Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the cyclic imides cis-2-(2-fluoro­phenyl)-3a,4,5,6,7,7a-hexa­hydro­iso­in­dole-1,3-dione, C14H14FNO2, (I), and cis-2-(4-fluoro­phenyl)-3a,4,5,6,7,7a-hexa­hydro­isoindoline-1,3-dione, C14H14FNO2, (III), and the open-chain amide acid rac-cis-2-[(3-fluoro­phenyl)­carbamoyl]­cyclo­hexane-1-carb­oxy­lic acid, C14H16FNO3, (II), are reported. Cyclic imides (I) and (III) are conformationally similar, with comparable ring rotations about the imide N—Car bond [the dihedral angles between the benzene ring and the five-membered isoindole ring are 55.40 (8)° for (I) and 51.83 (7)° for (III)]. There are no formal inter­molecular hydrogen bonds involved in the crystal packing of either (I) or (III). With the acid (II), in which the meta-related F-atom substituent is rotationally disordered (0.784:0.216), the amide group lies slightly out of the benzene plane [the inter­planar dihedral angle is 39.7 (1)°]. Inter­molecular amide–carboxyl N—H...O hydrogen-bonding inter­actions between centrosymmetrically related mol­ecules form stacks extending down b, and these are linked across c by carboxyl–amide O—H...O hydrogen bonds, giving two-dimensional layered structures which lie in the (011) plane. The structures reported here represent examples of com­pounds analogous to the phthalimides or phthalanilic acids and have little precedence in the crystallographic literature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011202447X/fg3250sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011202447X/fg3250Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S010827011202447X/fg3250Isup5.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011202447X/fg3250IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S010827011202447X/fg3250IIsup6.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011202447X/fg3250IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S010827011202447X/fg3250IIIsup7.cml
Supplementary material

CCDC references: 893489; 893490; 893491

Comment top

cis-Cyclohexane-1,2-dicarboxylic acid (cis-CHDC) is of interest because, unlike the trans isomer which forms separable dl pairs, it exists as an unresolvable racemic mixture of (1R,2S) and (1S,2R) enantiomeric components (Eliel, 1962). This situation arises because of the low interconversion potential between these components, resulting in racemization. The 1:1 stoichiometric reaction of cyclohexane-1,2-dicarboxylic anhydride (cis-CHDC anhydride, which has the cis configuration) with Lewis bases usually gives the hydrogen cis-CHDC proton-transfer salts, and the structures of a limited number of these have been determined: the racemic ammonium salt (a dihydrate) (Smith & Wermuth, 2011a), the isomeric racemic anhydrous 2-aminopyridinium (Smith & Wermuth, 2011b) and 4-aminopyridinium salts (Smith & Wermuth, 2011d), and the chiral brucinium salt [a dihydrate in which the (1R)-carboxylate (2S)-carboxy cis-CHDC species has been captured] (Smith et al., 2012). The structure of the 1:1 adducts of cis-CHDC with 4,4'-bipyridine (Bhogala et al., 2005) and with isoquinoline (Smith & Wermuth, 2011c) are also known.

However, with certain bases, particularly the anilines, but including urea, formation of amide carboxylates or cyclic imides may occur, analogous to those formed with phthalic anhydride, the phthalimides and the phthalanilic acids. The mechanism for the formation of the cyclic imide from the amide carboxylic acid via the loss of a mole of water has been proposed and found to proceed efficiently in the presence of acetic acid (Perry & Parveen, 2001). Commonly, the N-substituted hexahydroisoindoline-1,3-diones were prepared from the reaction of the primary amine with cis-CHDC anhydride using a condensation reaction promoted by hexamethyldisilazine (HMDS) (Reddy et al., 1997). However, occasionally the reaction may proceed in a facile manner, e.g. in the case of phthalic anhydride with certain anilines (giving either a phthalanilic acid or the cyclic phthalimide), or cis-CHDC anhydride with the aniline or urea. The structures of the cis-CHDC cyclic imides with 5-benzyloxy-2,4-dichloroaniline (Wang et al., 2005) or with urea (Wang et al., 2007) represent the only reported examples and in these the configuration is naturally racemic cis (R,S) or (S,R). With the cis-CHDC amide acids, there is only one example in the crystallographic literature, an unusual diastereoisomeric amide formed with phenylethylamine (Takahashi et al., 2003). Another unusual structure is the asymmetric imide carboxylic acid cis-2-(3-oxo-1,3,4,5,6,7-hexahydroisobenzofuran-1-yl)cyclohexane-1-carboxylic acid monohydrate, formed in the self-condensation of cis-CHDC anhydride with triethylamine (Newman et al., 2000).

Our 1:1 reaction of a series of substituted anilines with cis-CHDC anhydride under mild reaction conditions in a 50% ethanol–water solution yielded, in some cases, both cyclic imides and amide acids, and those formed with the isomeric monofluoroanilines are reported here. With the 2- and 4-fluoroanilines, the isomeric cyclic imides cis-2-(2-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, (I), and cis-2-(4-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, (III), respectively, were formed, while with 3-fluoroaniline, rac-cis-[2-(3-fluorophenyl)carbamoyl]cyclohexane-1-carboxylic acid, (II), was obtained. The structures of compounds (I)–(III) are shown in Figs. 1–3.

The two racemic cyclic imides, (I) and (III) (Figs. 1 and 3), from the 2- and 4-fluoroanilines, show many structural similarities. Both are conformationally similar with the five-membered isoindolyl ring system being distorted, with maximum deviations from planarity for either atom C8 or C9 of 0.152 (1) Å in (I) and 0.149 (1) Å in (III). There are also comparable benzene-ring rotations about the imide N—Caromatic bond, as indicated by the dihedral angles of 55.40 (8)° in (I) and 51.83 (7)° in (III) between the benzene and isoindole rings. Another feature common to both molecules is the strain within the cyclohexane ring system, which is indicated by the larger displacement parameters observed for the constituent C atoms. This has also been observed in other examples of cyclic imides of this series and is at its most extreme in the 4-bromo derivative (Smith & Wermuth, 2012), in which two independent and conformationally different molecules constitute the asymmetric unit contents, one with the cyclohexane ring ordered and the other disordered, having partial replacement of the (1R,2S)-substituted cyclohexane enantiomer by the (1S,2R) component. In the crystal packing of the two title imides, only weak aromatic C—H···O hydrogen-bonding interactions are found (Tables 1 and 3).

With the cis-amide carboxylic acid, (II) (Fig. 2), the benzene ring is rotationally disordered, with atom F31 at C31 [site-occupancy factor of 0.782 (4)] related to the minor component F51 at C51 [site-occupancy factor of 0.216 (4)]. The aminocarbonyl group defined by atoms C1/C12/O12/N11 is rotated out of the benzene plane [torsion angle C21—C11—N11—C12 = 42.1 (3)°], corresponding to a dihedral angle of 19.15 (10)° between these planes. The axially located carboxylic acid group is close to being coplanar with the C1—C2 bond of the cyclohexane ring [torsion angle C1—C2—C22—O21 = -176.91 (15)°]. In the crystal structure of (II), the molecules lie along the approximate a cell direction and form stacks down b through centrosymmetrically alternating molecular associations, and are linked by intermolecular amide–carboxyl N—H···O hydrogen bonds (Table 1). Lateral carboxyl–amide O—H···O hydrogen bonds link the stacks across c, giving a two-dimensional sheet structure extending along the (011) planes in the unit cell (Fig. 4).

The structures reported herein represent examples of two possible products, either amide carboxylic acids or cyclic imides, from the facile 1:1 stoichiometric reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with substituted anilines, and have few analogues reported in the crystallographic literature.

Related literature top

For related literature, see: Bhogala et al. (2005); Eliel (1962); Newman et al. (2000); Perry & Parveen (2001); Reddy et al. (1997); Smith & Wermuth (2011a, 2011b, 2011c, 2011d, 2012); Smith, Wermuth & Williams (2012); Takahashi et al. (2003); Wang et al. (2005, 2007).

Experimental top

The title compounds were synthesized by heating together under reflux for 15 min cyclohexane-1,2-dicarboxylic anhydride (1 mmol) and, respectively, 2-, 3- or 4-fluoroaniline (1 mmol) in ethanol–water (50 ml, 1:1 v/v). After reducing the volume to 30 ml, the solutions were filtered while hot and allowed the evaporate to incipient dryness at room temperature over a period of several weeks, giving either colourless plates [for (I) and (II)] or prisms [for (III)] [Block in CIF for (I) and (III) - please clarify] from which specimens were cleaved for the X-ray analyses.

Refinement top

The H atoms involved in hydrogen-bonding interactions in (II) (H11 and H22) were located by difference methods and their positional and isotropic displacement parameters were refined. The other H atoms in all structures were included in the respective refinements at calculated positions (C—H = 0.93–0.97 Å), with Uiso(H) = 1.2Ueq(C), using a riding-model approximation. For (II), atom F31 was found to be disordered, having a rotationally related component F51 [site-occupancy factors for F31:F51 refined to 0.784 (4):0.216 (4)].

Computing details top

For all compounds, data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The molecular configuration and atom-numbering scheme for (II). Atom F51 is the ca 22% component of the rotationally related disordered atom F31. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 3] Fig. 3. The molecular conformation and atom-numbering scheme for (III). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 4] Fig. 4. The two-dimensional hydrogen-bonded structure in (II), viewed down the b cell direction of the unit cell, showing hydrogen-bonding interactions as dashed lines. Non-associative H atoms have been omitted, together with the minor-occupancy atom F51. Symmetry codes are as in Table 1.
(I) cis-2-(2-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione top
Crystal data top
C14H14FNO2Z = 2
Mr = 247.26F(000) = 260
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0316 (4) ÅCell parameters from 3763 reflections
b = 8.1702 (4) Åθ = 3.3–28.8°
c = 9.2085 (5) ŵ = 0.10 mm1
α = 98.595 (4)°T = 200 K
β = 93.324 (4)°Block, colourless
γ = 97.260 (4)°0.40 × 0.30 × 0.25 mm
V = 590.86 (5) Å3
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
2305 independent reflections
Radiation source: Enhance (Mo) X-ray source1783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.969, Tmax = 0.989l = 1111
7051 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0572P)2]
where P = (Fo2 + 2Fc2)/3
2305 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H14FNO2γ = 97.260 (4)°
Mr = 247.26V = 590.86 (5) Å3
Triclinic, P1Z = 2
a = 8.0316 (4) ÅMo Kα radiation
b = 8.1702 (4) ŵ = 0.10 mm1
c = 9.2085 (5) ÅT = 200 K
α = 98.595 (4)°0.40 × 0.30 × 0.25 mm
β = 93.324 (4)°
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
2305 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1783 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.989Rint = 0.022
7051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
2305 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F210.74386 (11)0.59410 (12)0.94457 (10)0.0446 (3)
O10.46040 (12)0.13876 (12)0.70637 (11)0.0335 (3)
O30.87098 (12)0.55671 (12)0.64213 (11)0.0326 (3)
N20.64353 (13)0.37625 (13)0.69026 (12)0.0246 (3)
C10.59322 (17)0.20271 (16)0.67222 (15)0.0249 (4)
C30.80782 (17)0.41573 (17)0.65001 (15)0.0250 (4)
C40.99212 (18)0.25073 (18)0.77153 (17)0.0337 (5)
C51.02424 (19)0.07392 (19)0.78648 (18)0.0371 (5)
C60.85789 (19)0.03854 (18)0.78468 (17)0.0343 (5)
C70.75306 (18)0.05104 (17)0.63997 (16)0.0313 (4)
C80.73070 (17)0.11964 (17)0.59760 (15)0.0269 (4)
C90.88515 (17)0.25640 (17)0.62776 (16)0.0270 (4)
C110.54230 (16)0.49939 (16)0.74467 (15)0.0245 (4)
C210.59667 (17)0.61008 (18)0.87238 (15)0.0280 (4)
C310.5055 (2)0.73352 (18)0.92780 (17)0.0371 (5)
C410.3533 (2)0.74495 (19)0.85443 (18)0.0390 (5)
C510.29473 (19)0.63391 (19)0.72814 (18)0.0356 (5)
C610.38940 (17)0.51205 (18)0.67305 (16)0.0290 (4)
H4A1.099100.321200.773100.0400*
H4B0.934400.295300.855100.0400*
H5A1.087000.030500.705800.0440*
H5B1.091000.075600.878000.0440*
H6A0.795300.005700.865100.0410*
H6B0.879700.149200.799400.0410*
H7A0.643000.112200.647200.0380*
H7B0.806600.114000.562400.0380*
H80.699700.101500.491300.0320*
H90.954500.252100.543500.0320*
H310.545400.807801.012900.0440*
H410.290000.827800.890200.0470*
H510.191400.641200.680100.0430*
H610.350100.438300.587500.0350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F210.0431 (6)0.0479 (6)0.0397 (5)0.0032 (4)0.0095 (4)0.0047 (4)
O10.0284 (5)0.0289 (6)0.0404 (6)0.0046 (4)0.0056 (4)0.0028 (5)
O30.0297 (5)0.0233 (5)0.0458 (6)0.0012 (4)0.0051 (4)0.0100 (5)
N20.0228 (6)0.0206 (6)0.0300 (6)0.0025 (5)0.0024 (5)0.0034 (5)
C10.0276 (7)0.0223 (7)0.0231 (7)0.0005 (6)0.0018 (6)0.0025 (5)
C30.0226 (7)0.0263 (8)0.0261 (7)0.0015 (6)0.0006 (5)0.0058 (6)
C40.0278 (8)0.0284 (8)0.0439 (9)0.0010 (6)0.0049 (6)0.0099 (7)
C50.0354 (8)0.0353 (9)0.0427 (9)0.0085 (7)0.0032 (7)0.0124 (7)
C60.0448 (9)0.0233 (8)0.0367 (9)0.0067 (7)0.0041 (7)0.0091 (6)
C70.0365 (8)0.0198 (7)0.0363 (8)0.0025 (6)0.0040 (6)0.0010 (6)
C80.0311 (8)0.0241 (7)0.0246 (7)0.0035 (6)0.0011 (6)0.0015 (6)
C90.0269 (7)0.0254 (7)0.0306 (8)0.0047 (6)0.0075 (6)0.0076 (6)
C110.0245 (7)0.0213 (7)0.0286 (8)0.0026 (6)0.0062 (6)0.0057 (6)
C210.0277 (7)0.0282 (8)0.0274 (8)0.0005 (6)0.0003 (6)0.0064 (6)
C310.0493 (10)0.0277 (8)0.0325 (9)0.0014 (7)0.0113 (7)0.0006 (7)
C410.0433 (9)0.0316 (8)0.0470 (10)0.0137 (7)0.0194 (7)0.0087 (7)
C510.0277 (8)0.0374 (9)0.0464 (10)0.0092 (7)0.0079 (7)0.0157 (7)
C610.0257 (7)0.0307 (8)0.0305 (8)0.0020 (6)0.0020 (6)0.0062 (6)
Geometric parameters (Å, º) top
F21—C211.3529 (16)C31—C411.383 (2)
O1—C11.2071 (17)C41—C511.382 (2)
O3—C31.2128 (17)C51—C611.383 (2)
N2—C11.4065 (17)C4—H4A0.9700
N2—C31.4026 (17)C4—H4B0.9700
N2—C111.4239 (17)C5—H5A0.9700
C1—C81.5133 (19)C5—H5B0.9700
C3—C91.504 (2)C6—H6A0.9700
C4—C51.524 (2)C6—H6B0.9700
C4—C91.546 (2)C7—H7A0.9700
C5—C61.521 (2)C7—H7B0.9700
C6—C71.517 (2)C8—H80.9800
C7—C81.532 (2)C9—H90.9800
C8—C91.543 (2)C31—H310.9300
C11—C211.3836 (19)C41—H410.9300
C11—C611.3829 (19)C51—H510.9300
C21—C311.375 (2)C61—H610.9300
C1—N2—C3112.11 (11)C9—C4—H4B109.00
C1—N2—C11124.71 (11)H4A—C4—H4B108.00
C3—N2—C11123.17 (11)C4—C5—H5A110.00
O1—C1—N2124.13 (12)C4—C5—H5B110.00
O1—C1—C8128.71 (12)C6—C5—H5A110.00
N2—C1—C8107.09 (11)C6—C5—H5B110.00
O3—C3—N2123.50 (13)H5A—C5—H5B108.00
O3—C3—C9128.95 (13)C5—C6—H6A109.00
N2—C3—C9107.49 (11)C5—C6—H6B109.00
C5—C4—C9112.18 (12)C7—C6—H6A109.00
C4—C5—C6110.01 (12)C7—C6—H6B109.00
C5—C6—C7111.31 (13)H6A—C6—H6B108.00
C6—C7—C8113.14 (12)C6—C7—H7A109.00
C1—C8—C7114.60 (11)C6—C7—H7B109.00
C1—C8—C9103.51 (11)C8—C7—H7A109.00
C7—C8—C9116.97 (12)C8—C7—H7B109.00
C3—C9—C4107.17 (12)H7A—C7—H7B108.00
C3—C9—C8103.24 (11)C1—C8—H8107.00
C4—C9—C8113.19 (12)C7—C8—H8107.00
N2—C11—C21119.82 (12)C9—C8—H8107.00
N2—C11—C61121.70 (12)C3—C9—H9111.00
C21—C11—C61118.48 (13)C4—C9—H9111.00
F21—C21—C11118.31 (12)C8—C9—H9111.00
F21—C21—C31119.57 (13)C21—C31—H31121.00
C11—C21—C31122.12 (13)C41—C31—H31121.00
C21—C31—C41118.65 (14)C31—C41—H41120.00
C31—C41—C51120.34 (15)C51—C41—H41120.00
C41—C51—C61120.13 (14)C41—C51—H51120.00
C11—C61—C51120.27 (14)C61—C51—H51120.00
C5—C4—H4A109.00C11—C61—H61120.00
C5—C4—H4B109.00C51—C61—H61120.00
C9—C4—H4A109.00
C3—N2—C1—O1176.24 (13)C5—C4—C9—C845.91 (16)
C11—N2—C1—O13.0 (2)C9—C4—C5—C658.99 (16)
C3—N2—C1—C86.50 (15)C4—C5—C6—C762.01 (16)
C11—N2—C1—C8174.29 (12)C5—C6—C7—C851.82 (16)
C11—N2—C3—C9168.84 (12)C6—C7—C8—C181.64 (15)
C1—N2—C11—C21119.11 (15)C6—C7—C8—C939.78 (17)
C3—N2—C11—C2160.02 (18)C1—C8—C9—C490.39 (13)
C1—N2—C11—C6160.88 (19)C7—C8—C9—C3152.18 (12)
C1—N2—C3—O3172.17 (13)C7—C8—C9—C436.67 (17)
C11—N2—C3—O38.6 (2)C1—C8—C9—C325.12 (13)
C1—N2—C3—C910.39 (15)N2—C11—C21—F211.96 (19)
C3—N2—C11—C61119.99 (15)N2—C11—C21—C31178.57 (13)
O1—C1—C8—C734.4 (2)C61—C11—C21—F21178.03 (12)
N2—C1—C8—C7148.47 (12)C61—C11—C21—C311.4 (2)
N2—C1—C8—C919.94 (14)N2—C11—C61—C51179.48 (13)
O1—C1—C8—C9162.98 (14)C21—C11—C61—C510.5 (2)
N2—C3—C9—C822.21 (14)F21—C21—C31—C41178.34 (13)
O3—C3—C9—C479.72 (18)C11—C21—C31—C411.1 (2)
O3—C3—C9—C8160.53 (14)C21—C31—C41—C510.1 (2)
N2—C3—C9—C497.54 (13)C31—C41—C51—C611.0 (2)
C5—C4—C9—C3159.07 (12)C41—C51—C61—C110.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31···O1i0.932.563.3589 (18)144
C51—H51···O3ii0.932.573.4064 (18)150
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z.
(II) rac-cis-2-[(3-fluorophenyl)carbamoyl]cyclohexane-1-carboxylic acid top
Crystal data top
C14H16FNO3F(000) = 560
Mr = 265.28Dx = 1.382 Mg m3
Monoclinic, P21/cMelting point: 423 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.3688 (8) ÅCell parameters from 2473 reflections
b = 8.7802 (6) Åθ = 3.2–28.8°
c = 12.7989 (10) ŵ = 0.11 mm1
β = 93.436 (7)°T = 200 K
V = 1275.29 (16) Å3Plate, colourless
Z = 40.45 × 0.40 × 0.05 mm
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
2499 independent reflections
Radiation source: Enhance (Mo) X-ray source1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1413
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.881, Tmax = 0.980l = 1515
8075 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.86 w = 1/[σ2(Fo2) + (0.0463P)2]
where P = (Fo2 + 2Fc2)/3
2499 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H16FNO3V = 1275.29 (16) Å3
Mr = 265.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3688 (8) ŵ = 0.11 mm1
b = 8.7802 (6) ÅT = 200 K
c = 12.7989 (10) Å0.45 × 0.40 × 0.05 mm
β = 93.436 (7)°
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
2499 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1530 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.980Rint = 0.051
8075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.18 e Å3
2499 reflectionsΔρmin = 0.16 e Å3
190 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F310.07190 (14)0.14561 (19)0.55050 (14)0.0578 (7)0.784 (4)
O120.49018 (12)0.11533 (15)0.60592 (11)0.0405 (5)
O210.65771 (12)0.43023 (16)0.81044 (11)0.0363 (5)
O220.54066 (11)0.46189 (14)0.66584 (10)0.0322 (4)
N110.46302 (14)0.25094 (18)0.45646 (13)0.0271 (5)
C10.65784 (16)0.24514 (19)0.55040 (15)0.0250 (6)
C20.69525 (15)0.2733 (2)0.66620 (14)0.0249 (6)
C30.82771 (16)0.3025 (2)0.68136 (16)0.0333 (7)
C40.86591 (17)0.4320 (2)0.61238 (17)0.0378 (7)
C50.83022 (17)0.4007 (2)0.49798 (16)0.0373 (7)
C60.69886 (16)0.3734 (2)0.48017 (15)0.0284 (6)
C110.34466 (16)0.20884 (19)0.43100 (15)0.0265 (6)
C120.52953 (16)0.2008 (2)0.54022 (15)0.0259 (6)
C210.26381 (16)0.1982 (2)0.50736 (17)0.0319 (7)
C220.62315 (16)0.39857 (19)0.71163 (15)0.0243 (6)
C310.15025 (18)0.1568 (2)0.47794 (19)0.0401 (8)
C410.11264 (19)0.1275 (2)0.3759 (2)0.0444 (8)
C510.1944 (2)0.1407 (2)0.3020 (2)0.0459 (8)
C610.30947 (18)0.1798 (2)0.32728 (17)0.0363 (7)
F510.1571 (6)0.1058 (9)0.2127 (5)0.077 (3)0.216 (4)
H10.701300.154400.530400.0300*
H3A0.847600.327400.754100.0400*
H3B0.870100.210700.664600.0400*
H4A0.950800.444000.620900.0450*
H4B0.829800.526200.633800.0450*
H5A0.852600.486700.456000.0450*
H5B0.872400.311900.475000.0450*
H6A0.680800.346900.407400.0340*
H6B0.656700.466300.494900.0340*
H110.4966 (15)0.312 (2)0.4175 (14)0.021 (5)*
H210.286000.218700.577100.0380*
H220.608 (2)0.499 (3)0.840 (2)0.070 (8)*
H410.035100.099900.357800.0530*
H510.171900.120700.232600.0550*0.784 (4)
H610.363200.186700.275500.0440*
H20.678700.179600.704300.0300*
H310.096100.148200.529300.0480*0.216 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F310.0384 (10)0.0724 (13)0.0646 (13)0.0000 (8)0.0195 (9)0.0098 (9)
O120.0400 (8)0.0417 (9)0.0391 (9)0.0110 (6)0.0022 (7)0.0182 (7)
O210.0453 (9)0.0379 (8)0.0253 (8)0.0124 (7)0.0023 (7)0.0067 (7)
O220.0333 (8)0.0353 (7)0.0279 (8)0.0102 (6)0.0004 (6)0.0027 (6)
N110.0310 (9)0.0230 (9)0.0274 (10)0.0035 (7)0.0025 (8)0.0069 (8)
C10.0301 (11)0.0211 (9)0.0239 (10)0.0037 (8)0.0023 (8)0.0018 (8)
C20.0290 (10)0.0215 (9)0.0238 (11)0.0021 (8)0.0007 (8)0.0031 (8)
C30.0326 (11)0.0341 (11)0.0326 (12)0.0069 (9)0.0024 (9)0.0046 (9)
C40.0277 (11)0.0384 (12)0.0473 (13)0.0044 (9)0.0015 (10)0.0032 (11)
C50.0365 (12)0.0360 (12)0.0404 (13)0.0016 (9)0.0110 (10)0.0039 (10)
C60.0353 (11)0.0262 (10)0.0241 (11)0.0041 (8)0.0052 (8)0.0005 (9)
C110.0279 (10)0.0171 (9)0.0342 (12)0.0009 (8)0.0006 (9)0.0036 (8)
C120.0338 (11)0.0177 (9)0.0261 (11)0.0004 (8)0.0013 (9)0.0003 (9)
C210.0335 (12)0.0265 (10)0.0356 (12)0.0022 (9)0.0025 (10)0.0040 (9)
C220.0262 (10)0.0239 (10)0.0229 (11)0.0033 (8)0.0019 (8)0.0028 (8)
C310.0306 (12)0.0349 (12)0.0553 (16)0.0017 (9)0.0062 (11)0.0091 (11)
C410.0310 (12)0.0357 (12)0.0650 (17)0.0052 (9)0.0094 (12)0.0001 (12)
C510.0422 (14)0.0441 (13)0.0496 (16)0.0021 (10)0.0118 (12)0.0067 (12)
C610.0381 (12)0.0354 (12)0.0350 (13)0.0020 (9)0.0003 (10)0.0049 (10)
F510.067 (5)0.116 (6)0.043 (4)0.013 (4)0.027 (4)0.019 (4)
Geometric parameters (Å, º) top
F31—C311.328 (3)C21—C311.372 (3)
F51—C511.234 (7)C31—C411.374 (3)
O12—C121.231 (2)C41—C511.370 (3)
O21—C221.331 (2)C51—C611.372 (3)
O22—C221.211 (2)C1—H10.9800
O21—H220.92 (3)C2—H20.9800
N11—C111.415 (2)C3—H3A0.9700
N11—C121.348 (2)C3—H3B0.9700
N11—H110.839 (18)C4—H4A0.9700
C1—C121.508 (3)C4—H4B0.9700
C1—C61.531 (3)C5—H5A0.9700
C1—C21.537 (3)C5—H5B0.9700
C2—C31.528 (3)C6—H6A0.9700
C2—C221.509 (2)C6—H6B0.9700
C3—C41.519 (3)C21—H210.9300
C4—C51.521 (3)C31—H310.9300
C5—C61.516 (3)C41—H410.9300
C11—C611.387 (3)C51—H510.9300
C11—C211.384 (3)C61—H610.9300
C22—O21—H22111.9 (15)C12—C1—H1106.00
C11—N11—C12125.33 (16)C1—C2—H2107.00
C11—N11—H11119.4 (12)C3—C2—H2107.00
C12—N11—H11115.3 (12)C22—C2—H2107.00
C6—C1—C12117.80 (15)C2—C3—H3A109.00
C2—C1—C12109.58 (15)C2—C3—H3B109.00
C2—C1—C6111.80 (14)C4—C3—H3A109.00
C1—C2—C3111.28 (15)C4—C3—H3B109.00
C1—C2—C22111.31 (15)H3A—C3—H3B108.00
C3—C2—C22112.50 (15)C3—C4—H4A109.00
C2—C3—C4111.45 (15)C3—C4—H4B109.00
C3—C4—C5110.81 (15)C5—C4—H4A110.00
C4—C5—C6112.14 (16)C5—C4—H4B109.00
C1—C6—C5111.10 (15)H4A—C4—H4B108.00
N11—C11—C21121.18 (17)C4—C5—H5A109.00
N11—C11—C61118.97 (17)C4—C5—H5B109.00
C21—C11—C61119.85 (18)C6—C5—H5A109.00
N11—C12—C1118.55 (16)C6—C5—H5B109.00
O12—C12—N11122.19 (17)H5A—C5—H5B108.00
O12—C12—C1119.19 (17)C1—C6—H6A109.00
C11—C21—C31118.5 (2)C1—C6—H6B109.00
O21—C22—O22122.68 (16)C5—C6—H6A109.00
O21—C22—C2112.47 (15)C5—C6—H6B109.00
O22—C22—C2124.82 (17)H6A—C6—H6B108.00
F31—C31—C21119.2 (2)C11—C21—H21121.00
F31—C31—C41117.85 (19)C31—C21—H21121.00
C21—C31—C41123.0 (2)C21—C31—H31119.00
C31—C41—C51117.1 (2)C41—C31—H31118.00
C41—C51—C61122.3 (2)C31—C41—H41121.00
F51—C51—C41114.1 (4)C51—C41—H41121.00
F51—C51—C61123.4 (4)C41—C51—H51119.00
C11—C61—C51119.2 (2)C61—C51—H51119.00
C2—C1—H1106.00C11—C61—H61120.00
C6—C1—H1106.00C51—C61—H61120.00
C12—N11—C11—C2142.1 (3)C1—C2—C22—O225.0 (2)
C12—N11—C11—C61138.77 (19)C3—C2—C22—O2151.3 (2)
C11—N11—C12—O122.7 (3)C3—C2—C22—O22130.70 (19)
C11—N11—C12—C1174.22 (16)C2—C3—C4—C556.0 (2)
C6—C1—C2—C353.38 (19)C3—C4—C5—C656.5 (2)
C6—C1—C2—C2272.97 (18)C4—C5—C6—C155.06 (19)
C12—C1—C2—C3174.14 (14)N11—C11—C21—C31179.98 (17)
C12—C1—C2—C2259.51 (18)C61—C11—C21—C310.9 (3)
C2—C1—C6—C553.4 (2)N11—C11—C61—C51179.22 (16)
C12—C1—C6—C5178.42 (16)C21—C11—C61—C510.0 (3)
C2—C1—C12—O1239.7 (2)C11—C21—C31—F31179.75 (17)
C2—C1—C12—N11143.30 (16)C11—C21—C31—C411.0 (3)
C6—C1—C12—O12168.95 (16)F31—C31—C41—C51179.52 (17)
C6—C1—C12—N1114.0 (2)C21—C31—C41—C510.2 (3)
C1—C2—C3—C454.8 (2)C31—C41—C51—C610.7 (3)
C22—C2—C3—C470.9 (2)C41—C51—C61—C110.7 (3)
C1—C2—C22—O21176.93 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O22i0.839 (18)2.281 (18)2.967 (2)139.1 (15)
O21—H22···O12ii0.92 (3)1.69 (2)2.613 (2)176 (2)
C3—H3A···O210.972.492.847 (2)102
C21—H21···O120.932.502.891 (2)106
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.
(III) cis-2-(4-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindoline-1,3-dione top
Crystal data top
C14H14FNO2F(000) = 520
Mr = 247.26Dx = 1.365 Mg m3
Monoclinic, P21/nMelting point: 432 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.7554 (3) ÅCell parameters from 3937 reflections
b = 6.6709 (2) Åθ = 3.3–28.8°
c = 16.8466 (4) ŵ = 0.10 mm1
β = 95.275 (3)°T = 200 K
V = 1203.59 (6) Å3Block, colourless
Z = 40.45 × 0.40 × 0.35 mm
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
2362 independent reflections
Radiation source: Enhance (Mo) X-ray source1826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1312
Tmin = 0.960, Tmax = 0.990k = 88
7621 measured reflectionsl = 1520
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
2362 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H14FNO2V = 1203.59 (6) Å3
Mr = 247.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7554 (3) ŵ = 0.10 mm1
b = 6.6709 (2) ÅT = 200 K
c = 16.8466 (4) Å0.45 × 0.40 × 0.35 mm
β = 95.275 (3)°
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
2362 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1826 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.990Rint = 0.023
7621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2362 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F410.98589 (8)0.53072 (13)0.14464 (5)0.0484 (3)
O10.55788 (9)0.11575 (13)0.08309 (6)0.0369 (3)
O30.43405 (10)0.41618 (15)0.22711 (6)0.0416 (3)
N20.52616 (10)0.16853 (15)0.15684 (6)0.0259 (3)
C10.49326 (13)0.02013 (19)0.12431 (7)0.0267 (4)
C30.42763 (13)0.2562 (2)0.19302 (8)0.0300 (4)
C40.23234 (14)0.2201 (2)0.10688 (10)0.0394 (5)
C50.14036 (14)0.0722 (2)0.06559 (9)0.0393 (5)
C60.21097 (14)0.1016 (2)0.03281 (8)0.0387 (5)
C70.28566 (14)0.2128 (2)0.09896 (9)0.0371 (4)
C80.36912 (13)0.07747 (19)0.15378 (7)0.0297 (4)
C90.31420 (13)0.1243 (2)0.17605 (8)0.0312 (4)
C110.64598 (12)0.26057 (18)0.15225 (7)0.0235 (4)
C210.65288 (13)0.44927 (19)0.11827 (7)0.0278 (4)
C310.76764 (13)0.5408 (2)0.11575 (8)0.0308 (4)
C410.87280 (12)0.4400 (2)0.14655 (8)0.0300 (4)
C510.86864 (13)0.2524 (2)0.17993 (8)0.0299 (4)
C610.75336 (13)0.16258 (19)0.18286 (7)0.0268 (4)
H4A0.186500.331500.127000.0470*
H4B0.285500.272800.068300.0470*
H5A0.084600.022700.103200.0470*
H5B0.090500.138700.022500.0470*
H6A0.152200.192800.004500.0460*
H6B0.266700.051400.004700.0460*
H7A0.337200.312100.075700.0440*
H7B0.228600.283400.130500.0440*
H80.388200.151400.203700.0360*
H90.268200.111400.223400.0370*
H210.580600.513800.097300.0330*
H310.773700.667800.093700.0370*
H510.941400.187700.200000.0360*
H610.747900.036000.205400.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F410.0260 (5)0.0518 (6)0.0683 (6)0.0098 (4)0.0099 (4)0.0038 (4)
O10.0337 (6)0.0256 (5)0.0518 (6)0.0048 (5)0.0068 (5)0.0063 (4)
O30.0325 (6)0.0417 (6)0.0517 (6)0.0059 (5)0.0094 (5)0.0228 (5)
N20.0222 (6)0.0252 (6)0.0302 (6)0.0006 (5)0.0017 (5)0.0027 (4)
C10.0279 (8)0.0202 (7)0.0310 (7)0.0031 (6)0.0022 (6)0.0028 (5)
C30.0255 (8)0.0341 (8)0.0303 (7)0.0019 (6)0.0029 (6)0.0062 (6)
C40.0229 (8)0.0339 (8)0.0604 (9)0.0041 (6)0.0017 (7)0.0067 (7)
C50.0245 (8)0.0433 (8)0.0487 (8)0.0001 (7)0.0049 (7)0.0056 (7)
C60.0318 (8)0.0491 (9)0.0348 (7)0.0072 (7)0.0013 (7)0.0116 (6)
C70.0338 (8)0.0275 (7)0.0496 (8)0.0064 (7)0.0022 (7)0.0053 (6)
C80.0301 (8)0.0287 (7)0.0299 (7)0.0042 (6)0.0001 (6)0.0055 (5)
C90.0267 (7)0.0364 (7)0.0317 (7)0.0056 (6)0.0088 (6)0.0095 (6)
C110.0221 (7)0.0243 (6)0.0238 (6)0.0007 (5)0.0011 (5)0.0031 (5)
C210.0243 (7)0.0276 (7)0.0309 (7)0.0037 (6)0.0007 (6)0.0004 (5)
C310.0331 (8)0.0263 (7)0.0334 (7)0.0004 (6)0.0056 (6)0.0023 (6)
C410.0207 (7)0.0361 (8)0.0338 (7)0.0045 (6)0.0060 (6)0.0064 (6)
C510.0224 (7)0.0368 (8)0.0298 (7)0.0069 (6)0.0013 (6)0.0027 (6)
C610.0291 (7)0.0268 (7)0.0244 (6)0.0039 (6)0.0016 (6)0.0012 (5)
Geometric parameters (Å, º) top
F41—C411.3616 (16)C31—C411.3758 (19)
O1—C11.2087 (16)C41—C511.3744 (19)
O3—C31.2109 (17)C51—C611.382 (2)
N2—C11.4049 (16)C4—H4A0.9700
N2—C31.3983 (17)C4—H4B0.9700
N2—C111.4360 (17)C5—H5A0.9700
C1—C81.5157 (19)C5—H5B0.9700
C3—C91.510 (2)C6—H6A0.9700
C4—C51.520 (2)C6—H6B0.9700
C4—C91.534 (2)C7—H7A0.9700
C5—C61.518 (2)C7—H7B0.9700
C6—C71.508 (2)C8—H80.9800
C7—C81.5236 (19)C9—H90.9800
C8—C91.5304 (19)C21—H210.9300
C11—C211.3877 (17)C31—H310.9300
C11—C611.3848 (18)C51—H510.9300
C21—C311.381 (2)C61—H610.9300
C1—N2—C3111.77 (11)C9—C4—H4B109.00
C1—N2—C11123.86 (10)H4A—C4—H4B108.00
C3—N2—C11124.37 (10)C4—C5—H5A110.00
O1—C1—N2124.01 (12)C4—C5—H5B110.00
O1—C1—C8128.71 (12)C6—C5—H5A110.00
N2—C1—C8107.23 (10)C6—C5—H5B110.00
O3—C3—N2124.26 (13)H5A—C5—H5B108.00
O3—C3—C9127.82 (13)C5—C6—H6A109.00
N2—C3—C9107.77 (11)C5—C6—H6B109.00
C5—C4—C9112.41 (11)C7—C6—H6A109.00
C4—C5—C6109.64 (12)C7—C6—H6B109.00
C5—C6—C7110.94 (12)H6A—C6—H6B108.00
C6—C7—C8113.62 (11)C6—C7—H7A109.00
C1—C8—C7116.02 (11)C6—C7—H7B109.00
C1—C8—C9103.29 (10)C8—C7—H7A109.00
C7—C8—C9116.78 (11)C8—C7—H7B109.00
C3—C9—C4107.36 (11)H7A—C7—H7B108.00
C3—C9—C8103.63 (11)C1—C8—H8107.00
C4—C9—C8112.81 (11)C7—C8—H8107.00
N2—C11—C21119.50 (11)C9—C8—H8107.00
N2—C11—C61120.00 (11)C3—C9—H9111.00
C21—C11—C61120.49 (12)C4—C9—H9111.00
C11—C21—C31119.71 (12)C8—C9—H9111.00
C21—C31—C41118.58 (12)C11—C21—H21120.00
F41—C41—C31118.62 (12)C31—C21—H21120.00
F41—C41—C51118.50 (12)C21—C31—H31121.00
C31—C41—C51122.87 (13)C41—C31—H31121.00
C41—C51—C61118.19 (12)C41—C51—H51121.00
C11—C61—C51120.15 (12)C61—C51—H51121.00
C5—C4—H4A109.00C11—C61—H61120.00
C5—C4—H4B109.00C51—C61—H61120.00
C9—C4—H4A109.00
C3—N2—C1—O1172.13 (12)C5—C4—C9—C3160.52 (12)
C3—N2—C1—C810.28 (14)C5—C4—C9—C846.98 (16)
C11—N2—C1—O17.02 (19)C4—C5—C6—C761.54 (15)
C11—N2—C1—C8170.58 (10)C5—C6—C7—C851.74 (16)
C1—N2—C3—O3177.95 (13)C6—C7—C8—C181.87 (15)
C1—N2—C3—C96.20 (14)C6—C7—C8—C940.33 (17)
C11—N2—C3—O32.9 (2)C1—C8—C9—C324.62 (12)
C11—N2—C3—C9172.94 (11)C1—C8—C9—C491.17 (13)
C1—N2—C11—C21123.46 (13)C7—C8—C9—C3153.23 (11)
C1—N2—C11—C6157.67 (16)C7—C8—C9—C437.44 (16)
C3—N2—C11—C2155.58 (16)N2—C11—C21—C31178.18 (11)
C3—N2—C11—C61123.29 (13)C61—C11—C21—C310.69 (18)
O1—C1—C8—C731.58 (19)N2—C11—C61—C51178.75 (11)
O1—C1—C8—C9160.66 (13)C21—C11—C61—C510.12 (18)
N2—C1—C8—C7150.98 (11)C11—C21—C31—C410.72 (19)
N2—C1—C8—C921.90 (12)C21—C31—C41—F41179.51 (11)
O3—C3—C9—C475.71 (17)C21—C31—C41—C510.2 (2)
O3—C3—C9—C8164.71 (13)F41—C41—C51—C61178.95 (11)
N2—C3—C9—C499.95 (12)C31—C41—C51—C610.4 (2)
N2—C3—C9—C819.63 (13)C41—C51—C61—C110.40 (19)
C9—C4—C5—C659.53 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.493.1151 (16)125
C51—H51···O3ii0.932.513.3728 (17)155
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC14H14FNO2C14H16FNO3C14H14FNO2
Mr247.26265.28247.26
Crystal system, space groupTriclinic, P1Monoclinic, P21/cMonoclinic, P21/n
Temperature (K)200200200
a, b, c (Å)8.0316 (4), 8.1702 (4), 9.2085 (5)11.3688 (8), 8.7802 (6), 12.7989 (10)10.7554 (3), 6.6709 (2), 16.8466 (4)
α, β, γ (°)98.595 (4), 93.324 (4), 97.260 (4)90, 93.436 (7), 9090, 95.275 (3), 90
V3)590.86 (5)1275.29 (16)1203.59 (6)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.110.10
Crystal size (mm)0.40 × 0.30 × 0.250.45 × 0.40 × 0.050.45 × 0.40 × 0.35
Data collection
DiffractometerOxford Gemini-S CCD area-detector
diffractometer
Oxford Gemini-S CCD area-detector
diffractometer
Oxford Gemini-S CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.969, 0.9890.881, 0.9800.960, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7051, 2305, 1783 8075, 2499, 1530 7621, 2362, 1826
Rint0.0220.0510.023
(sin θ/λ)max1)0.6170.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.08 0.044, 0.092, 0.86 0.035, 0.091, 1.03
No. of reflections230524992362
No. of parameters163190163
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.200.18, 0.160.20, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C31—H31···O1i0.932.563.3589 (18)144
C51—H51···O3ii0.932.573.4064 (18)150
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O22i0.839 (18)2.281 (18)2.967 (2)139.1 (15)
O21—H22···O12ii0.92 (3)1.69 (2)2.613 (2)176 (2)
C3—H3A···O210.972.492.847 (2)102
C21—H21···O120.932.502.891 (2)106
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.932.493.1151 (16)125
C51—H51···O3ii0.932.513.3728 (17)155
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds