Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Details of the structures of two polymorphs of tris­(ethyl­ene­diamine)­cobalt(III) tetra­thio­anti­monate(V), [Co(C2H8N2)3][SbS4], are reported. The first polymorph crystallizes in the ortho­rhom­bic space group Pna21, whereas the second polymorph belongs to the tetra­gonal space group P42bc. Both structures contain octa­hedral [Co(en)3]3+ cations (en is ethyl­ene­diamine) and tetra­hedral [SbS4]3− anions, which are inter­connected via various N—H...S hydrogen bonds to form two different types of three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113017277/fg3290sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113017277/fg3290Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113017277/fg3290IIsup3.hkl
Contains datablock II

CCDC references: 962897; 962898

Introduction top

Chalcogenides have become increasingly important in recent years for their fascinating architectures and potential applications in photocatalysis, fast-ion conductivity, adsorption or ion exchange, and tunable electronic and optical properties (Zhou et al., 2009). These materials are usually made by flux methods at high temperature, such as AgGaS2 and LiGaS2 (Nikogosyan, 2005). Since the cobalt thio­anti­monate complex [Co(en)3][CoSb4S8] was prepared in ethyl­enedi­amine (en) under mild solvothermal conditions in 1996, solvothermal reactions in polyamine solutions have become a versatile route for synthesizing ternary main-group chalcogenidometallates containing transition metal complexes (Stephan & Kanatzidis, 1996). More importantly, the optical and magnetic properties of the transition metal complexes may integrate with the specific properties of the inorganic main-group element chalcogenide network, which can be expected to give rise to unusual physical properties (Liu et al., 2012).

Among these chalcogenides, research on thio­anti­monates has been very fruitful in the past few decades due to the stereochemical effect of the lone pair of electrons and the wide range of coordination numbers of Sb, from 3 to 6. Now, a large number of thio­anti­monates have been synthesized using transition metal complexes as structural directors under solvothermal conditions. Many types of [SbxSy] anionic oligomers, chains, layers and nets have been found in these compounds. For example, [M(en)3][Sb2S5] (M = Mn, Fe, Ni) contain [Sb2S5]4- dimers composed of two [SbS3] pyramids (Lees & Powell, 2005). [M(en)3][Sb2S4] (M = Co, Ni) and [M(en)3][Sb4S7] (M = Fe, Ni) feature one-dimensional [SbS2]- and [Sb4S7]2- chains composed of [SbS3] pyramids sharing corners, respectively (Stephan & Kanatzidis, 1997). [Co(en)3][Sb12S19] contains a three-dimensional [Sb12S19]2- framework composed of [SbIIIS3] pyramids and [SbIIIS4] units (Vaqueiro et al., 2004). In most of the thio­anti­monates, the anti­mony element always occurs as SbIII, and only a few compounds containing SbV have been synthesized. Here, we report two new polymorphic transition metal thio­anti­monates, [Co(en)3][SbS4], (I) and (II), composed of tetra­hedral [SbVS4]3- anions and synthesized under solvothermal conditions in ethyl­enedi­amine.

Synthesis and crystallization top

polymorph (I) was obtained from a solvothermal reaction. A mixture of Co(CH3COO)2.4H2O powder (0.1245 g, 0.5 mmol), Sb powder (0.0608 g, 0.5 mmol), S powder (0.0641 g, 2 mmol), ethano­lamine (5 ml) and H2O (1 ml) was sealed in a stainless steel reactor with a 20 ml Teflon liner and kept at 400 K for 5 d, and then cooled to room temperature. Orange prism-shaped crystals of (I), along with undefined amorphous black powders, were obtained by filtration [How were crystals of (I) separated from the black powders?], washed with ethanol and air-dried. polymorph (II) was obtained from the reaction of Co(CH3COO)2.4H2O powder (0.1245 g, 0.5 mmol), Sb2S3 powder (0.0849 g, 0.25 mmol), S powder (0.0401 g, 1.25 mmol), ethano­lamine (5 ml) and H2O (1 ml) under similar conditions. Elemental analysis, calculated (%) for (I): C 14.73, H 4.94, N 17.18; found: C 14.83, H 4.85, N 17.30. Elemental analysis, calculated (%) for (II): C 14.73, H 4.94, N 17.18; found: C 14.79, H 4.99, N 17.10.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions, with C—H = 0.97 Å and N—H = 0.90 Å, and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Results and discussion top

polymorph (I) crystallizes in the orthorhombic system (space group Pna21) and the asymmetric unit contains a discrete tetra­hedral [SbS4]3- anion, with a [Co(en)3]3+ cation for charge compensation (Fig. 1). The Co3+ cation is coordinated by six N atoms from three en ligands, with o­cta­hedral axial trans-N—Co—N angles varying from 175.02 (11) to 176.16 (10)°. The Co—N bond lengths are in the range 1.948 (3)–1.969 (2) Å, comparable with those reported in many chalcogenides containing a CoIII complex with an amine ligand, such as [Co(en)3][AsS4] (Hu et al., 2006). In the [SbS4]3- anion, atom Sb1 is coordinated by four S atoms in a slightly distorted tetra­hedral coordination environment. The S—Sb—S angles are in the range 106.71 (3)–110.41 (3)° and the Sb—S bond lengths are between 2.3249 (7) and 2.3380 (9) Å. Both bond lengths and angles are close to those observed in other compounds containing the tetra­hedral [SbS4]3- anion, such as [Ni(en)3(Hen)][SbS4], [Cr(en)3][SbS3] and [Ni(en)3]2[SbS4](NO3) (Jia et al., 2004; Schur et al., 1999; Schur & Bensch, 2000).

In polymorph (I), all the S atoms of the [SbS4]3- anion are involved in hydrogen bonding with the NH2 groups of en ligands. The unique [SbS4]3- anion forms contacts with five [Co(en)3]3+ cations via weak N—H···S hydrogen bonds (Fig. 2 and Table 1), which are in accordance with those between [SbS4]3- and [M(en)3]n+ units in analogous compounds, such as [Ni(en)3(Hen)][SbS4] [2.539 (2)–2.89 (4) Å; Jia et al., 2004] and [Cr(en)3]SbS3 (2.438–2.585 Å; Schur et al., 1999). The [Co(en)3]3+ cations and [SbS4]3- anions are inter­linked via N—H···S hydrogen-bonding inter­actions to form a three-dimensional network (Fig. 3).

polymorph (II) crystallizes in the the tetra­gonal system (space group P42bc) and is isomorphous with the [Co(en)3][AsS4] structure (Hu et al., 2006). The asymmetric unit of (II) contains a discrete tetra­hedral [SbS4]3- anion and an o­cta­hedral [Co(en)3]3+ cation (Fig. 4). The Co—N bond lengths vary from 1.967 (3) to 1.981 (3) Å and the N—Co—N angles range from 173.99 (15) to 176.03 (15)°, in agreement with those of polymorph (I). In the tetra­hedral [SbS4]3- anion, the Sb—S bond lengths and S—Sb—S angles are in the ranges 2.3130 (10)–2.3341 (11) Å and 105.55 (4)–114.00 (4)°, respectively, which are also close to those of polymorph (I).

In polymorph (II), the unique [SbS4]3- anion makes contacts with five [Co(en)3]3+ cations via weak N—H···S hydrogen bonds (Fig. 5 and Table 2). These [SbS4]3- and [Co(en)3]3+ units are inter­linked to form another three-dimensional network (Fig. 6).

Conclusions top

In summary, two new polymorphs of tris­(ethyl­enedi­amine)­cobalt(III) tetra­thio­anti­monate(V), [Co(en)3][SbS4], have been synthesized and characterized. They both contain [Co(en)3]3+ cations and tetra­hedral [SbS4]3- anions. These units are inter­linked via hydrogen bonds to form two different types of three-dimensional network. It should be noted that the different reacting materials in the syntheses result in the distinct results for polymorphs (I) and (II). This may introduce a new strategy in the design of new chalcogenides. Further exploration in this field is in progress by our group.

Related literature top

For related literature, see: Hu et al. (2006); Jia et al. (2004); Lees & Powell (2005); Liu et al. (2012); Nikogosyan (2005); Schur & Bensch (2000); Schur et al. (1999); Stephan & Kanatzidis (1996, 1997); Vaqueiro et al. (2004); Zhou et al. (2009).

Computing details top

For both compounds, data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of polymorph (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The environment of the [SbS4]3- anion in polymorph (I). N—H···S interactions are shown as dashed lines. [Symmetry codes: (i) -x + 1/2, y - 1/2, z - 1/2; (ii) x + 1/2, y + 1/2, z - 1/2; (iii) x - 1/2, -y + 1/2, z; (iv) x - 1/2, -y - 1/2, z.]
[Figure 3] Fig. 3. The crystal packing of polymorph (I), viewed along the b axis. Dashed lines indicate N—H···S hydrogen bonds?
[Figure 4] Fig. 4. The molecular structure of polymorph (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. The environment of the [SbS4]3- anion in polymorph (II). N—H···S interactions are showed as dashed lines. [Symmetry codes: (i) -x + 3/2, y + 1/2, z; (ii) -x + 2, -y + 1, z; (iii) -y + 3/2, -x + 3/2, z - 1/2; (iv) x + 1/2, -y + 3/2, z.]
[Figure 6] Fig. 6. The crystal packing of polymorph (II), viewed along the b axis. Dashed lines indicate N—H···S hydrogen bonds?
(I) Tris(ethylenediamine)cobalt(III) tetrathioantimonate(V) top
Crystal data top
[Co(C2H8N2)3][SbS4]Z = 4
Mr = 489.23F(000) = 976
Orthorhombic, Pna21Dx = 1.995 Mg m3
Hall symbol: P 2c -2nMo Kα radiation, λ = 0.71073 Å
a = 14.1821 (8) ŵ = 3.18 mm1
b = 8.3971 (5) ÅT = 296 K
c = 13.6799 (8) ÅBlock, orange
V = 1629.12 (16) Å30.12 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3732 independent reflections
Radiation source: fine-focus sealed tube3516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(North et al., 1968)
h = 1818
Tmin = 0.701, Tmax = 0.741k = 1010
18071 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0148P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.038(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.38 e Å3
3732 reflectionsΔρmin = 0.26 e Å3
163 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1774 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.009 (13)
Crystal data top
[Co(C2H8N2)3][SbS4]V = 1629.12 (16) Å3
Mr = 489.23Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.1821 (8) ŵ = 3.18 mm1
b = 8.3971 (5) ÅT = 296 K
c = 13.6799 (8) Å0.12 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3732 independent reflections
Absorption correction: multi-scan
(North et al., 1968)
3516 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.741Rint = 0.033
18071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.038Δρmax = 0.38 e Å3
S = 1.03Δρmin = 0.26 e Å3
3732 reflectionsAbsolute structure: Flack (1983), with 1774 Friedel pairs
163 parametersAbsolute structure parameter: 0.009 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.025359 (12)0.03333 (2)0.011795 (14)0.02007 (5)
Co10.37507 (3)0.01764 (4)0.21870 (3)0.01623 (8)
S40.05554 (6)0.01213 (9)0.17931 (6)0.02814 (17)
S30.00305 (6)0.22462 (9)0.04611 (7)0.03080 (18)
S20.11059 (5)0.18379 (10)0.01030 (6)0.0348 (2)
S10.15377 (6)0.15135 (11)0.06531 (7)0.0374 (2)
N40.48017 (18)0.0083 (3)0.12756 (19)0.0238 (6)
H10.48620.07960.09050.029*
H20.46930.09180.08780.029*
N60.28411 (18)0.0045 (3)0.11235 (19)0.0253 (6)
H30.22720.02280.13620.030*
H40.30220.07100.06960.030*
N20.27095 (17)0.0289 (3)0.31290 (18)0.0232 (5)
H50.21740.05650.28190.028*
H60.28350.10360.35820.028*
N50.37140 (16)0.2484 (3)0.19882 (17)0.0245 (6)
H70.42460.28080.16890.029*
H80.36730.29830.25690.029*
N30.47201 (18)0.0457 (3)0.3193 (2)0.0243 (6)
H90.47360.04040.35840.029*
H100.45820.13130.35630.029*
N10.36874 (16)0.2143 (3)0.23858 (18)0.0234 (5)
H110.41690.24640.27660.028*
H120.37310.26480.18070.028*
C40.5675 (2)0.0353 (4)0.1840 (3)0.0357 (8)
H130.57190.14630.20320.043*
H140.62210.00940.14440.043*
C60.2774 (2)0.1597 (4)0.0620 (2)0.0325 (8)
H150.32670.16870.01310.039*
H160.21690.16940.02960.039*
C50.2882 (2)0.2888 (4)0.1376 (3)0.0338 (8)
H170.23200.29510.17780.041*
H180.29760.39100.10600.041*
C30.5650 (2)0.0679 (4)0.2721 (3)0.0369 (8)
H190.57350.17850.25370.044*
H200.61510.03830.31680.044*
C20.2585 (2)0.1277 (4)0.3609 (2)0.0313 (8)
H210.30180.13810.41550.038*
H220.19460.13820.38540.038*
C10.2781 (2)0.2535 (3)0.2860 (2)0.0308 (7)
H230.22790.25610.23780.037*
H240.28180.35730.31690.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.01940 (9)0.01702 (8)0.02379 (9)0.00013 (7)0.00056 (10)0.00062 (11)
Co10.01599 (18)0.01574 (18)0.01696 (18)0.00035 (15)0.00010 (15)0.00115 (16)
S40.0250 (4)0.0349 (4)0.0245 (4)0.0002 (3)0.0010 (3)0.0012 (3)
S30.0375 (4)0.0200 (4)0.0349 (4)0.0023 (3)0.0095 (4)0.0061 (3)
S20.0318 (4)0.0323 (4)0.0404 (6)0.0136 (3)0.0112 (3)0.0108 (4)
S10.0298 (4)0.0421 (5)0.0404 (5)0.0110 (4)0.0026 (4)0.0207 (4)
N40.0241 (14)0.0217 (13)0.0257 (14)0.0033 (10)0.0036 (11)0.0024 (10)
N60.0228 (15)0.0300 (15)0.0230 (13)0.0025 (11)0.0009 (11)0.0011 (10)
N20.0240 (13)0.0227 (12)0.0229 (13)0.0010 (11)0.0027 (11)0.0016 (10)
N50.0246 (13)0.0206 (12)0.0285 (15)0.0010 (10)0.0035 (11)0.0034 (11)
N30.0249 (15)0.0219 (13)0.0262 (14)0.0001 (11)0.0040 (11)0.0001 (11)
N10.0227 (13)0.0216 (13)0.0258 (14)0.0002 (10)0.0008 (10)0.0008 (10)
C40.0175 (17)0.0362 (19)0.053 (2)0.0025 (14)0.0023 (16)0.0080 (17)
C60.0231 (16)0.044 (2)0.0302 (17)0.0070 (14)0.0086 (14)0.0196 (16)
C50.0240 (17)0.0264 (17)0.051 (2)0.0050 (13)0.0014 (16)0.0195 (15)
C30.0237 (17)0.040 (2)0.047 (2)0.0044 (15)0.0063 (16)0.0009 (17)
C20.0257 (17)0.037 (2)0.0312 (18)0.0002 (15)0.0070 (13)0.0152 (14)
C10.0250 (16)0.0252 (16)0.0423 (19)0.0060 (13)0.0009 (15)0.0114 (15)
Geometric parameters (Å, º) top
Sb1—S22.3249 (7)N3—C31.480 (4)
Sb1—S12.3262 (8)N3—H90.9000
Sb1—S32.3279 (8)N3—H100.9000
Sb1—S42.3380 (9)N1—C11.477 (4)
Co1—N61.948 (3)N1—H110.9000
Co1—N41.955 (3)N1—H120.9000
Co1—N51.958 (2)C4—C31.484 (5)
Co1—N31.960 (3)C4—H130.9700
Co1—N21.962 (2)C4—H140.9700
Co1—N11.969 (2)C6—C51.506 (5)
N4—C41.477 (4)C6—H150.9700
N4—H10.9000C6—H160.9700
N4—H20.9000C5—H170.9700
N6—C61.477 (4)C5—H180.9700
N6—H30.9000C3—H190.9700
N6—H40.9000C3—H200.9700
N2—C21.480 (4)C2—C11.499 (4)
N2—H50.9000C2—H210.9700
N2—H60.9000C2—H220.9700
N5—C51.486 (4)C1—H230.9700
N5—H70.9000C1—H240.9700
N5—H80.9000
S2—Sb1—S1111.03 (3)Co1—N3—H9109.8
S2—Sb1—S3110.41 (3)C3—N3—H10109.8
S1—Sb1—S3110.40 (3)Co1—N3—H10109.8
S2—Sb1—S4108.70 (3)H9—N3—H10108.2
S1—Sb1—S4109.48 (3)C1—N1—Co1108.71 (17)
S3—Sb1—S4106.71 (3)C1—N1—H11109.9
N6—Co1—N491.28 (11)Co1—N1—H11109.9
N6—Co1—N586.26 (10)C1—N1—H12109.9
N4—Co1—N592.41 (10)Co1—N1—H12109.9
N6—Co1—N3175.02 (11)H11—N1—H12108.3
N4—Co1—N385.79 (11)N4—C4—C3108.3 (3)
N5—Co1—N389.84 (10)N4—C4—H13110.0
N6—Co1—N289.71 (10)C3—C4—H13110.0
N4—Co1—N2176.16 (10)N4—C4—H14110.0
N5—Co1—N291.35 (10)C3—C4—H14110.0
N3—Co1—N293.49 (11)H13—C4—H14108.4
N6—Co1—N190.96 (10)N6—C6—C5108.0 (2)
N4—Co1—N190.71 (10)N6—C6—H15110.1
N5—Co1—N1175.86 (10)C5—C6—H15110.1
N3—Co1—N193.10 (10)N6—C6—H16110.1
N2—Co1—N185.56 (10)C5—C6—H16110.1
C4—N4—Co1108.8 (2)H15—C6—H16108.4
C4—N4—H1109.9N5—C5—C6107.7 (2)
Co1—N4—H1109.9N5—C5—H17110.2
C4—N4—H2109.9C6—C5—H17110.2
Co1—N4—H2109.9N5—C5—H18110.2
H1—N4—H2108.3C6—C5—H18110.2
C6—N6—Co1109.92 (19)H17—C5—H18108.5
C6—N6—H3109.7N3—C3—C4107.6 (3)
Co1—N6—H3109.7N3—C3—H19110.2
C6—N6—H4109.7C4—C3—H19110.2
Co1—N6—H4109.7N3—C3—H20110.2
H3—N6—H4108.2C4—C3—H20110.2
C2—N2—Co1109.79 (18)H19—C3—H20108.5
C2—N2—H5109.7N2—C2—C1107.5 (2)
Co1—N2—H5109.7N2—C2—H21110.2
C2—N2—H6109.7C1—C2—H21110.2
Co1—N2—H6109.7N2—C2—H22110.2
H5—N2—H6108.2C1—C2—H22110.2
C5—N5—Co1108.99 (18)H21—C2—H22108.5
C5—N5—H7109.9N1—C1—C2107.7 (2)
Co1—N5—H7109.9N1—C1—H23110.2
C5—N5—H8109.9C2—C1—H23110.2
Co1—N5—H8109.9N1—C1—H24110.2
H7—N5—H8108.3C2—C1—H24110.2
C3—N3—Co1109.46 (19)H23—C1—H24108.5
C3—N3—H9109.8
N6—Co1—N4—C4169.42 (19)N6—Co1—N3—C341.7 (13)
N5—Co1—N4—C4104.27 (19)N4—Co1—N3—C312.23 (19)
N3—Co1—N4—C414.61 (19)N5—Co1—N3—C380.2 (2)
N2—Co1—N4—C464.6 (16)N2—Co1—N3—C3171.55 (19)
N1—Co1—N4—C478.44 (19)N1—Co1—N3—C3102.7 (2)
N4—Co1—N6—C680.3 (2)N6—Co1—N1—C173.6 (2)
N5—Co1—N6—C612.0 (2)N4—Co1—N1—C1164.9 (2)
N3—Co1—N6—C626.6 (14)N5—Co1—N1—C125.9 (16)
N2—Co1—N6—C6103.4 (2)N3—Co1—N1—C1109.2 (2)
N1—Co1—N6—C6171.1 (2)N2—Co1—N1—C116.0 (2)
N6—Co1—N2—C2102.5 (2)Co1—N4—C4—C338.5 (3)
N4—Co1—N2—C22.3 (17)Co1—N6—C6—C535.7 (3)
N5—Co1—N2—C2171.23 (19)Co1—N5—C5—C637.7 (3)
N3—Co1—N2—C281.3 (2)N6—C6—C5—N547.8 (3)
N1—Co1—N2—C211.53 (19)Co1—N3—C3—C436.3 (3)
N6—Co1—N5—C514.7 (2)N4—C4—C3—N348.9 (3)
N4—Co1—N5—C5105.8 (2)Co1—N2—C2—C136.2 (3)
N3—Co1—N5—C5168.4 (2)Co1—N1—C1—C239.9 (3)
N2—Co1—N5—C574.9 (2)N2—C2—C1—N149.7 (3)
N1—Co1—N5—C533.2 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···S3i0.902.503.380 (3)165.9
N4—H2···S2ii0.902.583.449 (3)163.7
N6—H3···S40.902.513.371 (3)161.2
N6—H4···S2ii0.902.643.507 (3)162.3
N2—H5···S40.902.753.577 (3)152.9
N2—H6···S1iii0.902.473.335 (3)160.5
N5—H7···S4i0.902.693.434 (2)140.6
N5—H8···S1iii0.902.493.354 (2)161.8
N3—H9···S3iv0.902.393.284 (3)172.8
N3—H10···S1iii0.902.653.485 (3)155.3
N1—H11···S3iv0.902.693.499 (3)150.3
N1—H12···S2ii0.902.663.523 (3)161.3
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
(II) Tris(ethylenediamine)cobalt(III) tetrathioantimonate(V) top
Crystal data top
[Co(C2H8N2)3][SbS4]F(000) = 1952
Mr = 489.23Dx = 1.987 Mg m3
Tetragonal, P42bcMo Kα radiation, λ = 0.71073 Å
Hall symbol: p 4c -2abµ = 3.17 mm1
a = 15.4909 (11) ÅT = 296 K
c = 13.6285 (9) ÅBlock, orange
V = 3270.4 (4) Å30.15 × 0.1 × 0.1 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3783 independent reflections
Radiation source: fine-focus sealed tube3449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(North et al., 1968)
h = 2020
Tmin = 0.648, Tmax = 0.742k = 2020
35970 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.013P)2 + 3.5797P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.002
S = 1.08Δρmax = 0.32 e Å3
3783 reflectionsΔρmin = 0.31 e Å3
163 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1808 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.328 (17)
Crystal data top
[Co(C2H8N2)3][SbS4]Z = 8
Mr = 489.23Mo Kα radiation
Tetragonal, P42bcµ = 3.17 mm1
a = 15.4909 (11) ÅT = 296 K
c = 13.6285 (9) Å0.15 × 0.1 × 0.1 mm
V = 3270.4 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3783 independent reflections
Absorption correction: multi-scan
(North et al., 1968)
3449 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.742Rint = 0.047
35970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.045Δρmax = 0.32 e Å3
S = 1.08Δρmin = 0.31 e Å3
3783 reflectionsAbsolute structure: Flack (1983), with 1808 Friedel pairs
163 parametersAbsolute structure parameter: 0.328 (17)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.74447 (3)0.52138 (3)0.60043 (4)0.01911 (10)
N10.7917 (2)0.4074 (2)0.6331 (2)0.0266 (7)
H130.74890.36800.63420.032*
H140.83050.39120.58760.032*
N20.8247 (2)0.5655 (2)0.7009 (2)0.0301 (8)
H150.85590.60930.67590.036*
H160.79460.58570.75250.036*
N30.65204 (19)0.5041 (2)0.6961 (2)0.0254 (7)
H170.62640.45280.68550.030*
H180.67400.50390.75720.030*
N40.6954 (2)0.6376 (2)0.5831 (2)0.0278 (7)
H190.73790.67710.58030.033*
H200.66550.63990.52650.033*
N50.82859 (19)0.53845 (18)0.4944 (3)0.0257 (7)
H210.83030.59470.47790.031*
H220.88150.52300.51530.031*
N60.67249 (19)0.47311 (19)0.4957 (3)0.0281 (7)
H230.66820.41560.50350.034*
H240.61900.49560.49970.034*
C10.7094 (3)0.4917 (3)0.3987 (3)0.0349 (10)
H110.69200.54880.37700.042*
H120.68930.44980.35110.042*
C20.8058 (3)0.4871 (3)0.4083 (3)0.0341 (9)
H90.82420.42780.41680.041*
H100.83330.51030.35010.041*
C30.5875 (2)0.5750 (3)0.6865 (3)0.0274 (8)
H70.55410.58050.74640.033*
H80.54820.56310.63270.033*
C40.6371 (2)0.6570 (2)0.6670 (3)0.0284 (9)
H50.59800.70370.65040.034*
H60.67030.67350.72430.034*
C50.8831 (3)0.4955 (3)0.7333 (3)0.0407 (11)
H30.90350.50690.79930.049*
H40.93270.49200.69000.049*
C60.8337 (3)0.4129 (3)0.7308 (3)0.0383 (10)
H10.87230.36430.74030.046*
H20.79060.41210.78230.046*
Sb10.942464 (13)0.756304 (13)0.506129 (18)0.02129 (5)
S11.02219 (7)0.86780 (7)0.43621 (8)0.0339 (2)
S21.02036 (6)0.62934 (6)0.51957 (11)0.0416 (3)
S30.88830 (7)0.78789 (7)0.66187 (8)0.0341 (2)
S40.82224 (6)0.73910 (7)0.40527 (8)0.0328 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0178 (2)0.0206 (2)0.0189 (2)0.0003 (2)0.0008 (2)0.0000 (2)
N10.0246 (16)0.0255 (17)0.0298 (18)0.0051 (13)0.0030 (13)0.0011 (13)
N20.0284 (18)0.0329 (18)0.0290 (18)0.0026 (14)0.0032 (14)0.0029 (14)
N30.0235 (17)0.0284 (17)0.0243 (16)0.0031 (14)0.0010 (13)0.0035 (13)
N40.0306 (18)0.0255 (16)0.0274 (17)0.0011 (13)0.0014 (14)0.0039 (13)
N50.0250 (14)0.0256 (15)0.0266 (19)0.0015 (11)0.0029 (15)0.0054 (15)
N60.0263 (15)0.0298 (15)0.0283 (18)0.0034 (12)0.0066 (16)0.0031 (16)
C10.041 (3)0.040 (2)0.024 (2)0.0006 (19)0.0029 (19)0.0051 (18)
C20.041 (2)0.038 (2)0.023 (2)0.0064 (19)0.0063 (18)0.0028 (18)
C30.0227 (19)0.035 (2)0.0244 (19)0.0058 (16)0.0052 (15)0.0029 (17)
C40.032 (2)0.028 (2)0.026 (2)0.0083 (16)0.0037 (17)0.0059 (16)
C50.025 (2)0.062 (3)0.035 (2)0.010 (2)0.0125 (19)0.009 (2)
C60.041 (3)0.049 (3)0.025 (2)0.019 (2)0.0039 (18)0.0057 (19)
Sb10.01989 (10)0.02054 (11)0.02346 (10)0.00045 (8)0.00092 (12)0.00065 (14)
S10.0354 (5)0.0388 (6)0.0273 (5)0.0161 (5)0.0035 (4)0.0052 (5)
S20.0293 (5)0.0308 (5)0.0648 (8)0.0106 (4)0.0106 (6)0.0025 (6)
S30.0399 (6)0.0360 (6)0.0264 (5)0.0024 (5)0.0060 (5)0.0012 (4)
S40.0257 (5)0.0392 (6)0.0335 (5)0.0057 (4)0.0090 (4)0.0104 (5)
Geometric parameters (Å, º) top
Co1—N31.955 (3)N6—H230.9000
Co1—N61.960 (3)N6—H240.9001
Co1—N11.963 (3)C1—C21.500 (6)
Co1—N51.964 (3)C1—H110.9700
Co1—N41.968 (3)C1—H120.9700
Co1—N21.971 (3)C2—H90.9700
N1—C61.484 (5)C2—H100.9700
N1—H130.9001C3—C41.508 (5)
N1—H140.8999C3—H70.9700
N2—C51.480 (5)C3—H80.9700
N2—H150.8999C4—H50.9700
N2—H160.9000C4—H60.9700
N3—C31.492 (5)C5—C61.492 (6)
N3—H170.9001C5—H30.9700
N3—H180.9001C5—H40.9700
N4—C41.487 (5)C6—H10.9700
N4—H190.9001C6—H20.9700
N4—H200.9000Sb1—S22.3147 (10)
N5—C21.461 (5)Sb1—S12.3273 (10)
N5—H210.9000Sb1—S42.3300 (10)
N5—H220.9000Sb1—S32.3342 (11)
N6—C11.468 (5)
N3—Co1—N690.96 (13)Co1—N6—H23109.4
N3—Co1—N189.89 (13)C1—N6—H24109.7
N6—Co1—N191.94 (13)Co1—N6—H24109.3
N3—Co1—N5174.39 (14)H23—N6—H24108.0
N6—Co1—N583.84 (14)N6—C1—C2107.4 (3)
N1—Co1—N592.35 (13)N6—C1—H11110.2
N3—Co1—N485.56 (13)C2—C1—H11110.2
N6—Co1—N492.37 (13)N6—C1—H12110.2
N1—Co1—N4173.78 (13)C2—C1—H12110.2
N5—Co1—N492.57 (13)H11—C1—H12108.5
N3—Co1—N292.67 (14)N5—C2—C1106.6 (3)
N6—Co1—N2175.51 (14)N5—C2—H9110.4
N1—Co1—N285.41 (13)C1—C2—H9110.4
N5—Co1—N292.63 (13)N5—C2—H10110.4
N4—Co1—N290.56 (14)C1—C2—H10110.4
C6—N1—Co1108.4 (2)H9—C2—H10108.6
C6—N1—H13110.3N3—C3—C4107.1 (3)
Co1—N1—H13109.8N3—C3—H7110.3
C6—N1—H14109.9C4—C3—H7110.3
Co1—N1—H14110.0N3—C3—H8110.3
H13—N1—H14108.4C4—C3—H8110.3
C5—N2—Co1109.8 (2)H7—C3—H8108.6
C5—N2—H15109.7N4—C4—C3106.0 (3)
Co1—N2—H15109.8N4—C4—H5110.5
C5—N2—H16109.7C3—C4—H5110.5
Co1—N2—H16109.6N4—C4—H6110.5
H15—N2—H16108.2C3—C4—H6110.5
C3—N3—Co1109.4 (2)H5—C4—H6108.7
C3—N3—H17109.9N2—C5—C6108.0 (3)
Co1—N3—H17109.7N2—C5—H3110.1
C3—N3—H18109.7C6—C5—H3110.1
Co1—N3—H18109.9N2—C5—H4110.1
H17—N3—H18108.2C6—C5—H4110.1
C4—N4—Co1109.1 (2)H3—C5—H4108.4
C4—N4—H19109.9N1—C6—C5107.2 (3)
Co1—N4—H19110.1N1—C6—H1110.3
C4—N4—H20109.8C5—C6—H1110.3
Co1—N4—H20109.7N1—C6—H2110.3
H19—N4—H20108.3C5—C6—H2110.3
C2—N5—Co1110.9 (2)H1—C6—H2108.5
C2—N5—H21109.5S2—Sb1—S1112.73 (4)
Co1—N5—H21109.5S2—Sb1—S4111.48 (4)
C2—N5—H22109.3S1—Sb1—S4105.52 (4)
Co1—N5—H22109.6S2—Sb1—S3107.07 (4)
H21—N5—H22108.1S1—Sb1—S3114.05 (4)
C1—N6—Co1111.1 (2)S4—Sb1—S3105.85 (4)
C1—N6—H23109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H13···S3i0.902.493.369 (3)166
N1—H14···S2ii0.902.513.346 (3)155
N2—H15···S30.902.823.622 (3)150
N2—H16···S4iii0.902.583.429 (3)158
N3—H17···S3i0.902.583.439 (3)159
N3—H18···S1iii0.902.563.312 (3)142
N4—H19···S40.902.883.494 (3)126
N4—H20···S1iv0.902.543.348 (3)150
N5—H21···S40.902.453.338 (3)170
N5—H22···S20.902.713.305 (3)125
N5—H22···S2ii0.902.813.514 (3)136
N6—H24···S1iv0.902.733.486 (3)142
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+2, y+1, z; (iii) y+3/2, x+3/2, z+1/2; (iv) x1/2, y+3/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C2H8N2)3][SbS4][Co(C2H8N2)3][SbS4]
Mr489.23489.23
Crystal system, space groupOrthorhombic, Pna21Tetragonal, P42bc
Temperature (K)296296
a, b, c (Å)14.1821 (8), 8.3971 (5), 13.6799 (8)15.4909 (11), 15.4909 (11), 13.6285 (9)
α, β, γ (°)90, 90, 9090, 90, 90
V3)1629.12 (16)3270.4 (4)
Z48
Radiation typeMo KαMo Kα
µ (mm1)3.183.17
Crystal size (mm)0.12 × 0.10 × 0.100.15 × 0.1 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(North et al., 1968)
Multi-scan
(North et al., 1968)
Tmin, Tmax0.701, 0.7410.648, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
18071, 3732, 3516 35970, 3783, 3449
Rint0.0330.047
(sin θ/λ)max1)0.6510.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.038, 1.03 0.021, 0.045, 1.08
No. of reflections37323783
No. of parameters163163
No. of restraints11
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.260.32, 0.31
Absolute structureFlack (1983), with 1774 Friedel pairsFlack (1983), with 1808 Friedel pairs
Absolute structure parameter0.009 (13)0.328 (17)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H1···S3i0.902.503.380 (3)165.9
N4—H2···S2ii0.902.583.449 (3)163.7
N6—H3···S40.902.513.371 (3)161.2
N6—H4···S2ii0.902.643.507 (3)162.3
N2—H5···S40.902.753.577 (3)152.9
N2—H6···S1iii0.902.473.335 (3)160.5
N5—H7···S4i0.902.693.434 (2)140.6
N5—H8···S1iii0.902.493.354 (2)161.8
N3—H9···S3iv0.902.393.284 (3)172.8
N3—H10···S1iii0.902.653.485 (3)155.3
N1—H11···S3iv0.902.693.499 (3)150.3
N1—H12···S2ii0.902.663.523 (3)161.3
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H13···S3i0.902.493.369 (3)165.5
N1—H14···S2ii0.902.513.346 (3)154.9
N2—H15···S30.902.823.622 (3)149.5
N2—H16···S4iii0.902.583.429 (3)158.2
N3—H17···S3i0.902.583.439 (3)158.6
N3—H18···S1iii0.902.563.312 (3)142.0
N4—H19···S40.902.883.494 (3)126.4
N4—H20···S1iv0.902.543.348 (3)149.6
N5—H21···S40.902.453.338 (3)169.6
N5—H22···S20.902.713.305 (3)124.6
N5—H22···S2ii0.902.813.514 (3)136.3
N6—H24···S1iv0.902.733.486 (3)141.7
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+2, y+1, z; (iii) y+3/2, x+3/2, z+1/2; (iv) x1/2, y+3/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds