 (5)Li2xviii—Ge3—Gd2xviii0.00 (3)
Ge1—Gd2—Li1ix156.0 (8)Ge2xviii—Ge3—Li2xxi63.57 (6)
Ge2ix—Gd2—Li1ix69.6 (7)Li1—Ge3—Li2xxi142.2 (2)
Ge1x—Gd2—Li1ix99.2 (5)Li1xix—Ge3—Li2xxi70.2 (7)
Ge2—Gd2—Li1ix94.4 (6)Gd1xiv—Ge3—Li2xxi138.85 (8)
Ge1ix—Gd2—Li1ix60.2 (4)Gd1xx—Ge3—Li2xxi82.54 (4)
Ge3xi—Gd2—Li1ix51.7 (7)Li2xviii—Ge3—Li2xxi72.79 (6)
Ge1—Gd2—Li159.3 (4)Gd2xviii—Ge3—Li2xxi72.79 (6)
Ge2ix—Gd2—Li149.6 (7)Ge2xviii—Ge3—Gd2xxi63.57 (6)
Ge1x—Gd2—Li1150.6 (5)Li1—Ge3—Gd2xxi142.2 (2)
Ge2—Gd2—Li167.2 (6)Li1xix—Ge3—Gd2xxi70.2 (7)
Ge1ix—Gd2—Li1144.7 (7)Gd1xiv—Ge3—Gd2xxi138.85 (8)
Ge3xi—Gd2—Li1106.0 (5)Gd1xx—Ge3—Gd2xxi82.54 (4)
Li1ix—Gd2—Li1110.3 (7)Li2xviii—Ge3—Gd2xxi72.79 (6)
Ge1—Gd2—Li2vi118.22 (3)Gd2xviii—Ge3—Gd2xxi72.79 (6)
Ge2ix—Gd2—Li2vi51.88 (3)Li2xxi—Ge3—Gd2xxi0.00 (3)
Ge1x—Gd2—Li2vi145.97 (3)Ge2xviii—Ge3—Gd1xv65.01 (5)
Ge2—Gd2—Li2vi52.51 (3)Li1—Ge3—Gd1xv69.7 (6)
Ge1ix—Gd2—Li2vi117.16 (3)Li1xix—Ge3—Gd1xv133.77 (10)
Ge3xi—Gd2—Li2vi53.61 (3)Gd1xiv—Ge3—Gd1xv74.68 (3)
Li1ix—Gd2—Li2vi57.6 (4)Gd1xx—Ge3—Gd1xv143.61 (7)
Li1—Gd2—Li2vi59.0 (4)Li2xviii—Ge3—Gd1xv75.88 (4)
Ge1—Gd2—Gd2vi118.22 (3)Gd2xviii—Ge3—Gd1xv75.88 (4)
Ge2ix—Gd2—Gd2vi51.88 (3)Li2xxi—Ge3—Gd1xv127.50 (7)
Ge1x—Gd2—Gd2vi145.97 (3)Gd2xxi—Ge3—Gd1xv127.50 (7)
Ge2—Gd2—Gd2vi52.51 (3)Ge2xviii—Ge3—Gd1iv65.01 (5)
Ge1ix—Gd2—Gd2vi117.16 (3)Li1—Ge3—Gd1iv69.7 (6)
Ge3xi—Gd2—Gd2vi53.61 (3)Li1xix—Ge3—Gd1iv133.77 (10)
Li1ix—Gd2—Gd2vi57.6 (4)Gd1xiv—Ge3—Gd1iv143.61 (7)
Li1—Gd2—Gd2vi59.0 (4)Gd1xx—Ge3—Gd1iv74.68 (3)
Li2vi—Gd2—Gd2vi0.00 (3)Li2xviii—Ge3—Gd1iv127.50 (7)
Ge1—Gd2—Gd2viii51.31 (4)Gd2xviii—Ge3—Gd1iv127.50 (7)
Ge2ix—Gd2—Gd2viii104.77 (5)Li2xxi—Ge3—Gd1iv75.88 (4)
Ge1x—Gd2—Gd2viii100.84 (3)Gd2xxi—Ge3—Gd1iv75.88 (4)
Ge2—Gd2—Gd2viii49.83 (4)Gd1xv—Ge3—Gd1iv91.89 (7)
Ge1ix—Gd2—Gd2viii151.83 (3)Ge3—Li1—Ge2ix89.6 (13)
Ge3xi—Gd2—Gd2viii97.27 (4)Ge3—Li1—Ge3xxii92.4 (13)
Li1ix—Gd2—Gd2viii143.7 (5)Ge2ix—Li1—Ge3xxii178.0 (18)
Li1—Gd2—Gd2viii55.1 (7)Ge3—Li1—Ge198.0 (8)
Li2vi—Gd2—Gd2viii90.0Ge2ix—Li1—Ge186.1 (8)
Gd2vi—Gd2—Gd2viii90.0Ge3xxii—Li1—Ge193.6 (8)
Ge1—Gd2—Li2viii51.31 (4)Ge3—Li1—Ge1vi98.0 (8)
Ge2ix—Gd2—Li2viii104.77 (5)Ge2ix—Li1—Ge1vi86.1 (8)
Ge1x—Gd2—Li2viii100.84 (3)Ge3xxii—Li1—Ge1vi93.6 (8)
Ge2—Gd2—Li2viii49.83 (4)Ge1—Li1—Ge1vi162.1 (16)
Ge1ix—Gd2—Li2viii151.83 (3)Ge3—Li1—Gd1xv60.3 (7)
Ge3xi—Gd2—Li2viii97.27 (4)Ge2ix—Li1—Gd1xv123.7 (10)
Li1ix—Gd2—Li2viii143.7 (5)Ge3xxii—Li1—Gd1xv57.5 (7)
Li1—Gd2—Li2viii55.1 (7)Ge1—Li1—Gd1xv56.7 (3)
Li2vi—Gd2—Li2viii90.0Ge1vi—Li1—Gd1xv139.9 (13)
Gd2vi—Gd2—Li2viii90.0Ge3—Li1—Li2viii132.9 (11)
Gd2viii—Gd2—Li2viii0.00 (3)Ge2ix—Li1—Li2viii120.3 (12)
Ge1xii—Ge1—Gd2135.58 (9)Ge3xxii—Li1—Li2viii58.1 (7)
Ge1xii—Ge1—Li2xiii64.67 (6)Ge1—Li1—Li2viii53.9 (4)
Gd2—Ge1—Li2xiii144.86 (6)Ge1vi—Li1—Li2viii117.9 (12)
Ge1xii—Ge1—Gd2xiii64.67 (6)Gd1xv—Li1—Li2viii72.7 (6)
Gd2—Ge1—Gd2xiii144.86 (6)Ge3—Li1—Gd2viii132.9 (11)
Li2xiii—Ge1—Gd2xiii0.00 (4)Ge2ix—Li1—Gd2viii120.3 (12)
Ge1xii—Ge1—Li2viii62.75 (6)Ge3xxii—Li1—Gd2viii58.1 (7)
Gd2—Ge1—Li2viii79.82 (4)Ge1—Li1—Gd2viii53.9 (4)
Li2xiii—Ge1—Li2viii127.42 (5)Ge1vi—Li1—Gd2viii117.9 (12)
Gd2xiii—Ge1—Li2viii127.42 (5)Gd1xv—Li1—Gd2viii72.7 (6)
Ge1xii—Ge1—Gd2viii62.75 (6)Li2viii—Li1—Gd2viii0.00 (3)
Gd2—Ge1—Gd2viii79.82 (4)Ge3—Li1—Li2vii132.9 (11)
Li2xiii—Ge1—Gd2viii127.42 (5)Ge2ix—Li1—Li2vii120.3 (12)
Gd2xiii—Ge1—Gd2viii127.42 (5)Ge3xxii—Li1—Li2vii58.1 (7)
Li2viii—Ge1—Gd2viii0.000 (16)Ge1—Li1—Li2vii117.9 (12)
Ge1xii—Ge1—Gd1xiv133.99 (9)Ge1vi—Li1—Li2vii53.9 (4)
Gd2—Ge1—Gd1xiv88.93 (5)Gd1xv—Li1—Li2vii114.5 (12)
Li2xiii—Ge1—Gd1xiv85.38 (5)Li2viii—Li1—Li2vii64.8 (8)
Gd2xiii—Ge1—Gd1xiv85.38 (5)Gd2viii—Li1—Li2vii64.8 (8)
Li2viii—Ge1—Gd1xiv133.59 (6)Ge3—Li1—Gd2vii132.9 (11)
Gd2viii—Ge1—Gd1xiv133.59 (6)Ge2ix—Li1—Gd2vii120.3 (12)
Ge1xii—Ge1—Gd1xv65.28 (6)Ge3xxii—Li1—Gd2vii58.1 (7)
Gd2—Ge1—Gd1xv134.54 (6)Ge1—Li1—Gd2vii117.9 (12)
Li2xiii—Ge1—Gd1xv76.88 (4)Ge1vi—Li1—Gd2vii53.9 (4)
Gd2xiii—Ge1—Gd1xv76.88 (4)Gd1xv—Li1—Gd2vii114.5 (12)
Li2viii—Ge1—Gd1xv81.71 (5)Li2viii—Li1—Gd2vii64.8 (8)
Gd2viii—Ge1—Gd1xv81.71 (5)Gd2viii—Li1—Gd2vii64.8 (8)
Gd1xiv—Ge1—Gd1xv74.76 (4)Li2vii—Li1—Gd2vii0.000 (17)
Ge1xii—Ge1—Gd1vi65.16 (6)Ge3—Li1—Gd1iv60.3 (7)
Gd2—Ge1—Gd1vi84.12 (5)Ge2ix—Li1—Gd1iv123.7 (10)
Li2xiii—Ge1—Gd1vi82.43 (5)Ge3xxii—Li1—Gd1iv57.5 (7)
Gd2xiii—Ge1—Gd1vi82.43 (5)Ge1—Li1—Gd1iv139.9 (13)
Li2viii—Ge1—Gd1vi76.14 (4)Ge1vi—Li1—Gd1iv56.7 (3)
Gd2viii—Ge1—Gd1vi76.14 (4)Gd1xv—Li1—Gd1iv83.4 (10)
Gd1xiv—Ge1—Gd1vi147.62 (6)Li2viii—Li1—Gd1iv114.5 (12)
Gd1xv—Ge1—Gd1vi130.44 (5)Gd2viii—Li1—Gd1iv114.5 (12)
Ge1xii—Ge1—Li1110.8 (8)Li2vii—Li1—Gd1iv72.7 (6)
Gd2—Ge1—Li170.2 (8)Gd2vii—Li1—Gd1iv72.7 (6)
Li2xiii—Ge1—Li1137.1 (8)Ge3—Li1—Gd1xiv56.5 (7)
Gd2xiii—Ge1—Li1137.1 (8)Ge2ix—Li1—Gd1xiv57.9 (7)
Li2viii—Ge1—Li165.9 (8)Ge3xxii—Li1—Gd1xiv123.4 (10)
Gd2viii—Ge1—Li165.9 (8)Ge1—Li1—Gd1xiv53.3 (3)
Gd1xiv—Ge1—Li167.9 (8)Ge1vi—Li1—Gd1xiv132.8 (13)
Gd1xv—Ge1—Li164.4 (8)Gd1xv—Li1—Gd1xiv65.9 (5)
Gd1vi—Ge1—Li1136.9 (8)Li2viii—Li1—Gd1xiv107.06 (13)
Ge1xii—Ge1—Gd1xvi119.42 (9)Gd2viii—Li1—Gd1xiv107.06 (13)
Gd2—Ge1—Gd1xvi72.51 (4)Li2vii—Li1—Gd1xiv170.1 (11)
Li2xiii—Ge1—Gd1xvi72.37 (4)Gd2vii—Li1—Gd1xiv170.1 (11)
Gd2xiii—Ge1—Gd1xvi72.37 (4)Gd1iv—Li1—Gd1xiv116.8 (13)
Li2viii—Ge1—Gd1xvi136.86 (5)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y+1/2, z+1; (vi) x, y+1/2, z; (vii) x1/2, y+1/2, z+1/2; (viii) x1/2, y, z+1/2; (ix) x+1/2, y, z+1/2; (x) x+1/2, y, z1/2; (xi) x, y, z1; (xii) x, y, z+1; (xiii) x+1/2, y, z+1/2; (xiv) x+1/2, y1/2, z+1/2; (xv) x, y1/2, z+1; (xvi) x+1/2, y+1/2, z+1/2; (xvii) x, y1/2, z; (xviii) x, y, z+1; (xix) x+1/2, y, z+3/2; (xx) x+1/2, y+1, z+1/2; (xxi) x, y+1/2, z+1; (xxii) x1/2, y, z+3/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaSm3.97Li1.03Ge4Nd3.97Li1.03Ge4Gd3.96Li1.03Ge4
Mr893.68870.14920.66
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)200200200
a, b, c (Å)7.2846 (16), 14.938 (3), 7.8594 (17)7.3649 (12), 15.092 (2), 7.9406 (13)7.188 (2), 14.816 (5), 7.767 (3)
V3)855.3 (3)882.6 (2)827.2 (5)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)40.5136.2345.51
Crystal size (mm)0.04 × 0.03 × 0.030.03 × 0.03 × 0.020.06 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.316, 0.4080.410, 0.5310.181, 0.277
No. of measured, independent and
observed [I > 2σ(I)] reflections
11551, 1188, 968 10856, 1094, 823 10177, 1044, 800
Rint0.0850.1240.141
(sin θ/λ)max1)0.6850.6580.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.051, 1.02 0.036, 0.060, 1.05 0.040, 0.087, 1.01
No. of reflections118810941044
No. of parameters484545
Δρmax, Δρmin (e Å3)1.93, 2.072.69, 2.162.35, 2.66

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds