Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Crystal structures are reported for four related diethyl [(aryl­amino)­(4-ethynyl­phenyl)lmethyl]phosphon­ate derivatives, namely diethyl [(4-bromo­anilino)(4-ethynyl­phenyl)methyl]phosphon­ate, C19H21BrNO3P, (I), diethyl ((4-chloro-2-methylanilino){4-[2-(tri­methyl­silyl)ethynyl]phenyl}methyl)phosphon­ate, C23H31ClNO3PSi, (II), diethyl ((4-fluoroanilino){4-[2-(tri­methyl­silyl)ethynyl]phenyl}methyl)phosphonate, C22H29FNO3PSi, (III), and diethyl [(4-ethynyl­phenyl)(naphthalen-2-yl­amino)­methyl]phosphon­ate, C23H24NO3P, (IV). The conformation of the anilino­benzyl group is very similar in all four compounds. The P—C bond has an approximately staggered conformation, with the aniline and ethynylphenyl groups in gauche positions with respect to the P=O double bond. The two six-membered rings are almost perpendicular. The sums of the valence angles about the N atoms vary from 344 (2) to 351 (2)°. In the crystal structures, mol­ecules of (I), (III) and (IV) are arranged as centro­symmetric or pseudo­centro­symmetric dimers connected by two N—H...O=P hydrogen bonds. The mol­ecules of (II) are arranged as centro­symmetric dimers connected by Cmeth­yl—H...O=P hydrogen bonds. The N—H bond of (II) is not involved in hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113022981/fg3306sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022981/fg3306Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022981/fg3306IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022981/fg3306IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022981/fg3306IVsup5.hkl
Contains datablock IV

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113022981/fg3306Isup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113022981/fg3306IIsup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113022981/fg3306IIIsup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113022981/fg3306IVsup9.cml
Supplementary material

CCDC references: 969460; 969461; 969462; 969463

Introduction top

α-Amino­phospho­nates are structural analogues of natural amino acids. They have been the subject of considerable attention due to their potential biological activities. They may be applied as enzyme inhibitors (Maier & Spörri, 1991), anti­bacterial agents (Atherton et al., 1986), anti­tumour agents (Lavielle et al., 1991) or anti­viral agents (Huang & Chen, 2000; Xu et al., 2006). α-Amino­phospho­nates can be synthesized via the Kabachnik–Fields reaction (Cherkasov & Galkin, 1998) by the coupling of a carbonyl, an amine and a di­alkyl­phosphite unit. We report here the syntheses and crystal structures of four di­ethyl aryl­amino­(4-ethynyl­phenyl)­methyl­phospho­nate derivatives, namely di­ethyl [(4-bromo­anilino)(4-ethynyl­phenyl)­methyl]­phospho­nate, (I), di­ethyl ((4-chloro-2-methyl­anilino){4-[2-(tri­methyl­silyl)ethynyl]phenyl}­methyl)­phospho­nate, (II), di­ethyl ((4-fluoro­anilino){4-[2-(tri­methyl­silyl)ethynyl]phenyl}­methyl)­phospho­nate, (III), and di­ethyl [(4-ethynyl­phenyl)(naphthalen-2-yl­amino)­methyl]­phospho­nate, (IV).

Experimental top

Synthesis and crystallization top

Compounds (I)–(IV) were prepared via a three-component reaction of an aldehyde, an amine and di­ethyl phosphite, as described by Wu et al. (2006). Thus, 4-(tri­methyl­silylethynyl)benzaldehyde (1 mmol) was reacted at room temperature with 4-bromo­aniline (1.2 mmol) and di­ethyl phosphite (1.2 mmol) in aceto­nitrile (2.5 ml) using molecular iodine (0.2 mmol) as catalyst. Next, the tri­methyl­silyl group was removed by reacting the product with tetra­butyl­ammonium fluoride (1 equivalent) in tetra­hydro­furane (2.5 ml). Compound (I) was obtained in a yield of 83%. The crude product was purified by chromatography through a column filled with silica gel, using ethyl acetate/n-hexane (7:3 v/v) as solvent. Recrystallization from ethyl acetate resulted in pale-brown blocks of (I).

4-(Tri­methyl­silylethynyl)benzaldehyde (1 mmol) was reacted at room temperature with 4-chloro-2-methyl­aniline (1.2 mmol) and di­ethyl phosphite (1.2 mmol) in aceto­nitrile (2.5 ml) using molecular iodine (0.2 mmol) as catalyst, resulting in (II) in a yield of 87%. The solvent was removed and the residue purified through a silica-gel column using ethyl acetate/n-hexane (7:3 v/v) as solvent. Recrystallization from ethyl acetate/n-hexane (7:3 v/v) resulted in pale-brown blocks of (II).

4-(Tri­methyl­silylethynyl)benzaldehyde (1 mmol) was reacted at room temperature with 4-fluoro­aniline (1.2 mmol) and di­ethyl­phosphite (1.2 mmol) in aceto­nitrile (2.5 ml) using molecular iodine (0.2 mmol) as catalyst, resulting in (III) in a yield of 77%. The solvent was removed and the residue purified through a silica-gel column using ethyl acetate/n-hexane (7:3 v/v) as solvent. Recrystallization from ethyl acetate/n-hexane (7:3 v/v) resulted in pale-brown blocks of (III).

4-(Tri­methyl­silylethynyl)benzaldehyde (1 mmol) was reacted at room temperature with β-naphthyl­amine (1.2 mmol) and di­ethyl­phosphite (1.2 mmol) in aceto­nitrile (2.5 ml) using molecular iodine (0.2 mmol) as catalyst. Next, the tri­methyl­silyl group was removed by reacting the product with tetra­butyl­ammonium fluoride (1 equivalent) in tetra­hydro­furan (2.5 ml). Compound (IV) was obtained in a yield of 93%. The crude product was purified by chromatography through a column filled with silica gel using di­chloro­methane as solvent. Recrystallization from ethyl acetate/n-hexane (7:3 v/v) resulted in pale-brown blocks of (IV).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bound H atoms were positioned geometrically and treated as riding, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) for other H atoms. N-bound H atoms were located from difference Fourier syntheses; their coordinates and isotropic displacement parameters were refined. Some ethyl groups in (I) and (II) were found to be disordered over two orientations and were refined with split atoms. The occupancy factors refined to 0.881 (9) for C17, 0.877 (7) for C18 and C19, 0.119 (9) for C17', 0.123 (7) for C18' and C19' of (I), and 0.516 (11) for C18 and C19 and 0.484 (11) for C18' and C19' of (II). The crystal structure of (II) was refined in the nonstandard space group I2/a rather than in C2/c, to avoid a large monoclinic angle of β = 130.698 (1)°.

Results and discussion top

The conformation of the anilino­benzyl fragment of (I) (Fig. 1) is very similar to that observed in the crystal structure of unsubstituted di­ethyl anilino­benzyl­phospho­nate (Rużić-Toroš et al., 1978). The P1—C1 bond has a staggered conformation, with the C1—H bond in a trans position with respect to the PO double bond. The two benzene rings are almost perpendicular [angle between planes = 87.34 (7)°]. The ethynyl group shows a small deviation from the plane of the C2–C7 benzene ring [atoms C8 and C9 deviate by 0.037 (3) and 0.079 (4) Å, respectively, from the benzene plane]. The N atom shows a small deviation from planarity; the sum of the three valence angles about the N atom is 345 (1)°. The molecules are connected by inter­molecular N—H···OP hydrogen bonds to form centrosymmetric dimers (Fig. 2, Table 2). The dimers are also stabilized by two inter­molecular C—H···OP contacts, with H···O distances of 2.55 and 2.59 Å. Neighbouring dimers are connected by a weak inter­molecular Cethynyl—H···N contact, an additional C—H···O contact, two very weak C—H···Br contacts and a Cmethyl—H···πbenzene contact.

The conformation of the anilino­benzyl fragment of (II) (Fig. 3) is very similar to that observed for (I). The angle between the planes of the benzene rings is 82.49 (14)°. The N atom again shows a small deviation from planarity; the sum of the three valence angles about the N atom is 346 (3)°. The N—H bond is not involved in hydrogen bonding. The crystal packing of (II) is shown in Fig. 4. The molecules are connected by inter­molecular C—H···OP contacts, with H···O distances of 2.49 and 2.60 Å, to form centrosymmetric dimers (Table 3). The shorter of these contacts involves the methyl group attached to the aniline group. The presence of this methyl group near the N—H bond may prevent the amino group from being involved in the hydrogen-bonding system. A similar situation is found in the crystal structure of di­ethyl [(2-chloro­phenyl­amino)(2-hy­droxy­phenyl)­methyl]­phospho­nate (Wang et al., 2012). There, a Cl substituent is positioned next to the N—H bond and again the amino group is not involved in inter­molecular hydrogen bonding. The dimers of (II) are connected by an additional C—H···O contact, with an H···O distance of 2.54 Å.

The molecular structure of (III) (Fig. 5) is rather similar to the structures of (I) and (II). The sum of the three valence angles about the N atom is 344 (2)°. The angle between the benzene planes is 87.96 (8)°. The crystal packing of (III) is shown in Fig. 6. The molecules are arranged to form centrosymmetric dimers connected by two symmetry-related N—H···OP hydrogen bonds (Table 4). The dimers are also stabilized by two C—H···O P contacts, with H···O distances of 2.44 and 2.71 Å. Neigbouring dimers are connected by two very weak inter­molecular Cmethyl—H···πbenzene inter­actions and two weak inter­molecular Cbenzene—H···F contacts, with H···F distances of 2.67 and 2.76 Å, respectively.

Crystals of (IV) undergo a phase transition on cooling from room temperature to 180 K, accompanied by a doubling of the unit-cell volume. The cell constants at room temperature are a = 10.0601 (15), b = 11.452 (2) and c = 11.506 (3) Å, and α = 111.314 (14), β = 114.179 (12) and γ = 96.888 (11)°. The low-temperature unit cell is related to the room-temperature unit cell by the transformations alt = -brt, blt = art + crt and clt = -art + crt. Consequently, the asymmetric unit of (IV) at 180 K contains two independent molecules (A and B; Fig. 7), which are approximately related by pseudo-translation [0 1/2 1/2]. The conformations of molecules A and B differ mainly in the relative orientations of the eth­oxy groups attached to the P atoms. The angle between the naphthyl and benzene planes is 86.05 (9)° for molecule A and 85.92 (8)° for molecule B. The ethynyl group shows a considerable deviation from the plane of the benzene ring for molecule B [atoms C31 and C32 deviate by 0.175 (5) and 0.391 (6) Å, respectively, from the benzene plane]. A smaller deviation is observed for the ethynyl group of molecule A [atoms C8 And C9 deviate by 0.061 (5) and 0.141 (6) Å, respectively, from the benzene plane]. The sum of the three valence angles about the N atom is 351 (2)° for N1 and 349 (2)° for N2. The crystal packing of (IV) is shown in Fig. 8. In the crystal structure, molecules are connected to form pseudocentrosymmetric dimers. Each dimer consists of a molecule A and a molecule B, which are connected by two N—H···OP hydrogen bonds, and by two C—H···OP contacts with H···O distances of 2.48 and 2.56 Å, respectively (Table 5). Neigbouring dimers are connected by an inter­molecular Cethynyl—H···O contact with an H···O distance of 2.44 Å. The latter contact is rather short and may be responsible for the nonplanarity of the ethynyl­phenyl group of molecule B. There are also a number of weak inter­molecular C—H···πbenzene and C—H···πnaphthyl inter­actions and an additional C—H···O contact, with an H···O distance of 2.63 Å (Table 5).

The conformation of the anilino­benzyl group is very similar in all four compounds. Selected torsion angles in (I)–(IV) are reported in Table 6 and compared with the corresponding torsion angles in other anilino–phenyl­methyl phospho­nate structures with no substituents at the ortho positions of the benzene rings. The six-membered ring of the anilino group is almost coplanar with the amino group in all compounds. The P—C bond has an approximately staggered conformation in all structures, with the C1—N1 and C1—C2 bonds in gauche positions and the C1—H bond in a trans position with respect to the PO double bond. For the C2—C1—N1—C10 torsion angle, two possible orientations are found: in 17 structures the torsion angle has a value of -69 (5)°, while in four structures values between -114 and -147° are found. The intra­molecular N—H···OP contact is shorter in the former case (H···O distances 2.64–2.91 Å), which may therefore correspond to the preferred conformation. For the C3—C2—C1—N1 torsion angle, a value near -47 (10)° is found in all structures. This corresponds to the conformation where the benzyl plane is almost parallel to the C1—H bond. In the crystal structures, the anilino­benzyl­phospho­nate units of all molecules listed in Table 6 are connected to form centrosymmetric or pseudo-centrosymmetric dimers. In each dimer, except in (II), the molecules are connected by two N—H···OP hydrogen bonds. In (II), where the amino N—H bond is shielded by a methyl substituent in the ortho-position of the aniline ring, no N—H···O hydrogen bond is found. Here, Cmethyl—H···OP hydrogen bonds connect the molecules to form centrosymmetric dimers.

Related literature top

For related literature, see: Atherton et al. (1986); Cherkasov & Galkin (1998); Huang & Chen (2000); Lavielle et al. (1991); Maier & Spörri (1991); Rużić-Toroš, Kojić-Prodić & Šljukic (1978); Wang et al. (2012); Wu et al. (2006); Xu et al. (2006).

Computing details top

For all compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major orientation of the disordered ethyl groups is shown.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down [001]. C-bound H atoms have been omitted for clarity. N—H···O hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x + 2, -y + 1, -z + 1.]
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major orientation of the disordered ethyl group is shown.
[Figure 4] Fig. 4. The crystal packing of (II), viewed down [010]. C-bound H atoms have been omitted for clarity. The Cmethyl···O and Cbenzene···O contacts, which connect the molecules into dimers, are shown as dashed lines. [Symmetry code: (i) -x + 1/2, -y + 3/2, -z + 1/2.]
[Figure 5] Fig. 5. The molecular structure of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 6] Fig. 6. The crystal packing of (III), viewed down [100]. C-bound H atoms have been omitted for clarity. N—H···O hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x + 1, -y + 2, -z + 1.]
[Figure 7] Fig. 7. The molecular structure of (a) molecule A and (b) molecule B of (IV), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 8] Fig. 8. The crystal packing of (IV), viewed down [010]. C-bound H atoms have been omitted for clarity. N—H···O hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
(I) Diethyl [(4-bromoanilino)(4-ethynylphenyl)methyl]phosphonate top
Crystal data top
C19H21BrNO3PF(000) = 864
Mr = 422.25Dx = 1.438 Mg m3
Monoclinic, P21/nMelting point: 416(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.9339 (7) ÅCell parameters from 7719 reflections
b = 16.5179 (11) Åθ = 3–27°
c = 11.1325 (7) ŵ = 2.21 mm1
β = 104.114 (1)°T = 186 K
V = 1949.9 (2) Å3Block, pale brown
Z = 40.60 × 0.60 × 0.50 mm
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4762 independent reflections
Radiation source: normal-focus sealed tube4104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1414
Tmin = 0.284, Tmax = 0.332k = 2121
22735 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.025P)2 + 1.3P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4762 reflectionsΔρmax = 0.47 e Å3
245 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (4)
Crystal data top
C19H21BrNO3PV = 1949.9 (2) Å3
Mr = 422.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9339 (7) ŵ = 2.21 mm1
b = 16.5179 (11) ÅT = 186 K
c = 11.1325 (7) Å0.60 × 0.60 × 0.50 mm
β = 104.114 (1)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4762 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4104 reflections with I > 2σ(I)
Tmin = 0.284, Tmax = 0.332Rint = 0.031
22735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.47 e Å3
4762 reflectionsΔρmin = 0.43 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.44620 (2)0.162990 (14)0.40970 (2)0.04550 (9)
P10.84365 (4)0.62113 (3)0.49540 (4)0.02480 (12)
O10.97550 (12)0.60700 (9)0.49191 (14)0.0343 (3)
O20.77945 (13)0.69708 (9)0.42188 (14)0.0343 (3)
O30.82091 (13)0.63275 (9)0.62817 (13)0.0339 (3)
N10.77465 (15)0.46582 (10)0.50665 (15)0.0258 (3)
H1B0.849 (2)0.4551 (14)0.517 (2)0.037 (6)*
C10.73722 (16)0.53871 (11)0.43243 (17)0.0247 (4)
H1A0.65080.55420.43950.030*
C20.73341 (17)0.53028 (11)0.29485 (17)0.0254 (4)
C30.83644 (19)0.49747 (13)0.25893 (18)0.0338 (5)
H3A0.90710.47860.32020.041*
C40.8369 (2)0.49211 (14)0.13498 (19)0.0368 (5)
H4A0.90830.47020.11200.044*
C50.7334 (2)0.51861 (12)0.04342 (18)0.0306 (4)
C60.6311 (2)0.55212 (12)0.07949 (19)0.0346 (5)
H6A0.56060.57140.01840.041*
C70.63142 (18)0.55764 (12)0.20376 (18)0.0306 (4)
H7A0.56080.58050.22690.037*
C80.7344 (2)0.51049 (13)0.0856 (2)0.0376 (5)
C90.7375 (2)0.50198 (15)0.1907 (2)0.0454 (6)
H9A0.73990.49520.27480.055*
C100.69665 (17)0.39730 (11)0.48211 (16)0.0245 (4)
C110.56698 (18)0.40216 (12)0.42991 (19)0.0301 (4)
H11A0.52910.45350.40750.036*
C120.49261 (19)0.33260 (13)0.4104 (2)0.0334 (4)
H12A0.40440.33660.37570.040*
C130.54771 (19)0.25799 (12)0.44163 (19)0.0319 (4)
C140.6760 (2)0.25156 (13)0.4943 (2)0.0336 (4)
H14A0.71340.20000.51620.040*
C150.74927 (19)0.32088 (12)0.51483 (19)0.0305 (4)
H15A0.83700.31650.55190.037*
C160.8259 (3)0.73571 (15)0.3239 (2)0.0473 (6)0.877 (11)
H16A0.75400.74910.25350.057*0.877 (11)
H16B0.88210.69790.29380.057*0.877 (11)
C16'0.8259 (3)0.73571 (15)0.3239 (2)0.0473 (6)0.123 (11)
H16C0.91490.72070.33040.057*0.123 (11)
H16D0.77470.71910.24150.057*0.123 (11)
C170.8959 (6)0.81067 (19)0.3710 (3)0.0601 (15)0.877 (11)
H17A0.92670.83610.30450.090*0.877 (11)
H17B0.96760.79720.44000.090*0.877 (11)
H17C0.83980.84830.39970.090*0.877 (11)
C17'0.815 (3)0.8204 (11)0.3414 (19)0.037 (6)*0.123 (11)
H17D0.72650.83680.31060.056*0.123 (11)
H17E0.86710.84960.29570.056*0.123 (11)
H17F0.84300.83330.42970.056*0.123 (11)
C180.9149 (3)0.66885 (18)0.7308 (2)0.0408 (8)0.877 (7)
H18A0.99870.64550.73210.049*0.877 (7)
H18B0.89410.65430.80980.049*0.877 (7)
C18'0.861 (2)0.7080 (13)0.696 (2)0.042 (6)*0.123 (7)
H18C0.82750.75460.64200.050*0.123 (7)
H18D0.82330.71030.76880.050*0.123 (7)
C190.9224 (4)0.7579 (2)0.7227 (3)0.0581 (11)0.877 (7)
H19A0.98670.77840.79360.087*0.877 (7)
H19B0.84040.78160.72350.087*0.877 (7)
H19C0.94500.77290.64570.087*0.877 (7)
C19'0.996 (2)0.7154 (13)0.7383 (19)0.044 (6)*0.123 (7)
H19D1.01720.76660.78320.066*0.123 (7)
H19E1.03350.71450.66680.066*0.123 (7)
H19F1.02940.67010.79350.066*0.123 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04488 (14)0.03430 (13)0.05704 (17)0.01325 (10)0.01189 (11)0.00322 (10)
P10.0230 (2)0.0267 (2)0.0258 (2)0.00257 (18)0.00832 (18)0.00322 (19)
O10.0244 (7)0.0365 (8)0.0436 (8)0.0035 (6)0.0113 (6)0.0050 (6)
O20.0369 (8)0.0291 (7)0.0380 (8)0.0010 (6)0.0114 (6)0.0006 (6)
O30.0349 (7)0.0402 (8)0.0280 (7)0.0097 (6)0.0105 (6)0.0086 (6)
N10.0214 (8)0.0287 (8)0.0276 (8)0.0013 (6)0.0064 (6)0.0011 (6)
C10.0213 (8)0.0268 (9)0.0267 (9)0.0009 (7)0.0073 (7)0.0036 (7)
C20.0265 (9)0.0247 (9)0.0248 (9)0.0021 (7)0.0056 (7)0.0022 (7)
C30.0289 (10)0.0454 (12)0.0257 (10)0.0097 (9)0.0041 (8)0.0014 (9)
C40.0373 (11)0.0449 (12)0.0296 (11)0.0086 (9)0.0107 (9)0.0001 (9)
C50.0399 (11)0.0253 (10)0.0251 (10)0.0028 (8)0.0048 (8)0.0015 (8)
C60.0344 (11)0.0321 (11)0.0318 (11)0.0032 (8)0.0023 (8)0.0040 (8)
C70.0275 (9)0.0293 (10)0.0336 (11)0.0035 (8)0.0051 (8)0.0018 (8)
C80.0464 (13)0.0325 (11)0.0317 (11)0.0003 (9)0.0052 (9)0.0049 (9)
C90.0584 (15)0.0486 (14)0.0286 (12)0.0021 (11)0.0092 (10)0.0044 (10)
C100.0253 (9)0.0301 (10)0.0213 (9)0.0028 (7)0.0114 (7)0.0037 (7)
C110.0271 (9)0.0286 (10)0.0359 (11)0.0014 (7)0.0103 (8)0.0033 (8)
C120.0242 (9)0.0385 (11)0.0385 (11)0.0036 (8)0.0097 (8)0.0060 (9)
C130.0325 (10)0.0300 (10)0.0365 (11)0.0093 (8)0.0148 (9)0.0049 (8)
C140.0365 (11)0.0302 (10)0.0364 (11)0.0007 (8)0.0137 (9)0.0035 (8)
C150.0250 (9)0.0357 (11)0.0315 (10)0.0011 (8)0.0083 (8)0.0029 (8)
C160.0695 (17)0.0417 (13)0.0329 (12)0.0004 (12)0.0166 (11)0.0068 (10)
C16'0.0695 (17)0.0417 (13)0.0329 (12)0.0004 (12)0.0166 (11)0.0068 (10)
C170.094 (4)0.0383 (16)0.055 (2)0.0152 (18)0.032 (2)0.0043 (14)
C180.0464 (16)0.0446 (17)0.0277 (13)0.0039 (13)0.0021 (11)0.0075 (11)
C190.084 (3)0.0471 (19)0.0406 (16)0.0257 (17)0.0088 (16)0.0057 (13)
Geometric parameters (Å, º) top
Br1—C131.9048 (19)C11—H11A0.9500
P1—O11.4702 (14)C12—C131.379 (3)
P1—O21.5672 (15)C12—H12A0.9500
P1—O31.5693 (14)C13—C141.387 (3)
P1—C11.8170 (18)C14—C151.384 (3)
O2—C161.457 (3)C14—H14A0.9500
O3—C181.465 (3)C15—H15A0.9500
O3—C18'1.47 (2)C16—C171.483 (4)
N1—C101.403 (2)C16—H16A0.9900
N1—C11.461 (2)C16—H16B0.9900
N1—H1B0.81 (2)C17—H17A0.9800
C1—C21.528 (3)C17—H17B0.9800
C1—H1A1.0000C17—H17C0.9800
C2—C71.387 (3)C17'—H17D0.9800
C2—C31.394 (3)C17'—H17E0.9800
C3—C41.384 (3)C17'—H17F0.9800
C3—H3A0.9500C18—C191.478 (4)
C4—C51.396 (3)C18—H18A0.9900
C4—H4A0.9500C18—H18B0.9900
C5—C61.392 (3)C18'—C19'1.45 (3)
C5—C81.445 (3)C18'—H18C0.9900
C6—C71.386 (3)C18'—H18D0.9900
C6—H6A0.9500C19—H19A0.9800
C7—H7A0.9500C19—H19B0.9800
C8—C91.187 (3)C19—H19C0.9800
C9—H9A0.9500C19'—H19D0.9800
C10—C111.397 (3)C19'—H19E0.9800
C10—C151.398 (3)C19'—H19F0.9800
C11—C121.394 (3)
O1—P1—O2115.50 (8)C12—C13—Br1119.37 (15)
O1—P1—O3115.20 (9)C14—C13—Br1119.95 (16)
O2—P1—O3103.91 (8)C15—C14—C13119.44 (19)
O1—P1—C1114.24 (8)C15—C14—H14A120.3
O2—P1—C1103.61 (8)C13—C14—H14A120.3
O3—P1—C1102.79 (8)C14—C15—C10121.28 (18)
C16—O2—P1123.23 (15)C14—C15—H15A119.4
C18—O3—P1122.84 (15)C10—C15—H15A119.4
C18'—O3—P1119.7 (8)O2—C16—C17110.2 (2)
C10—N1—C1118.78 (15)O2—C16—H16A109.6
C10—N1—H1B112.9 (17)C17—C16—H16A109.6
C1—N1—H1B113.0 (17)O2—C16—H16B109.6
N1—C1—C2115.29 (15)C17—C16—H16B109.6
N1—C1—P1109.55 (12)H16A—C16—H16B108.1
C2—C1—P1108.26 (12)C16—C17—H17A109.5
N1—C1—H1A107.8C16—C17—H17B109.5
C2—C1—H1A107.8H17A—C17—H17B109.5
P1—C1—H1A107.8C16—C17—H17C109.5
C7—C2—C3118.61 (18)H17A—C17—H17C109.5
C7—C2—C1121.57 (17)H17B—C17—H17C109.5
C3—C2—C1119.77 (16)H17D—C17'—H17E109.5
C4—C3—C2120.71 (19)H17D—C17'—H17F109.5
C4—C3—H3A119.6H17E—C17'—H17F109.5
C2—C3—H3A119.6O3—C18—C19113.4 (2)
C3—C4—C5120.59 (19)O3—C18—H18A108.9
C3—C4—H4A119.7C19—C18—H18A108.9
C5—C4—H4A119.7O3—C18—H18B108.9
C6—C5—C4118.63 (18)C19—C18—H18B108.9
C6—C5—C8121.66 (19)H18A—C18—H18B107.7
C4—C5—C8119.7 (2)C19'—C18'—O3113.0 (18)
C7—C6—C5120.52 (18)C19'—C18'—H18C109.0
C7—C6—H6A119.7O3—C18'—H18C109.0
C5—C6—H6A119.7C19'—C18'—H18D109.0
C6—C7—C2120.93 (18)O3—C18'—H18D109.0
C6—C7—H7A119.5H18C—C18'—H18D107.8
C2—C7—H7A119.5C18—C19—H19A109.5
C9—C8—C5178.1 (3)C18—C19—H19B109.5
C8—C9—H9A180.0H19A—C19—H19B109.5
C11—C10—C15118.14 (17)C18—C19—H19C109.5
C11—C10—N1122.78 (17)H19A—C19—H19C109.5
C15—C10—N1119.04 (17)H19B—C19—H19C109.5
C12—C11—C10120.77 (19)C18'—C19'—H19D109.5
C12—C11—H11A119.6C18'—C19'—H19E109.5
C10—C11—H11A119.6H19D—C19'—H19E109.5
C13—C12—C11119.68 (19)C18'—C19'—H19F109.5
C13—C12—H12A120.2H19D—C19'—H19F109.5
C11—C12—H12A120.2H19E—C19'—H19F109.5
C12—C13—C14120.67 (18)
O1—P1—O2—C1620.18 (19)C2—C3—C4—C50.8 (3)
O3—P1—O2—C16147.35 (16)C3—C4—C5—C61.4 (3)
C1—P1—O2—C16105.52 (17)C3—C4—C5—C8178.4 (2)
O1—P1—O3—C1830.9 (2)C4—C5—C6—C71.1 (3)
O2—P1—O3—C1896.40 (19)C8—C5—C6—C7178.61 (19)
C1—P1—O3—C18155.86 (19)C5—C6—C7—C20.2 (3)
O1—P1—O3—C18'72.9 (11)C3—C2—C7—C60.4 (3)
O2—P1—O3—C18'54.5 (11)C1—C2—C7—C6177.76 (18)
C1—P1—O3—C18'162.2 (11)C1—N1—C10—C1126.6 (3)
C10—N1—C1—C264.5 (2)C1—N1—C10—C15155.68 (17)
C10—N1—C1—P1173.11 (13)C15—C10—C11—C120.4 (3)
O1—P1—C1—N162.67 (15)N1—C10—C11—C12178.19 (18)
O2—P1—C1—N1170.84 (12)C10—C11—C12—C130.7 (3)
O3—P1—C1—N162.87 (14)C11—C12—C13—C141.2 (3)
O1—P1—C1—C263.81 (15)C11—C12—C13—Br1178.00 (15)
O2—P1—C1—C262.69 (13)C12—C13—C14—C150.4 (3)
O3—P1—C1—C2170.66 (12)Br1—C13—C14—C15178.72 (15)
N1—C1—C2—C7132.71 (18)C13—C14—C15—C100.7 (3)
P1—C1—C2—C7104.23 (18)C11—C10—C15—C141.2 (3)
N1—C1—C2—C350.0 (2)N1—C10—C15—C14179.01 (18)
P1—C1—C2—C373.1 (2)P1—O2—C16—C17102.3 (3)
C7—C2—C3—C40.1 (3)P1—O3—C18—C1976.9 (3)
C1—C2—C3—C4177.55 (19)P1—O3—C18'—C19'70.8 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.81 (2)2.20 (2)2.981 (2)162 (2)
C3—H3A···O1i0.952.593.481 (3)156
C15—H15A···O1i0.952.553.254 (2)131
C9—H9A···N1ii0.952.603.542 (3)172
C12—H12A···O3iii0.952.503.398 (2)157
C4—H4A···Br1iv0.953.253.968 (2)134
C18—H18B···Br1v0.993.193.920 (3)132
C17—H17A···C11vi0.982.843.786 (4)161
C17—H17A···C12vi0.982.743.646 (4)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z1/2; (v) x+3/2, y+1/2, z+3/2; (vi) x+3/2, y+1/2, z+1/2.
(II) Diethyl ((4-chloro-2-methylanilino){4-[2-(trimethylsilyl)ethynyl]phenyl}methyl)phosphonate top
Crystal data top
C23H31ClNO3PSiF(000) = 1968
Mr = 464.00Dx = 1.204 Mg m3
Monoclinic, I2/aMelting point: 371(1) K
Hall symbol: -I 2yaMo Kα radiation, λ = 0.71073 Å
a = 17.3791 (16) ÅCell parameters from 5632 reflections
b = 14.7131 (13) Åθ = 3–25°
c = 20.019 (3) ŵ = 0.28 mm1
β = 90.464 (1)°T = 183 K
V = 5118.6 (10) Å3Block, pale brown
Z = 80.38 × 0.36 × 0.34 mm
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
5021 independent reflections
Radiation source: normal-focus sealed tube3655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2121
Tmin = 0.790, Tmax = 0.909k = 1818
24553 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.101Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.04P)2 + 12P]
where P = (Fo2 + 2Fc2)/3
5021 reflections(Δ/σ)max = 0.001
297 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C23H31ClNO3PSiV = 5118.6 (10) Å3
Mr = 464.00Z = 8
Monoclinic, I2/aMo Kα radiation
a = 17.3791 (16) ŵ = 0.28 mm1
b = 14.7131 (13) ÅT = 183 K
c = 20.019 (3) Å0.38 × 0.36 × 0.34 mm
β = 90.464 (1)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
5021 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3655 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.909Rint = 0.085
24553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1010 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.04P)2 + 12P]
where P = (Fo2 + 2Fc2)/3
5021 reflectionsΔρmax = 0.39 e Å3
297 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.68735 (6)0.76247 (11)0.43042 (7)0.0803 (5)
P10.20317 (6)0.73870 (8)0.38093 (6)0.0451 (3)
Si10.39549 (7)0.13406 (9)0.32089 (7)0.0559 (4)
O10.18631 (16)0.7528 (2)0.30989 (16)0.0634 (10)
O20.15600 (14)0.66097 (19)0.41600 (13)0.0419 (7)
O30.18498 (19)0.8192 (2)0.42940 (19)0.0726 (11)
N10.35325 (19)0.7771 (2)0.36837 (19)0.0448 (9)
H1B0.341 (3)0.785 (3)0.329 (2)0.054*
C10.3027 (2)0.7113 (3)0.4000 (2)0.0387 (10)
H1A0.30950.71890.44930.046*
C20.3207 (2)0.6124 (3)0.38435 (19)0.0362 (9)
C30.3332 (2)0.5839 (3)0.3192 (2)0.0426 (10)
H3A0.33110.62670.28370.051*
C40.3487 (2)0.4940 (3)0.3056 (2)0.0449 (11)
H4A0.35810.47550.26090.054*
C50.3505 (2)0.4296 (3)0.3572 (2)0.0408 (10)
C60.3375 (2)0.4582 (3)0.4220 (2)0.0432 (10)
H6A0.33820.41540.45750.052*
C70.3234 (2)0.5486 (3)0.4353 (2)0.0394 (10)
H7A0.31540.56750.48010.047*
C80.3667 (2)0.3345 (3)0.3442 (2)0.0481 (11)
C90.3810 (2)0.2562 (3)0.3345 (2)0.0540 (12)
C100.4323 (2)0.7740 (3)0.3838 (2)0.0374 (9)
C110.4596 (2)0.7372 (3)0.4436 (2)0.0509 (11)
H11A0.42400.71290.47460.061*
C120.5372 (2)0.7353 (3)0.4586 (2)0.0530 (12)
H12A0.55470.71080.50000.064*
C130.5888 (2)0.7687 (3)0.4137 (2)0.0485 (11)
C140.5630 (2)0.8072 (3)0.3547 (2)0.0457 (11)
H14A0.59920.83160.32430.055*
C150.4853 (2)0.8109 (3)0.33909 (19)0.0363 (9)
C160.1316 (3)0.5798 (3)0.3817 (2)0.0613 (13)
H16A0.16750.52940.39230.074*
H16B0.13250.59010.33290.074*
C170.0535 (3)0.5549 (4)0.4023 (3)0.0814 (18)
H17A0.03760.49930.37900.122*
H17B0.01790.60430.39090.122*
H17C0.05280.54450.45060.122*
C180.1974 (7)0.9058 (7)0.4043 (6)0.082 (4)0.518 (12)
H18A0.17740.91210.35800.099*0.518 (12)
H18B0.25270.92220.40540.099*0.518 (12)
C18'0.1246 (6)0.8825 (7)0.4340 (6)0.063 (4)0.482 (12)
H18C0.10910.88710.48130.076*0.482 (12)
H18D0.07990.85900.40840.076*0.482 (12)
C190.1513 (13)0.9624 (13)0.4532 (11)0.126 (8)0.518 (12)
H19A0.15491.02680.44100.189*0.518 (12)
H19B0.17210.95380.49850.189*0.518 (12)
H19C0.09740.94320.45180.189*0.518 (12)
C19'0.1424 (13)0.9720 (12)0.4100 (10)0.095 (6)0.482 (12)
H19D0.09661.01070.41320.142*0.482 (12)
H19E0.15870.96840.36340.142*0.482 (12)
H19F0.18400.99810.43720.142*0.482 (12)
C200.4579 (2)0.8533 (3)0.2746 (2)0.0470 (11)
H20A0.43050.80760.24780.070*
H20B0.50220.87590.24950.070*
H20C0.42310.90390.28440.070*
C210.3942 (4)0.0769 (4)0.4033 (3)0.108 (2)
H21A0.34560.09030.42570.161*
H21B0.43720.09920.43070.161*
H21C0.39920.01120.39710.161*
C220.3139 (4)0.0938 (5)0.2698 (4)0.126 (3)
H22A0.31910.11670.22410.190*
H22B0.26570.11610.28890.190*
H22C0.31360.02720.26930.190*
C230.4876 (3)0.1160 (4)0.2790 (3)0.092 (2)
H23A0.48480.14100.23360.137*
H23B0.49850.05080.27680.137*
H23C0.52860.14670.30410.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0325 (6)0.1103 (12)0.0978 (11)0.0059 (7)0.0187 (6)0.0263 (9)
P10.0269 (5)0.0496 (7)0.0589 (8)0.0088 (5)0.0064 (5)0.0228 (6)
Si10.0431 (7)0.0488 (8)0.0757 (10)0.0008 (6)0.0029 (6)0.0147 (7)
O10.0370 (16)0.080 (2)0.073 (2)0.0011 (15)0.0036 (15)0.0449 (19)
O20.0318 (14)0.0486 (17)0.0453 (17)0.0014 (13)0.0049 (12)0.0122 (14)
O30.061 (2)0.051 (2)0.106 (3)0.0261 (17)0.029 (2)0.0185 (19)
N10.0302 (18)0.051 (2)0.053 (2)0.0038 (15)0.0017 (17)0.0214 (19)
C10.031 (2)0.047 (2)0.039 (2)0.0053 (18)0.0004 (17)0.0114 (19)
C20.0226 (18)0.047 (2)0.039 (2)0.0024 (17)0.0031 (16)0.0053 (19)
C30.033 (2)0.053 (3)0.041 (3)0.0004 (19)0.0035 (18)0.010 (2)
C40.039 (2)0.062 (3)0.033 (2)0.001 (2)0.0050 (18)0.003 (2)
C50.030 (2)0.050 (3)0.042 (3)0.0058 (18)0.0013 (18)0.005 (2)
C60.041 (2)0.049 (3)0.040 (3)0.012 (2)0.0011 (19)0.010 (2)
C70.040 (2)0.048 (3)0.030 (2)0.0107 (19)0.0013 (17)0.0029 (19)
C80.037 (2)0.057 (3)0.051 (3)0.001 (2)0.004 (2)0.006 (2)
C90.042 (2)0.052 (3)0.068 (3)0.001 (2)0.006 (2)0.011 (2)
C100.030 (2)0.036 (2)0.046 (2)0.0043 (17)0.0022 (17)0.0056 (18)
C110.037 (2)0.066 (3)0.050 (3)0.005 (2)0.005 (2)0.017 (2)
C120.040 (2)0.069 (3)0.050 (3)0.006 (2)0.009 (2)0.011 (2)
C130.028 (2)0.058 (3)0.059 (3)0.001 (2)0.008 (2)0.004 (2)
C140.032 (2)0.053 (3)0.052 (3)0.0050 (19)0.003 (2)0.006 (2)
C150.033 (2)0.033 (2)0.042 (2)0.0000 (17)0.0007 (18)0.0012 (18)
C160.063 (3)0.072 (3)0.049 (3)0.005 (3)0.000 (2)0.011 (3)
C170.051 (3)0.123 (5)0.070 (4)0.022 (3)0.001 (3)0.001 (3)
C180.087 (9)0.054 (7)0.106 (9)0.007 (6)0.007 (7)0.013 (6)
C18'0.046 (6)0.054 (7)0.090 (8)0.024 (5)0.014 (5)0.014 (6)
C190.158 (16)0.069 (12)0.150 (19)0.040 (10)0.038 (17)0.038 (13)
C19'0.115 (13)0.051 (8)0.118 (15)0.025 (8)0.011 (13)0.019 (11)
C200.043 (2)0.053 (3)0.045 (3)0.005 (2)0.0019 (19)0.010 (2)
C210.139 (6)0.079 (4)0.106 (5)0.003 (4)0.030 (5)0.002 (4)
C220.087 (5)0.094 (5)0.197 (8)0.010 (4)0.051 (5)0.066 (5)
C230.071 (4)0.061 (4)0.144 (6)0.007 (3)0.036 (4)0.003 (4)
Geometric parameters (Å, º) top
Cl1—C131.745 (4)C13—C141.382 (6)
P1—O11.464 (3)C14—C151.384 (5)
P1—O31.565 (4)C14—H14A0.9500
P1—O21.575 (3)C15—C201.508 (5)
P1—C11.814 (4)C16—C171.469 (6)
Si1—C231.832 (5)C16—H16A0.9900
Si1—C91.835 (5)C16—H16B0.9900
Si1—C221.839 (6)C17—H17A0.9800
Si1—C211.852 (6)C17—H17B0.9800
O2—C161.440 (5)C17—H17C0.9800
O3—C181.388 (11)C18—C191.52 (2)
O3—C18'1.406 (9)C18—H18A0.9900
N1—C101.407 (5)C18—H18B0.9900
N1—C11.456 (5)C18'—C19'1.44 (2)
N1—H1B0.81 (4)C18'—H18C0.9900
C1—C21.521 (5)C18'—H18D0.9900
C1—H1A1.0000C19—H19A0.9800
C2—C71.387 (5)C19—H19B0.9800
C2—C31.389 (5)C19—H19C0.9800
C3—C41.377 (6)C19'—H19D0.9800
C3—H3A0.9500C19'—H19E0.9800
C4—C51.403 (6)C19'—H19F0.9800
C4—H4A0.9500C20—H20A0.9800
C5—C61.385 (6)C20—H20B0.9800
C5—C81.451 (6)C20—H20C0.9800
C6—C71.378 (5)C21—H21A0.9800
C6—H6A0.9500C21—H21B0.9800
C7—H7A0.9500C21—H21C0.9800
C8—C91.194 (6)C22—H22A0.9800
C10—C111.393 (6)C22—H22B0.9800
C10—C151.399 (5)C22—H22C0.9800
C11—C121.381 (6)C23—H23A0.9800
C11—H11A0.9500C23—H23B0.9800
C12—C131.366 (6)C23—H23C0.9800
C12—H12A0.9500
O1—P1—O3117.06 (19)C10—C15—C20120.2 (3)
O1—P1—O2115.77 (17)O2—C16—C17110.0 (4)
O3—P1—O299.49 (17)O2—C16—H16A109.7
O1—P1—C1114.77 (18)C17—C16—H16A109.7
O3—P1—C1103.59 (19)O2—C16—H16B109.7
O2—P1—C1104.08 (16)C17—C16—H16B109.7
C23—Si1—C9109.4 (2)H16A—C16—H16B108.2
C23—Si1—C22111.8 (3)C16—C17—H17A109.5
C9—Si1—C22106.9 (3)C16—C17—H17B109.5
C23—Si1—C21111.0 (3)H17A—C17—H17B109.5
C9—Si1—C21108.0 (3)C16—C17—H17C109.5
C22—Si1—C21109.6 (4)H17A—C17—H17C109.5
C16—O2—P1122.8 (3)H17B—C17—H17C109.5
C18—O3—P1115.9 (5)O3—C18—C19100.6 (12)
C18'—O3—P1134.1 (5)O3—C18—H18A111.6
C10—N1—C1118.4 (3)C19—C18—H18A111.6
C10—N1—H1B117 (3)O3—C18—H18B111.6
C1—N1—H1B111 (3)C19—C18—H18B111.6
N1—C1—C2114.9 (3)H18A—C18—H18B109.4
N1—C1—P1109.8 (3)O3—C18'—C19'115.0 (12)
C2—C1—P1111.5 (3)O3—C18'—H18C108.5
N1—C1—H1A106.7C19'—C18'—H18C108.5
C2—C1—H1A106.7O3—C18'—H18D108.5
P1—C1—H1A106.7C19'—C18'—H18D108.5
C7—C2—C3118.8 (4)H18C—C18'—H18D107.5
C7—C2—C1120.1 (4)C18—C19—H19A109.5
C3—C2—C1121.1 (4)C18—C19—H19B109.5
C4—C3—C2120.5 (4)H19A—C19—H19B109.5
C4—C3—H3A119.7C18—C19—H19C109.5
C2—C3—H3A119.7H19A—C19—H19C109.5
C3—C4—C5120.5 (4)H19B—C19—H19C109.5
C3—C4—H4A119.8C18'—C19'—H19D109.5
C5—C4—H4A119.8C18'—C19'—H19E109.5
C6—C5—C4118.8 (4)H19D—C19'—H19E109.5
C6—C5—C8119.7 (4)C18'—C19'—H19F109.5
C4—C5—C8121.6 (4)H19D—C19'—H19F109.5
C7—C6—C5120.3 (4)H19E—C19'—H19F109.5
C7—C6—H6A119.8C15—C20—H20A109.5
C5—C6—H6A119.8C15—C20—H20B109.5
C6—C7—C2121.1 (4)H20A—C20—H20B109.5
C6—C7—H7A119.5C15—C20—H20C109.5
C2—C7—H7A119.5H20A—C20—H20C109.5
C9—C8—C5178.9 (5)H20B—C20—H20C109.5
C8—C9—Si1175.8 (4)Si1—C21—H21A109.5
C11—C10—C15118.7 (4)Si1—C21—H21B109.5
C11—C10—N1121.7 (4)H21A—C21—H21B109.5
C15—C10—N1119.6 (3)Si1—C21—H21C109.5
C12—C11—C10121.3 (4)H21A—C21—H21C109.5
C12—C11—H11A119.3H21B—C21—H21C109.5
C10—C11—H11A119.3Si1—C22—H22A109.5
C13—C12—C11119.6 (4)Si1—C22—H22B109.5
C13—C12—H12A120.2H22A—C22—H22B109.5
C11—C12—H12A120.2Si1—C22—H22C109.5
C12—C13—C14120.0 (4)H22A—C22—H22C109.5
C12—C13—Cl1120.2 (3)H22B—C22—H22C109.5
C14—C13—Cl1119.8 (3)Si1—C23—H23A109.5
C13—C14—C15121.2 (4)Si1—C23—H23B109.5
C13—C14—H14A119.4H23A—C23—H23B109.5
C15—C14—H14A119.4Si1—C23—H23C109.5
C14—C15—C10119.1 (4)H23A—C23—H23C109.5
C14—C15—C20120.7 (4)H23B—C23—H23C109.5
O1—P1—O2—C1632.7 (4)C3—C4—C5—C8180.0 (4)
O3—P1—O2—C16159.1 (3)C4—C5—C6—C70.4 (6)
C1—P1—O2—C1694.2 (3)C8—C5—C6—C7178.8 (4)
O1—P1—O3—C1835.7 (7)C5—C6—C7—C21.1 (6)
O2—P1—O3—C18161.1 (6)C3—C2—C7—C60.6 (6)
C1—P1—O3—C1891.8 (6)C1—C2—C7—C6178.2 (3)
O1—P1—O3—C18'39.9 (8)C1—N1—C10—C1124.6 (6)
O2—P1—O3—C18'85.6 (8)C1—N1—C10—C15157.0 (4)
C1—P1—O3—C18'167.3 (7)C15—C10—C11—C121.0 (7)
C10—N1—C1—C261.0 (5)N1—C10—C11—C12179.4 (4)
C10—N1—C1—P1172.4 (3)C10—C11—C12—C131.1 (7)
O1—P1—C1—N150.7 (4)C11—C12—C13—C142.4 (7)
O3—P1—C1—N178.2 (3)C11—C12—C13—Cl1177.3 (4)
O2—P1—C1—N1178.2 (3)C12—C13—C14—C151.6 (7)
O1—P1—C1—C277.8 (3)Cl1—C13—C14—C15178.2 (3)
O3—P1—C1—C2153.4 (3)C13—C14—C15—C100.6 (6)
O2—P1—C1—C249.8 (3)C13—C14—C15—C20179.9 (4)
N1—C1—C2—C7133.7 (4)C11—C10—C15—C141.8 (6)
P1—C1—C2—C7100.6 (4)N1—C10—C15—C14179.7 (4)
N1—C1—C2—C347.5 (5)C11—C10—C15—C20178.7 (4)
P1—C1—C2—C378.2 (4)N1—C10—C15—C200.2 (6)
C7—C2—C3—C40.5 (6)P1—O2—C16—C17140.1 (3)
C1—C2—C3—C4179.3 (3)P1—O3—C18—C19162.8 (9)
C2—C3—C4—C51.2 (6)P1—O3—C18'—C19'103.2 (12)
C3—C4—C5—C60.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.952.603.543 (5)175
C7—H7A···O2ii0.952.543.421 (5)155
C20—H20A···O1i0.982.493.392 (5)153
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y, z+1.
(III) Diethyl ((4-fluoroanilino){4-[2-(trimethylsilyl)ethynyl]phenyl}methyl)phosphonate top
Crystal data top
C22H29FNO3PSiZ = 2
Mr = 433.52F(000) = 460
Triclinic, P1Dx = 1.257 Mg m3
Hall symbol: -P 1Melting point: 420(1) K
a = 8.9633 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1726 (9) ÅCell parameters from 7350 reflections
c = 12.6997 (10) Åθ = 3–25°
α = 69.980 (1)°µ = 0.20 mm1
β = 87.263 (1)°T = 184 K
γ = 73.667 (1)°Block, pale brown
V = 1145.06 (16) Å30.40 × 0.40 × 0.30 mm
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4782 independent reflections
Radiation source: normal-focus sealed tube3504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1111
Tmin = 0.852, Tmax = 0.941k = 1414
12221 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
4782 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C22H29FNO3PSiγ = 73.667 (1)°
Mr = 433.52V = 1145.06 (16) Å3
Triclinic, P1Z = 2
a = 8.9633 (7) ÅMo Kα radiation
b = 11.1726 (9) ŵ = 0.20 mm1
c = 12.6997 (10) ÅT = 184 K
α = 69.980 (1)°0.40 × 0.40 × 0.30 mm
β = 87.263 (1)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4782 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3504 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.941Rint = 0.064
12221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.37 e Å3
4782 reflectionsΔρmin = 0.39 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.44796 (8)0.79898 (7)0.44261 (5)0.02109 (19)
Si11.32304 (9)0.26686 (7)0.97006 (6)0.0252 (2)
F10.0799 (2)0.83978 (18)1.02839 (14)0.0449 (5)
O10.4981 (2)0.92061 (17)0.40445 (15)0.0279 (4)
O20.5577 (2)0.67519 (17)0.41834 (15)0.0266 (4)
O30.2932 (2)0.80477 (18)0.38553 (15)0.0297 (5)
N10.3440 (3)0.8614 (2)0.62068 (18)0.0231 (5)
H1B0.392 (4)0.924 (3)0.601 (2)0.039 (9)*
C10.4263 (3)0.7429 (2)0.5946 (2)0.0220 (6)
H1A0.35720.68300.61170.026*
C20.5820 (3)0.6633 (2)0.6590 (2)0.0207 (6)
C30.6891 (3)0.7256 (3)0.6739 (2)0.0257 (6)
H3A0.66330.81980.64680.031*
C40.8337 (3)0.6516 (3)0.7280 (2)0.0275 (6)
H4A0.90650.69560.73640.033*
C50.8732 (3)0.5129 (3)0.7701 (2)0.0263 (6)
C60.7656 (3)0.4501 (3)0.7548 (2)0.0291 (6)
H6A0.79060.35590.78240.035*
C70.6220 (3)0.5252 (3)0.6992 (2)0.0272 (6)
H7A0.55000.48160.68850.033*
C81.0212 (3)0.4358 (3)0.8306 (2)0.0287 (6)
C91.1429 (3)0.3699 (3)0.8824 (2)0.0306 (7)
C100.2815 (3)0.8494 (3)0.7272 (2)0.0218 (6)
C110.2295 (3)0.7412 (3)0.7907 (2)0.0257 (6)
H11A0.24130.66890.76480.031*
C120.1603 (3)0.7380 (3)0.8920 (2)0.0305 (7)
H12A0.12420.66460.93500.037*
C130.1454 (3)0.8426 (3)0.9282 (2)0.0292 (6)
C140.1952 (3)0.9512 (3)0.8674 (2)0.0312 (7)
H14A0.18211.02320.89390.037*
C150.2643 (3)0.9540 (3)0.7673 (2)0.0276 (6)
H15A0.30051.02780.72540.033*
C160.7250 (3)0.6572 (3)0.4094 (2)0.0301 (6)
H16A0.76590.68270.46710.036*
H16B0.74650.71370.33450.036*
C170.8015 (3)0.5135 (3)0.4264 (3)0.0415 (8)
H17A0.91480.49750.42580.062*
H17B0.76560.49090.36590.062*
H17C0.77410.45830.49880.062*
C180.1491 (3)0.9122 (3)0.3746 (3)0.0368 (7)
H18A0.10570.94930.29610.044*
H18B0.17190.98430.39370.044*
C190.0330 (4)0.8595 (3)0.4517 (3)0.0454 (8)
H19A0.06550.92970.44030.068*
H19B0.07280.82950.52970.068*
H19C0.01550.78460.43550.068*
C201.4639 (3)0.1870 (3)0.8846 (2)0.0366 (7)
H20A1.48310.25560.81720.055*
H20B1.42060.12710.86260.055*
H20C1.56200.13630.92900.055*
C211.4063 (3)0.3772 (3)1.0138 (3)0.0355 (7)
H21A1.43890.43900.94770.053*
H21B1.49660.32371.06610.053*
H21C1.32760.42741.05090.053*
C221.2707 (3)0.1406 (3)1.0937 (2)0.0324 (7)
H22A1.18490.18471.13030.049*
H22B1.36120.09341.14690.049*
H22C1.23840.07711.06900.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0179 (4)0.0225 (4)0.0216 (4)0.0044 (3)0.0003 (3)0.0070 (3)
Si10.0197 (4)0.0242 (4)0.0281 (4)0.0011 (3)0.0042 (3)0.0082 (3)
F10.0490 (11)0.0537 (12)0.0304 (10)0.0142 (9)0.0181 (8)0.0147 (8)
O10.0299 (11)0.0254 (10)0.0279 (10)0.0090 (8)0.0053 (8)0.0081 (8)
O20.0215 (10)0.0292 (10)0.0329 (11)0.0071 (8)0.0036 (8)0.0157 (9)
O30.0212 (10)0.0345 (11)0.0316 (11)0.0035 (9)0.0048 (8)0.0117 (9)
N10.0213 (12)0.0211 (12)0.0242 (12)0.0041 (10)0.0017 (9)0.0059 (10)
C10.0206 (14)0.0200 (13)0.0246 (14)0.0051 (11)0.0012 (11)0.0070 (11)
C20.0186 (13)0.0240 (14)0.0165 (13)0.0005 (11)0.0023 (10)0.0076 (11)
C30.0256 (15)0.0234 (14)0.0260 (14)0.0040 (12)0.0009 (11)0.0078 (12)
C40.0219 (15)0.0320 (16)0.0292 (15)0.0065 (12)0.0011 (11)0.0119 (12)
C50.0208 (14)0.0293 (15)0.0238 (14)0.0004 (12)0.0010 (11)0.0088 (12)
C60.0265 (15)0.0214 (14)0.0307 (15)0.0013 (12)0.0025 (12)0.0023 (12)
C70.0222 (14)0.0258 (15)0.0310 (15)0.0059 (12)0.0036 (11)0.0066 (12)
C80.0245 (15)0.0314 (16)0.0280 (15)0.0048 (12)0.0021 (12)0.0101 (13)
C90.0254 (15)0.0293 (16)0.0330 (16)0.0042 (13)0.0010 (12)0.0080 (13)
C100.0124 (13)0.0252 (14)0.0217 (13)0.0007 (11)0.0011 (10)0.0042 (11)
C110.0210 (14)0.0233 (14)0.0321 (16)0.0047 (11)0.0026 (12)0.0101 (12)
C120.0256 (15)0.0280 (15)0.0320 (16)0.0076 (12)0.0052 (12)0.0036 (13)
C130.0207 (15)0.0412 (17)0.0233 (14)0.0068 (13)0.0081 (11)0.0104 (13)
C140.0308 (16)0.0340 (16)0.0324 (16)0.0079 (13)0.0038 (13)0.0172 (13)
C150.0246 (15)0.0290 (15)0.0295 (15)0.0096 (12)0.0055 (12)0.0096 (12)
C160.0184 (14)0.0389 (17)0.0373 (16)0.0079 (13)0.0067 (12)0.0194 (14)
C170.0296 (18)0.0385 (18)0.048 (2)0.0007 (14)0.0110 (14)0.0129 (15)
C180.0272 (16)0.0338 (17)0.0372 (17)0.0007 (13)0.0084 (13)0.0033 (14)
C190.0255 (17)0.045 (2)0.055 (2)0.0029 (15)0.0000 (15)0.0094 (16)
C200.0290 (16)0.0401 (18)0.0371 (17)0.0010 (14)0.0019 (13)0.0159 (14)
C210.0315 (16)0.0340 (17)0.0401 (18)0.0062 (13)0.0037 (13)0.0135 (14)
C220.0311 (16)0.0292 (15)0.0328 (16)0.0039 (13)0.0005 (13)0.0092 (13)
Geometric parameters (Å, º) top
P1—O11.4679 (19)C11—C121.395 (4)
P1—O31.5710 (18)C11—H11A0.9500
P1—O21.5725 (18)C12—C131.367 (4)
P1—C11.833 (3)C12—H12A0.9500
Si1—C211.847 (3)C13—C141.377 (4)
Si1—C91.849 (3)C14—C151.382 (4)
Si1—C221.861 (3)C14—H14A0.9500
Si1—C201.862 (3)C15—H15A0.9500
F1—C131.369 (3)C16—C171.501 (4)
O2—C161.460 (3)C16—H16A0.9900
O3—C181.469 (3)C16—H16B0.9900
N1—C101.417 (3)C17—H17A0.9800
N1—C11.461 (3)C17—H17B0.9800
N1—H1B0.88 (3)C17—H17C0.9800
C1—C21.523 (3)C18—C191.498 (4)
C1—H1A1.0000C18—H18A0.9900
C2—C31.388 (4)C18—H18B0.9900
C2—C71.392 (4)C19—H19A0.9800
C3—C41.388 (4)C19—H19B0.9800
C3—H3A0.9500C19—H19C0.9800
C4—C51.398 (4)C20—H20A0.9800
C4—H4A0.9500C20—H20B0.9800
C5—C61.398 (4)C20—H20C0.9800
C5—C81.447 (4)C21—H21A0.9800
C6—C71.390 (4)C21—H21B0.9800
C6—H6A0.9500C21—H21C0.9800
C7—H7A0.9500C22—H22A0.9800
C8—C91.205 (4)C22—H22B0.9800
C10—C111.394 (4)C22—H22C0.9800
C10—C151.395 (4)
O1—P1—O3116.73 (11)C12—C13—F1119.3 (2)
O1—P1—O2116.52 (11)C12—C13—C14122.1 (3)
O3—P1—O298.15 (10)F1—C13—C14118.6 (2)
O1—P1—C1111.35 (11)C13—C14—C15119.1 (2)
O3—P1—C1107.21 (11)C13—C14—H14A120.5
O2—P1—C1105.52 (11)C15—C14—H14A120.5
C21—Si1—C9107.99 (13)C14—C15—C10120.7 (3)
C21—Si1—C22111.10 (14)C14—C15—H15A119.7
C9—Si1—C22108.04 (13)C10—C15—H15A119.7
C21—Si1—C20109.43 (14)O2—C16—C17107.8 (2)
C9—Si1—C20108.90 (13)O2—C16—H16A110.2
C22—Si1—C20111.28 (14)C17—C16—H16A110.2
C16—O2—P1121.38 (16)O2—C16—H16B110.2
C18—O3—P1122.23 (17)C17—C16—H16B110.2
C10—N1—C1120.3 (2)H16A—C16—H16B108.5
C10—N1—H1B110.3 (19)C16—C17—H17A109.5
C1—N1—H1B114 (2)C16—C17—H17B109.5
N1—C1—C2115.8 (2)H17A—C17—H17B109.5
N1—C1—P1106.11 (16)C16—C17—H17C109.5
C2—C1—P1111.53 (17)H17A—C17—H17C109.5
N1—C1—H1A107.7H17B—C17—H17C109.5
C2—C1—H1A107.7O3—C18—C19109.7 (2)
P1—C1—H1A107.7O3—C18—H18A109.7
C3—C2—C7118.8 (2)C19—C18—H18A109.7
C3—C2—C1121.3 (2)O3—C18—H18B109.7
C7—C2—C1119.9 (2)C19—C18—H18B109.7
C2—C3—C4120.7 (2)H18A—C18—H18B108.2
C2—C3—H3A119.7C18—C19—H19A109.5
C4—C3—H3A119.7C18—C19—H19B109.5
C3—C4—C5120.7 (2)H19A—C19—H19B109.5
C3—C4—H4A119.7C18—C19—H19C109.5
C5—C4—H4A119.7H19A—C19—H19C109.5
C6—C5—C4118.7 (2)H19B—C19—H19C109.5
C6—C5—C8120.5 (2)Si1—C20—H20A109.5
C4—C5—C8120.7 (2)Si1—C20—H20B109.5
C7—C6—C5120.1 (3)H20A—C20—H20B109.5
C7—C6—H6A119.9Si1—C20—H20C109.5
C5—C6—H6A119.9H20A—C20—H20C109.5
C6—C7—C2121.0 (2)H20B—C20—H20C109.5
C6—C7—H7A119.5Si1—C21—H21A109.5
C2—C7—H7A119.5Si1—C21—H21B109.5
C9—C8—C5178.7 (3)H21A—C21—H21B109.5
C8—C9—Si1176.4 (3)Si1—C21—H21C109.5
C11—C10—C15118.8 (2)H21A—C21—H21C109.5
C11—C10—N1122.9 (2)H21B—C21—H21C109.5
C15—C10—N1118.2 (2)Si1—C22—H22A109.5
C10—C11—C12120.6 (2)Si1—C22—H22B109.5
C10—C11—H11A119.7H22A—C22—H22B109.5
C12—C11—H11A119.7Si1—C22—H22C109.5
C13—C12—C11118.8 (3)H22A—C22—H22C109.5
C13—C12—H12A120.6H22B—C22—H22C109.5
C11—C12—H12A120.6
O1—P1—O2—C1628.0 (2)C3—C4—C5—C61.2 (4)
O3—P1—O2—C16153.42 (19)C3—C4—C5—C8177.4 (2)
C1—P1—O2—C1696.1 (2)C4—C5—C6—C70.4 (4)
O1—P1—O3—C1849.5 (2)C8—C5—C6—C7178.2 (3)
O2—P1—O3—C18174.78 (19)C5—C6—C7—C20.7 (4)
C1—P1—O3—C1876.1 (2)C3—C2—C7—C60.9 (4)
C10—N1—C1—C268.2 (3)C1—C2—C7—C6177.7 (2)
C10—N1—C1—P1167.48 (18)C1—N1—C10—C1129.9 (3)
O1—P1—C1—N144.5 (2)C1—N1—C10—C15153.3 (2)
O3—P1—C1—N184.28 (18)C15—C10—C11—C120.6 (4)
O2—P1—C1—N1171.83 (15)N1—C10—C11—C12176.1 (2)
O1—P1—C1—C282.44 (19)C10—C11—C12—C130.5 (4)
O3—P1—C1—C2148.76 (17)C11—C12—C13—F1179.0 (2)
O2—P1—C1—C244.87 (19)C11—C12—C13—C140.6 (4)
N1—C1—C2—C344.1 (3)C12—C13—C14—C150.9 (4)
P1—C1—C2—C377.4 (3)F1—C13—C14—C15178.7 (2)
N1—C1—C2—C7139.1 (2)C13—C14—C15—C101.0 (4)
P1—C1—C2—C799.4 (2)C11—C10—C15—C140.9 (4)
C7—C2—C3—C40.0 (4)N1—C10—C15—C14176.0 (2)
C1—C2—C3—C4176.8 (2)P1—O2—C16—C17160.59 (18)
C2—C3—C4—C51.1 (4)P1—O3—C18—C19109.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.88 (3)2.21 (3)3.066 (3)165 (3)
C15—H15A···O1i0.952.443.225 (3)140
C3—H3A···O1i0.952.713.629 (3)162
C6—H6A···F1ii0.952.673.424 (3)136
C14—H14A···F1iii0.952.763.442 (3)129
C21—H21B···Cg(C10–C15)iv0.982.833.785 (3)166
C21—H21C···Cg(C2–C7)iv0.982.953.713 (4)135
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+2; (iii) x, y+2, z+2; (iv) x+2, y+1, z+2.
(IV) Diethyl [(4-ethynylphenyl)(naphthalen-2-ylamino)methyl]phosphonate top
Crystal data top
C23H24NO3PZ = 4
Mr = 393.40F(000) = 832
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Melting point: 418(1) K
a = 11.3104 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5194 (10) ÅCell parameters from 5680 reflections
c = 17.8485 (16) Åθ = 3–25°
α = 82.703 (1)°µ = 0.16 mm1
β = 81.943 (1)°T = 180 K
γ = 64.035 (1)°Block, pale brown
V = 2064.5 (3) Å30.60 × 0.44 × 0.30 mm
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
8309 independent reflections
Radiation source: normal-focus sealed tube5727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1414
Tmin = 0.860, Tmax = 0.954k = 1414
21384 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.04P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
8309 reflections(Δ/σ)max = 0.001
517 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C23H24NO3Pγ = 64.035 (1)°
Mr = 393.40V = 2064.5 (3) Å3
Triclinic, P1Z = 4
a = 11.3104 (10) ÅMo Kα radiation
b = 11.5194 (10) ŵ = 0.16 mm1
c = 17.8485 (16) ÅT = 180 K
α = 82.703 (1)°0.60 × 0.44 × 0.30 mm
β = 81.943 (1)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
8309 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
5727 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.954Rint = 0.055
21384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.52 e Å3
8309 reflectionsΔρmin = 0.40 e Å3
517 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.29431 (8)0.30458 (7)0.20746 (4)0.0265 (2)
P20.26297 (8)0.79002 (7)0.69386 (4)0.0266 (2)
O10.43502 (19)0.22269 (19)0.18740 (11)0.0306 (5)
O20.19745 (19)0.27793 (19)0.16445 (11)0.0333 (5)
O30.2481 (2)0.45388 (19)0.19394 (12)0.0426 (6)
O40.40598 (19)0.73817 (19)0.67199 (11)0.0338 (5)
O50.1851 (2)0.7330 (2)0.65543 (11)0.0351 (5)
O60.18668 (19)0.94065 (18)0.67641 (11)0.0315 (5)
N10.3144 (3)0.3220 (2)0.35297 (13)0.0293 (6)
H1B0.396 (3)0.296 (3)0.3398 (16)0.026 (8)*
N20.2838 (3)0.8086 (2)0.83689 (13)0.0282 (6)
H2A0.366 (3)0.787 (2)0.8232 (15)0.014 (7)*
C10.2430 (3)0.2836 (3)0.30765 (15)0.0265 (7)
H1A0.14700.34250.31660.032*
C20.2592 (3)0.1437 (3)0.32391 (15)0.0265 (7)
C30.3808 (3)0.0455 (3)0.33859 (19)0.0413 (8)
H3A0.45230.06620.34240.050*
C40.4004 (3)0.0824 (3)0.3479 (2)0.0465 (9)
H4A0.48500.14850.35780.056*
C50.2972 (3)0.1151 (3)0.34285 (17)0.0366 (8)
C60.1738 (3)0.0153 (3)0.33018 (17)0.0356 (8)
H6A0.10110.03500.32850.043*
C70.1559 (3)0.1114 (3)0.32006 (16)0.0309 (7)
H7A0.07130.17790.31030.037*
C80.3179 (4)0.2489 (3)0.3500 (2)0.0464 (9)
C90.3353 (4)0.3579 (4)0.3536 (2)0.0611 (11)
H9A0.34930.44590.35650.073*
C100.2795 (3)0.3323 (3)0.43102 (15)0.0259 (6)
C110.1623 (3)0.3339 (3)0.46709 (15)0.0273 (7)
H11A0.10410.32120.43890.033*
C120.1277 (3)0.3541 (3)0.54528 (15)0.0266 (7)
C130.2143 (3)0.3734 (3)0.58760 (16)0.0277 (7)
C140.3351 (3)0.3692 (3)0.54937 (17)0.0318 (7)
H14A0.39480.38090.57680.038*
C150.3667 (3)0.3488 (3)0.47421 (16)0.0293 (7)
H15A0.44850.34550.45020.035*
C160.2390 (3)0.1607 (3)0.12558 (18)0.0430 (8)
H16A0.16480.13590.12930.052*
H16B0.31280.08910.15030.052*
C170.2825 (4)0.1814 (4)0.0436 (2)0.0644 (12)
H17A0.30210.10440.01720.097*
H17B0.36190.19660.03980.097*
H17C0.21180.25670.02010.097*
C180.2302 (5)0.5244 (4)0.1202 (2)0.0677 (13)
H18A0.16660.50630.09640.081*
H18B0.18790.61790.12840.081*
C190.3414 (5)0.5017 (4)0.0670 (3)0.0851 (16)
H19A0.31320.55430.01970.128*
H19B0.38480.40980.05710.128*
H19C0.40340.52510.08740.128*
C200.0085 (3)0.3557 (3)0.58369 (16)0.0317 (7)
H20A0.05060.34260.55650.038*
C210.0228 (3)0.3760 (3)0.65947 (17)0.0352 (8)
H21A0.10300.37630.68420.042*
C220.0623 (3)0.3961 (3)0.70062 (17)0.0389 (8)
H22A0.03950.41020.75300.047*
C230.1778 (3)0.3956 (3)0.66576 (17)0.0363 (8)
H23A0.23450.41020.69410.044*
C240.2218 (3)0.7548 (3)0.79392 (15)0.0260 (6)
H24A0.12390.80190.80520.031*
C250.2608 (3)0.6102 (3)0.81254 (15)0.0267 (7)
C260.3922 (3)0.5224 (3)0.80202 (18)0.0361 (8)
H26A0.45750.55340.78560.043*
C270.4301 (3)0.3907 (3)0.81496 (18)0.0403 (8)
H27A0.52060.33230.80670.048*
C280.3360 (3)0.3430 (3)0.84007 (16)0.0336 (7)
C290.2049 (3)0.4309 (3)0.85428 (16)0.0343 (7)
H29A0.14030.40040.87420.041*
C300.1675 (3)0.5631 (3)0.83956 (16)0.0305 (7)
H30A0.07720.62200.84810.037*
C310.3754 (3)0.2050 (3)0.84541 (18)0.0401 (8)
C320.4093 (4)0.0920 (4)0.8444 (2)0.0509 (10)
H32A0.43640.00160.84360.061*
C330.2505 (3)0.8181 (3)0.91559 (15)0.0253 (6)
C340.1325 (3)0.8228 (3)0.95176 (16)0.0275 (7)
H34A0.07190.81400.92360.033*
C350.1003 (3)0.8405 (3)1.03078 (16)0.0278 (7)
C360.1910 (3)0.8517 (3)1.07301 (16)0.0292 (7)
C370.3123 (3)0.8446 (3)1.03464 (16)0.0316 (7)
H37A0.37470.85131.06220.038*
C380.3409 (3)0.8283 (3)0.95844 (16)0.0298 (7)
H38A0.42290.82370.93410.036*
C390.2062 (4)0.7183 (4)0.57355 (19)0.0502 (10)
H39A0.19630.64040.56390.060*
H39B0.29750.70540.55490.060*
C400.1117 (4)0.8328 (4)0.53111 (19)0.0555 (11)
H40A0.13030.82020.47670.083*
H40B0.12090.91020.54070.083*
H40C0.02140.84370.54790.083*
C410.2558 (3)1.0239 (3)0.65979 (19)0.0385 (8)
H41A0.32880.99360.69270.046*
H41B0.19391.11350.67150.046*
C420.3110 (4)1.0236 (3)0.57795 (19)0.0455 (9)
H42A0.35091.08490.56800.068*
H42B0.23961.04910.54520.068*
H42C0.37820.93650.56740.068*
C430.0209 (3)0.8466 (3)1.06854 (17)0.0321 (7)
H43A0.08300.84001.04060.039*
C440.0497 (3)0.8619 (3)1.14493 (18)0.0366 (8)
H44A0.13120.86521.16940.044*
C450.0402 (3)0.8727 (3)1.18718 (18)0.0393 (8)
H45A0.01940.88321.24010.047*
C460.1581 (3)0.8681 (3)1.15238 (17)0.0356 (8)
H46A0.21830.87601.18130.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0297 (4)0.0276 (4)0.0190 (4)0.0109 (3)0.0033 (3)0.0014 (3)
P20.0252 (4)0.0309 (4)0.0195 (4)0.0093 (3)0.0003 (3)0.0005 (3)
O10.0302 (12)0.0368 (12)0.0249 (11)0.0159 (10)0.0050 (9)0.0055 (9)
O20.0295 (12)0.0405 (12)0.0257 (11)0.0115 (10)0.0023 (9)0.0011 (9)
O30.0610 (16)0.0293 (12)0.0277 (12)0.0143 (11)0.0085 (11)0.0008 (9)
O40.0274 (12)0.0421 (12)0.0260 (11)0.0110 (10)0.0013 (9)0.0005 (9)
O50.0405 (13)0.0422 (13)0.0260 (11)0.0205 (11)0.0080 (10)0.0016 (9)
O60.0285 (12)0.0333 (11)0.0290 (11)0.0117 (10)0.0025 (9)0.0002 (9)
N10.0269 (15)0.0406 (15)0.0209 (13)0.0166 (13)0.0059 (11)0.0048 (11)
N20.0246 (15)0.0374 (15)0.0214 (13)0.0141 (12)0.0045 (11)0.0027 (11)
C10.0266 (16)0.0303 (16)0.0184 (14)0.0092 (13)0.0022 (12)0.0031 (12)
C20.0267 (16)0.0340 (16)0.0161 (14)0.0125 (14)0.0043 (12)0.0016 (12)
C30.0302 (19)0.041 (2)0.054 (2)0.0187 (16)0.0088 (16)0.0081 (16)
C40.0326 (19)0.0380 (19)0.061 (2)0.0108 (16)0.0095 (17)0.0125 (17)
C50.048 (2)0.0372 (18)0.0255 (16)0.0217 (17)0.0013 (15)0.0029 (14)
C60.0358 (19)0.046 (2)0.0297 (17)0.0237 (16)0.0013 (14)0.0030 (14)
C70.0280 (17)0.0372 (18)0.0254 (16)0.0130 (14)0.0002 (13)0.0025 (13)
C80.053 (2)0.046 (2)0.041 (2)0.0255 (19)0.0042 (17)0.0014 (16)
C90.074 (3)0.043 (2)0.065 (3)0.027 (2)0.002 (2)0.000 (2)
C100.0285 (16)0.0235 (15)0.0217 (15)0.0086 (13)0.0007 (13)0.0009 (11)
C110.0320 (17)0.0298 (16)0.0211 (15)0.0142 (14)0.0010 (13)0.0033 (12)
C120.0286 (16)0.0241 (15)0.0225 (15)0.0084 (13)0.0027 (13)0.0017 (12)
C130.0319 (17)0.0228 (15)0.0242 (15)0.0087 (13)0.0029 (13)0.0011 (12)
C140.0319 (18)0.0334 (17)0.0302 (17)0.0131 (14)0.0077 (14)0.0000 (13)
C150.0284 (17)0.0317 (16)0.0272 (16)0.0135 (14)0.0005 (13)0.0005 (13)
C160.043 (2)0.055 (2)0.0374 (19)0.0249 (18)0.0068 (16)0.0075 (16)
C170.082 (3)0.093 (3)0.040 (2)0.056 (3)0.004 (2)0.025 (2)
C180.096 (3)0.038 (2)0.048 (2)0.019 (2)0.011 (2)0.0138 (18)
C190.108 (4)0.052 (3)0.061 (3)0.017 (3)0.029 (3)0.009 (2)
C200.0342 (18)0.0345 (17)0.0260 (16)0.0150 (14)0.0002 (14)0.0033 (13)
C210.0372 (19)0.0385 (18)0.0253 (16)0.0155 (15)0.0083 (14)0.0019 (13)
C220.045 (2)0.045 (2)0.0201 (16)0.0138 (17)0.0030 (15)0.0049 (14)
C230.042 (2)0.0417 (19)0.0230 (16)0.0151 (16)0.0053 (14)0.0028 (14)
C240.0236 (16)0.0339 (16)0.0190 (14)0.0120 (13)0.0015 (12)0.0018 (12)
C250.0283 (17)0.0343 (16)0.0172 (14)0.0128 (14)0.0043 (12)0.0005 (12)
C260.0275 (17)0.0385 (18)0.0398 (19)0.0146 (15)0.0011 (14)0.0056 (15)
C270.0327 (19)0.0366 (19)0.042 (2)0.0072 (15)0.0047 (15)0.0043 (15)
C280.041 (2)0.0361 (18)0.0221 (16)0.0149 (16)0.0061 (14)0.0004 (13)
C290.040 (2)0.0438 (19)0.0256 (16)0.0243 (16)0.0025 (14)0.0023 (14)
C300.0309 (17)0.0376 (18)0.0212 (15)0.0136 (14)0.0010 (13)0.0040 (13)
C310.049 (2)0.040 (2)0.0297 (17)0.0185 (17)0.0054 (15)0.0011 (15)
C320.064 (3)0.037 (2)0.052 (2)0.0228 (19)0.0063 (19)0.0014 (17)
C330.0292 (16)0.0220 (15)0.0215 (14)0.0093 (13)0.0003 (12)0.0001 (11)
C340.0278 (16)0.0296 (16)0.0235 (15)0.0115 (13)0.0009 (13)0.0012 (12)
C350.0292 (17)0.0232 (15)0.0266 (16)0.0087 (13)0.0018 (13)0.0010 (12)
C360.0362 (18)0.0260 (16)0.0231 (15)0.0123 (14)0.0020 (13)0.0030 (12)
C370.0323 (18)0.0405 (18)0.0272 (16)0.0202 (15)0.0023 (14)0.0039 (14)
C380.0271 (17)0.0341 (17)0.0262 (16)0.0131 (14)0.0022 (13)0.0007 (13)
C390.048 (2)0.061 (2)0.039 (2)0.0152 (19)0.0048 (17)0.0259 (18)
C400.090 (3)0.062 (2)0.0254 (18)0.042 (2)0.0118 (19)0.0013 (17)
C410.0383 (19)0.0316 (17)0.048 (2)0.0176 (15)0.0020 (16)0.0039 (15)
C420.052 (2)0.0384 (19)0.044 (2)0.0219 (17)0.0037 (17)0.0043 (16)
C430.0297 (17)0.0334 (17)0.0292 (17)0.0113 (14)0.0032 (13)0.0036 (13)
C440.0328 (18)0.0375 (18)0.0341 (18)0.0134 (15)0.0099 (15)0.0047 (14)
C450.048 (2)0.0404 (19)0.0248 (16)0.0174 (17)0.0092 (15)0.0073 (14)
C460.046 (2)0.0398 (18)0.0245 (16)0.0206 (16)0.0028 (15)0.0052 (14)
Geometric parameters (Å, º) top
P1—O11.471 (2)C19—H19B0.9800
P1—O31.559 (2)C19—H19C0.9800
P1—O21.573 (2)C20—C211.372 (4)
P1—C11.821 (3)C20—H20A0.9500
P2—O41.470 (2)C21—C221.399 (4)
P2—O51.571 (2)C21—H21A0.9500
P2—O61.575 (2)C22—C231.364 (4)
P2—C241.822 (3)C22—H22A0.9500
O2—C161.455 (4)C23—H23A0.9500
O3—C181.447 (4)C24—C251.528 (4)
O5—C391.467 (4)C24—H24A1.0000
O6—C411.463 (4)C25—C261.385 (4)
N1—C101.399 (3)C25—C301.390 (4)
N1—C11.445 (4)C26—C271.381 (4)
N1—H1B0.85 (3)C26—H26A0.9500
N2—C331.408 (3)C27—C281.398 (4)
N2—C241.455 (4)C27—H27A0.9500
N2—H2A0.86 (3)C28—C291.391 (4)
C1—C21.534 (4)C28—C311.444 (4)
C1—H1A1.0000C29—C301.390 (4)
C2—C31.380 (4)C29—H29A0.9500
C2—C71.385 (4)C30—H30A0.9500
C3—C41.382 (4)C31—C321.187 (4)
C3—H3A0.9500C32—H32A0.9500
C4—C51.391 (5)C33—C341.380 (4)
C4—H4A0.9500C33—C381.411 (4)
C5—C61.392 (4)C34—C351.424 (4)
C5—C81.446 (5)C34—H34A0.9500
C6—C71.374 (4)C35—C361.412 (4)
C6—H6A0.9500C35—C431.416 (4)
C7—H7A0.9500C36—C371.418 (4)
C8—C91.178 (5)C36—C461.428 (4)
C9—H9A0.9500C37—C381.371 (4)
C10—C111.384 (4)C37—H37A0.9500
C10—C151.420 (4)C38—H38A0.9500
C11—C121.416 (4)C39—C401.481 (5)
C11—H11A0.9500C39—H39A0.9900
C12—C201.418 (4)C39—H39B0.9900
C12—C131.421 (4)C40—H40A0.9800
C13—C231.421 (4)C40—H40B0.9800
C13—C141.423 (4)C40—H40C0.9800
C14—C151.362 (4)C41—C421.505 (4)
C14—H14A0.9500C41—H41A0.9900
C15—H15A0.9500C41—H41B0.9900
C16—C171.501 (5)C42—H42A0.9800
C16—H16A0.9900C42—H42B0.9800
C16—H16B0.9900C42—H42C0.9800
C17—H17A0.9800C43—C441.372 (4)
C17—H17B0.9800C43—H43A0.9500
C17—H17C0.9800C44—C451.403 (5)
C18—C191.410 (5)C44—H44A0.9500
C18—H18A0.9900C45—C461.372 (4)
C18—H18B0.9900C45—H45A0.9500
C19—H19A0.9800C46—H46A0.9500
O1—P1—O3116.72 (12)C21—C20—H20A119.5
O1—P1—O2114.27 (11)C12—C20—H20A119.5
O3—P1—O2103.90 (12)C20—C21—C22120.6 (3)
O1—P1—C1112.85 (13)C20—C21—H21A119.7
O3—P1—C1103.00 (12)C22—C21—H21A119.7
O2—P1—C1104.72 (12)C23—C22—C21120.2 (3)
O4—P2—O5116.27 (12)C23—C22—H22A119.9
O4—P2—O6114.01 (12)C21—C22—H22A119.9
O5—P2—O6103.82 (11)C22—C23—C13120.8 (3)
O4—P2—C24113.29 (13)C22—C23—H23A119.6
O5—P2—C24101.00 (12)C13—C23—H23A119.6
O6—P2—C24107.13 (12)N2—C24—C25114.3 (2)
C16—O2—P1122.56 (19)N2—C24—P2106.79 (18)
C18—O3—P1124.4 (2)C25—C24—P2111.47 (19)
C39—O5—P2121.2 (2)N2—C24—H24A108.0
C41—O6—P2121.75 (19)C25—C24—H24A108.0
C10—N1—C1120.6 (2)P2—C24—H24A108.0
C10—N1—H1B115 (2)C26—C25—C30118.4 (3)
C1—N1—H1B116 (2)C26—C25—C24119.8 (3)
C33—N2—C24120.2 (2)C30—C25—C24121.7 (3)
C33—N2—H2A113.8 (18)C27—C26—C25121.3 (3)
C24—N2—H2A114.6 (18)C27—C26—H26A119.4
N1—C1—C2115.7 (2)C25—C26—H26A119.4
N1—C1—P1109.68 (19)C26—C27—C28120.4 (3)
C2—C1—P1107.49 (18)C26—C27—H27A119.8
N1—C1—H1A107.9C28—C27—H27A119.8
C2—C1—H1A107.9C29—C28—C27118.5 (3)
P1—C1—H1A107.9C29—C28—C31121.9 (3)
C3—C2—C7118.4 (3)C27—C28—C31119.4 (3)
C3—C2—C1119.9 (3)C30—C29—C28120.5 (3)
C7—C2—C1121.5 (3)C30—C29—H29A119.7
C2—C3—C4121.1 (3)C28—C29—H29A119.7
C2—C3—H3A119.5C25—C30—C29120.8 (3)
C4—C3—H3A119.5C25—C30—H30A119.6
C3—C4—C5120.5 (3)C29—C30—H30A119.6
C3—C4—H4A119.7C32—C31—C28175.4 (4)
C5—C4—H4A119.7C31—C32—H32A180.0
C4—C5—C6118.1 (3)C34—C33—N2123.2 (3)
C4—C5—C8120.9 (3)C34—C33—C38119.0 (3)
C6—C5—C8121.1 (3)N2—C33—C38117.7 (3)
C7—C6—C5120.9 (3)C33—C34—C35120.9 (3)
C7—C6—H6A119.6C33—C34—H34A119.6
C5—C6—H6A119.6C35—C34—H34A119.6
C6—C7—C2121.0 (3)C36—C35—C43118.8 (3)
C6—C7—H7A119.5C36—C35—C34119.6 (3)
C2—C7—H7A119.5C43—C35—C34121.5 (3)
C9—C8—C5178.0 (4)C35—C36—C37118.3 (3)
C8—C9—H9A180.0C35—C36—C46119.1 (3)
C11—C10—N1123.5 (3)C37—C36—C46122.6 (3)
C11—C10—C15118.8 (3)C38—C37—C36121.1 (3)
N1—C10—C15117.6 (3)C38—C37—H37A119.4
C10—C11—C12121.1 (3)C36—C37—H37A119.4
C10—C11—H11A119.5C37—C38—C33121.1 (3)
C12—C11—H11A119.5C37—C38—H38A119.5
C11—C12—C20122.2 (3)C33—C38—H38A119.5
C11—C12—C13119.7 (3)O5—C39—C40111.9 (3)
C20—C12—C13118.1 (3)O5—C39—H39A109.2
C23—C13—C12119.3 (3)C40—C39—H39A109.2
C23—C13—C14122.6 (3)O5—C39—H39B109.2
C12—C13—C14118.1 (3)C40—C39—H39B109.2
C15—C14—C13121.2 (3)H39A—C39—H39B107.9
C15—C14—H14A119.4C39—C40—H40A109.5
C13—C14—H14A119.4C39—C40—H40B109.5
C14—C15—C10121.2 (3)H40A—C40—H40B109.5
C14—C15—H15A119.4C39—C40—H40C109.5
C10—C15—H15A119.4H40A—C40—H40C109.5
O2—C16—C17110.6 (3)H40B—C40—H40C109.5
O2—C16—H16A109.5O6—C41—C42111.7 (3)
C17—C16—H16A109.5O6—C41—H41A109.3
O2—C16—H16B109.5C42—C41—H41A109.3
C17—C16—H16B109.5O6—C41—H41B109.3
H16A—C16—H16B108.1C42—C41—H41B109.3
C16—C17—H17A109.5H41A—C41—H41B107.9
C16—C17—H17B109.5C41—C42—H42A109.5
H17A—C17—H17B109.5C41—C42—H42B109.5
C16—C17—H17C109.5H42A—C42—H42B109.5
H17A—C17—H17C109.5C41—C42—H42C109.5
H17B—C17—H17C109.5H42A—C42—H42C109.5
C19—C18—O3119.1 (4)H42B—C42—H42C109.5
C19—C18—H18A107.5C44—C43—C35120.9 (3)
O3—C18—H18A107.5C44—C43—H43A119.6
C19—C18—H18B107.5C35—C43—H43A119.6
O3—C18—H18B107.5C43—C44—C45120.5 (3)
H18A—C18—H18B107.0C43—C44—H44A119.7
C18—C19—H19A109.5C45—C44—H44A119.7
C18—C19—H19B109.5C46—C45—C44120.2 (3)
H19A—C19—H19B109.5C46—C45—H45A119.9
C18—C19—H19C109.5C44—C45—H45A119.9
H19A—C19—H19C109.5C45—C46—C36120.5 (3)
H19B—C19—H19C109.5C45—C46—H46A119.8
C21—C20—C12121.0 (3)C36—C46—H46A119.8
O1—P1—O2—C1616.7 (3)C13—C12—C20—C210.3 (4)
O3—P1—O2—C16145.0 (2)C12—C20—C21—C220.3 (5)
C1—P1—O2—C16107.3 (2)C20—C21—C22—C230.1 (5)
O1—P1—O3—C1874.8 (3)C21—C22—C23—C130.6 (5)
O2—P1—O3—C1851.9 (3)C12—C13—C23—C221.2 (4)
C1—P1—O3—C18161.0 (3)C14—C13—C23—C22178.6 (3)
O4—P2—O5—C3946.2 (3)C33—N2—C24—C2567.9 (3)
O6—P2—O5—C3979.9 (2)C33—N2—C24—P2168.3 (2)
C24—P2—O5—C39169.2 (2)O4—P2—C24—N257.5 (2)
O4—P2—O6—C4115.7 (3)O5—P2—C24—N2177.47 (18)
O5—P2—O6—C41143.2 (2)O6—P2—C24—N269.1 (2)
C24—P2—O6—C41110.5 (2)O4—P2—C24—C2568.0 (2)
C10—N1—C1—C267.3 (3)O5—P2—C24—C2557.0 (2)
C10—N1—C1—P1170.9 (2)O6—P2—C24—C25165.37 (19)
O1—P1—C1—N162.4 (2)N2—C24—C25—C2659.7 (3)
O3—P1—C1—N164.3 (2)P2—C24—C25—C2661.6 (3)
O2—P1—C1—N1172.68 (19)N2—C24—C25—C30120.8 (3)
O1—P1—C1—C264.1 (2)P2—C24—C25—C30118.0 (3)
O3—P1—C1—C2169.18 (19)C30—C25—C26—C272.6 (4)
O2—P1—C1—C260.8 (2)C24—C25—C26—C27177.0 (3)
N1—C1—C2—C339.3 (4)C25—C26—C27—C280.8 (5)
P1—C1—C2—C383.6 (3)C26—C27—C28—C292.3 (5)
N1—C1—C2—C7144.4 (3)C26—C27—C28—C31173.4 (3)
P1—C1—C2—C792.7 (3)C27—C28—C29—C303.7 (4)
C7—C2—C3—C41.2 (5)C31—C28—C29—C30171.9 (3)
C1—C2—C3—C4175.2 (3)C26—C25—C30—C291.2 (4)
C2—C3—C4—C50.2 (5)C24—C25—C30—C29178.3 (3)
C3—C4—C5—C61.6 (5)C28—C29—C30—C251.9 (4)
C3—C4—C5—C8177.9 (3)C24—N2—C33—C3423.5 (4)
C4—C5—C6—C72.5 (5)C24—N2—C33—C38159.0 (3)
C8—C5—C6—C7177.1 (3)N2—C33—C34—C35176.1 (2)
C5—C6—C7—C21.5 (5)C38—C33—C34—C351.4 (4)
C3—C2—C7—C60.3 (4)C33—C34—C35—C360.9 (4)
C1—C2—C7—C6176.0 (3)C33—C34—C35—C43179.4 (3)
C1—N1—C10—C1113.9 (4)C43—C35—C36—C37179.6 (3)
C1—N1—C10—C15169.6 (2)C34—C35—C36—C370.1 (4)
N1—C10—C11—C12175.3 (3)C43—C35—C36—C460.3 (4)
C15—C10—C11—C121.2 (4)C34—C35—C36—C46179.4 (3)
C10—C11—C12—C20179.8 (3)C35—C36—C37—C380.4 (4)
C10—C11—C12—C130.2 (4)C46—C36—C37—C38179.7 (3)
C11—C12—C13—C23179.0 (3)C36—C37—C38—C330.1 (5)
C20—C12—C13—C231.0 (4)C34—C33—C38—C371.1 (4)
C11—C12—C13—C141.1 (4)N2—C33—C38—C37176.6 (3)
C20—C12—C13—C14178.8 (3)P2—O5—C39—C4092.7 (3)
C23—C13—C14—C15179.5 (3)P2—O6—C41—C4282.4 (3)
C12—C13—C14—C150.7 (4)C36—C35—C43—C440.6 (4)
C13—C14—C15—C100.7 (4)C34—C35—C43—C44179.1 (3)
C11—C10—C15—C141.7 (4)C35—C43—C44—C450.4 (5)
N1—C10—C15—C14175.0 (3)C43—C44—C45—C460.0 (5)
P1—O2—C16—C1792.8 (3)C44—C45—C46—C360.3 (5)
P1—O3—C18—C1965.9 (5)C35—C36—C46—C450.2 (4)
C11—C12—C20—C21179.8 (3)C37—C36—C46—C45179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4i0.85 (3)2.08 (3)2.906 (3)166 (3)
N2—H2A···O1i0.86 (3)2.19 (3)3.013 (3)162 (2)
C15—H15A···O4i0.952.563.309 (3)136
C32—H32A···O1ii0.952.443.349 (4)161
C38—H38A···O1i0.952.483.283 (3)143
C7—H7A···O5iii0.952.633.457 (4)146
C18—H18B···Cg(C35/C36/C43–C46)iv0.992.483.439 (4)163
C19—H19A···Cg(C33–C38)iv0.982.923.591 (5)127
C23—H23A···Cg(C25–C30)0.952.863.735 (4)153
C41—H41B···Cg(C12/C13/C20–C23)v0.992.783.649 (3)147
C42—H42A···Cg(C10–C15)v0.982.883.609 (3)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x, y, z1; (v) x, y+1, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC19H21BrNO3PC23H31ClNO3PSiC22H29FNO3PSiC23H24NO3P
Mr422.25464.00433.52393.40
Crystal system, space groupMonoclinic, P21/nMonoclinic, I2/aTriclinic, P1Triclinic, P1
Temperature (K)186183184180
a, b, c (Å)10.9339 (7), 16.5179 (11), 11.1325 (7)17.3791 (16), 14.7131 (13), 20.019 (3)8.9633 (7), 11.1726 (9), 12.6997 (10)11.3104 (10), 11.5194 (10), 17.8485 (16)
α, β, γ (°)90, 104.114 (1), 9090, 90.464 (1), 9069.980 (1), 87.263 (1), 73.667 (1)82.703 (1), 81.943 (1), 64.035 (1)
V3)1949.9 (2)5118.6 (10)1145.06 (16)2064.5 (3)
Z4824
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)2.210.280.200.16
Crystal size (mm)0.60 × 0.60 × 0.500.38 × 0.36 × 0.340.40 × 0.40 × 0.300.60 × 0.44 × 0.30
Data collection
DiffractometerSiemens SMART 1K CCD area-detector
diffractometer
Siemens SMART 1K CCD area-detector
diffractometer
Siemens SMART 1K CCD area-detector
diffractometer
Siemens SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Multi-scan
(SADABS; Sheldrick, 2000)
Multi-scan
(SADABS; Sheldrick, 2000)
Multi-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.284, 0.3320.790, 0.9090.852, 0.9410.860, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
22735, 4762, 4104 24553, 5021, 3655 12221, 4782, 3504 21384, 8309, 5727
Rint0.0310.0850.0640.055
(sin θ/λ)max1)0.6650.6170.6390.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.079, 1.09 0.101, 0.181, 1.20 0.061, 0.148, 1.07 0.075, 0.156, 1.11
No. of reflections4762502147828309
No. of parameters245297271517
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.025P)2 + 1.3P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.04P)2 + 12P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.04P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.47, 0.430.39, 0.270.37, 0.390.52, 0.40

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.81 (2)2.20 (2)2.981 (2)162 (2)
C3—H3A···O1i0.952.593.481 (3)156.2
C15—H15A···O1i0.952.553.254 (2)130.7
C9—H9A···N1ii0.952.603.542 (3)172.3
C12—H12A···O3iii0.952.503.398 (2)156.6
C4—H4A···Br1iv0.953.253.968 (2)134.2
C18—H18B···Br1v0.993.193.920 (3)132.0
C17—H17A···C11vi0.982.843.786 (4)161.4
C17—H17A···C12vi0.982.743.646 (4)153.2
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z1/2; (v) x+3/2, y+1/2, z+3/2; (vi) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.952.603.543 (5)175.1
C7—H7A···O2ii0.952.543.421 (5)154.5
C20—H20A···O1i0.982.493.392 (5)152.6
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.88 (3)2.21 (3)3.066 (3)165 (3)
C15—H15A···O1i0.952.443.225 (3)139.7
C3—H3A···O1i0.952.713.629 (3)161.8
C6—H6A···F1ii0.952.673.424 (3)136.4
C14—H14A···F1iii0.952.763.442 (3)129.3
C21—H21B···Cg(C10–C15)iv0.982.833.785 (3)166
C21—H21C···Cg(C2–C7)iv0.982.953.713 (4)135
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+2; (iii) x, y+2, z+2; (iv) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4i0.85 (3)2.08 (3)2.906 (3)166 (3)
N2—H2A···O1i0.86 (3)2.19 (3)3.013 (3)162 (2)
C15—H15A···O4i0.952.563.309 (3)136.3
C32—H32A···O1ii0.952.443.349 (4)160.7
C38—H38A···O1i0.952.483.283 (3)142.7
C7—H7A···O5iii0.952.633.457 (4)146.3
C18—H18B···Cg(C35/C36/C43–C46)iv0.992.483.439 (4)163
C19—H19A···Cg(C33–C38)iv0.982.923.591 (5)127
C23—H23A···Cg(C25–C30)0.952.863.735 (4)153
C41—H41B···Cg(C12/C13/C20–C23)v0.992.783.649 (3)147
C42—H42A···Cg(C10–C15)v0.982.883.609 (3)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x, y, z1; (v) x, y+1, z.
Selected torsion angles (°) in compounds (I)–(IV) and corresponding torsion angles in a number of related compounds (numbering scheme as in Figs. 1, 3, 5 and 7a). top
C1—N1—C10—C11C2—C1—N1—C10C3—C2—C1—N1O1—P1—C1—N1
(I)-26.6 (3)-64.5 (2)-50.0 (2)62.66 (15)
(II)-24.5 (6)-61.1 (5)-47.5 (5)50.6 (4)
(III)-29.9 (3)-68.2 (3)-44.1 (3)44.5 (2)
(IV), molecule A-13.9 (4)-67.3 (3)-39.3 (4)62.4 (2)
(IV), molecule B-23.5 (4)-67.9 (3)-59.7 (3)57.5 (2)
(a)-14.4-70.2-38.555.2
(b)-12.6-64.3-41.056.7
(c)-11.3-72.2-39.053.9
(d)-12.0-75.0-52.451.8
(e)-6.0-134.6-56.544.9
(f)-0.9-68.9-37.951.6
(g), molecule A0.6-82.7-50.954.2
(g), molecule B4.2-135.4-69.858.3
(g), molecule C-16.4-68.1-54.454.1
(h)11.6-146.8-66.256.7
(i), molecule A-19.6-73.5-40.257.1
(i), molecule B-19.1-66.2-41.847.7
(j), molecule A-16.5-68.3-34.247.2
(j), molecule B-21.9-73.5-36.857.5
(k)-14.0-68.8-48.746.9
(l)8.6-113.9-32.858.0
Notes: (a) diethyl anilinobenzylphosphonate (Rużić-Toroš et al., 1978); (b) N,N'-bis[(dimethoxyphosphinoyl)phenylmethyl]-1,4-diaminobenzene (Nastopoulos et al., 1987); (c) N,N'-bis[(diethoxyphosphinoyl)phenylmethyl]-1,4-diaminobenzene (Nastopoulos et al., 1987); (d) diethyl [anilino(1,3-benzodioxol-5-yl)methyl]phosphonate (Kidwai et al., 2011); (e) O,O'-di-n-propyl-α-(4-bromophenylamino)-3,4,5- trimethoxybenzylphosphonate (Li et al., 2007); (f) 1-(4-{[(1,3-benzodioxol-5-yl)(diethoxyphosphoroyl)methyl]amino}phenyl)ferrocene (Lu et al., 2008); (g) diisopropyl(anilino(phenyl)methyl)phosphonate (Fang et al., 2011); (h) diethyl{(4-fluorophenyl)[4-(trifluoromethyl)phenylamino]methyl}phosphonate (Song et al., 2003); (i) diisopropyl{(4-bromophenyl)[(4-bromophenyl)amino]methyl}phosphonate (Babashkina et al., 2009); (j) diisopropyl{(4-bromophenyl)[(4-methoxyphenyl)amino]methyl}phosphonate (Babashkina et al., 2009); (k) diisopropyl[anilino(4-bromophenyl)methyl]phosphonate (Babashkina et al., 2009); (l) {3-[(1,3-benzodioxol-5-yl)(diethyl phosphonato)methylamino]phenyl}ferrocene (Feng et al., 2010).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds