Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
As an extension of recent findings on the recovery of palla­dium with dithio­ether extracta­nts, single crystals of the chelating vicinal thio­ether sulfoxide ligand rac-1-[(2-meth­oxy­eth­yl)sulfan­yl]-2-[(2-meth­oxy­eth­yl)sulfin­yl]benzene, C12H18O3S2, (I), and its square-planar dichloridopalladium complex, rac-dichlorido{1-[(2-meth­oxy­eth­yl)sulfan­yl]-2-[(2-meth­oxy­eth­yl)sulfin­yl]benzene-κ2S,S′}palladium(II), [PdCl2(C12H18O3S2)], (II), have been synthesized and their structures analysed. The mol­ecular structure of (II) is the first ever characterized involving a dihalogenide–PdII complex in which the palladium is bonded to both a thio­ether and a sulfoxide functional group. The structural and stereochemical characteristics of the ligand are compared with those of the analogous dithio­ether compound [Traeger et al. (2012). Eur. J. Inorg. Chem. pp. 2341–2352]. The sulfinyl O atom sup­presses the electron-pushing and mesomeric effect of the S—C[pdbond]C—S unit in ligand (I), resulting in bond lengths significantly different than in the dithio­ether reference compound. In contrast, in complex (II), those bond lengths are nearly the same as in the analogous dithio­ether complex. As observed previously, there is an inter­action between the central PdII atom and the O atom that is situated above the plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112032192/fa3283sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112032192/fa3283Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112032192/fa3283IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112032192/fa3283Isup4.cml
Supplementary material

CCDC references: 908118; 908119

Comment top

The chelating dithioether 1,2-bis[(2-methoxyethyl)sulfanyl]benzene is a novel, highly selective solvent extractant for the recovery of palladium from spent automotive catalysts (Traeger, Klamroth et al., 2012). In oxidizing hydrochloric acid media, traces of the mono-oxidized derivative, a thioether sulfoxide, occur (Traeger, König et al., 2012). This compound, 1-[(2-methoxyethyl)sulfanyl]-2-[(2-methoxyethyl)sulfinyl]benzene, (I) (Fig. 1), has been found to affect the extraction behaviour considerably in highly acidic media, probably via the formation of protonated species and subsequent ion pairing with [PdCl4]2-. It is assumed (Grant, 1990) that in extraction processes rhodium(III) and dialkyl sulfoxides form species similar to the complex [H(R2SO)2][RhCl4(R2SO)2], that was found by James et al. (1980). Regarding palladium(II), Preston & du Preez (2002) have suggested that, depending on the hydrochloric acid concentration, either the coordination complex [PdCl2L2] or an outer sphere complex [L2.H3O]+[PdCl3L]-, which contains an oxonium ion solvated by dialkyl sulfoxides, predominates (L = dialkyl sulfoxide). On the other hand, Lewis et al. (1976) postulated the formation of the neutral species [PdCl2L2] (L = di-n-heptyl sulfoxide) even under strongly acidic conditions. The crystal structure of the square-planar tetrakis(dimethyl sulfoxide)palladium(II) bis(tetrafluoroborate) dimethyl sulfoxide solvate reported by Johnson et al. (1981) shows that, in principle, sulfoxides can bind PdII via the S and the O atoms. In the deprotonated form, the chelating thioether sulfoxide (I) can coordinate PdII similarly to the dithioether via the two S atoms in square-planar complexes. The molecular structure of the dithioether PdII complex was recently characterized by Traeger, Klamroth et al. (2012). We describe here the crystal structure of the thioether sulfoxide, (I), and the corresponding coordination compound dichlorido{1-[(2-methoxyethyl)sulfanyl]-2-[(2-methoxyethyl)sulfinyl]benzene-κ2S,S'}palladium(II), (II), which is, to the best of our knowledge, the first PdCl2 complex coordinated by a thioether and a sulfoxide functional group ever reported. The structure of (II) is shown in Fig. 2.

Unlike the analogous open-chain dithioethers, which are based on a vicinal dithioether unit with electron-withdrawing backbones and containing 2-hydroxyethyl or 2-methoxyethyl arms (Traeger, Klamroth et al., 2012), thioether sulfoxide (I) is chiral and gives a racemate. For this reason the two H atoms in both of the methylene groups C7/H7A/H7B and C8/H8A/H8B near the S1O1 sulfinyl group are diastereotopic and each of the H atoms gives a single 1H NMR signal (Traeger, König et al., 2012). The three substituents and the free electron pair of atom S1 form a distorted tetrahedron. The bond angles at S1 are all found to be smaller than the ideal tetrahedral value (Table 1). Molecular structures of thioether sulfoxide compounds with similar structural fragments have been published by Boyd et al. (2004) and Maezaki et al. (2000). The vicinal S atoms are also connected via a benzene ring, yet in those cases the S atoms themselves are part of a seven-membered ring. However, all bond lengths and angles involving the S atoms in the previously reported structures are comparable to those observed in (I). The short S1···S2 distance [3.2137 (7) Å], which is less than the sum of van der Waals radii (3.6 Å), is typical for compounds containing sulfur atoms that are connected via an aromatic bond or double bond. Dräger et al. (1973) interpreted this phenomenon as a contact of gaps between sp3-hybridized orbitals, which means that the close proximity is caused by a steric effect but not by an overlapping of orbitals. Another structural characteristic of unsaturated dithioethers with electron-withdrawing backbones – the relatively short S—C bonds, which can be considered as partial double bonds (Dräger et al., 1973) or described with a mesomeric effect (Schwarze et al., 2012) – is eased when one of the S atoms becomes oxidized. The pushing of electron density from the sulfur to the electron-withdrawing benzene ring is suppressed. As a result, interestingly, both the C1—S1 [1.7997 (13) Å] and the C2—S2 [1.7748 (14) Å] bonds in (I) are longer than those in the comparable dithioether 1,2-bis[(2-hydroxyethyl)sulfanyl]benzene [1.766 (2) and 1.762 (2) Å; Traeger, Klamroth et al., 2012]. Moreover, in (I), the aromatic C1C2 bond [1.3905 (19) Å] bridging the two S atoms does not differ significantly from the other bonds in the aromatic ring. By contrast, in 1,2-bis[(2-hydroxyethyl)sulfanyl]benzene, this bond is longer [1.414 (3) Å], which is also assumed to be caused by the partial mesomeric effect mentioned above.

In PdII complex (II), the square-planar-coordinated central atom forms a five-membered chelate ring with ligand (I). This is similar to the known PdII complexes of the unsaturated open-chain dithioethers (Traeger, Klamroth et al., 2012). The maximum deviation from the best plane formed by S1/S2/Cl1/Cl2 is 0.0602 (3) Å (for S1). The central atom is located 0.0422 (4) Å from that plane. The torsion angle S1—C1—C2—S2 is reduced to -1.0 (3)° in comparison to that in the pure ligand [9.33 (16)°]. Owing to the binding to the PdII atom, atom S2 also becomes a centre of chirality. We obtained racemic crystals with the two 2-methoxyethyl arms in an anti conformation. The analogous dithioether complex dichlorido{1,2-bis[(2-methoxyethyl)sulfanyl]benzene}palladium(II) was also obtained as a racemic mixture, but for dichlorido{1,2-bis[(2-hydroxyethyl)sulfanyl]benzene}palladium(II), both the racemate and the meso form were obtained. However, according to Abel et al. (1982) the anti conformation of the arms is more stable. Paralleling the racemic dithioether PdII complexes, in thioether sulfoxide complex (II) there is an O atom situated above the central Pd atom at a Pd1···O3 distance [2.854 (3) Å] which is shorter than the sum of the van der Waals radii (3.1 Å). This indicates a weak interaction of the O atom with a d orbital of the PdII atom. Another remarkable aspect is the unusually short C11—O3 bond (Table 2) which is ca 0.05 Å shorter than in (I), probably in order to accommodate the Pd1···O3 interaction. The Pd1—S1 [2.2039 (6) Å] and Pd1—S2 [2.2633 (6) Å] bond lengths differ more from each other in (II) than do those in the analogous dithioether complex dichlorido{1,2-bis[(2-methoxyethyl)sulfanyl]benzene}palladium(II) [2.258 (1) and 2.242 (1) Å], but the Pd1—S2 bond in (II) is quite similar to the values found for the dithioether. Relatively few complexes with PdII coordinated by a sulfinyl group are described in the literature. The Pd—S bond lengths of most of them are somewhat longer than in (II), e.g. 2.252 and 2.257 Å in cis-dichlorido[3,4-bis(p-tolylsulfinyl)hexane]palladium(II) (Pettinari et al., 1999). Only in dichlorido[(S-methyl-L-cysteine)sulfoxide]palladium(II) monohydrate (Allain et al., 1980) was a similarly short Pd—S bond found (2.200 Å). The C1—S1 [1.777 (2) Å] and C2—S2 [1.781 (3) Å] bond lengths are nearly the same as in dichlorido{1,2-bis[(2-methoxyethyl)sulfanyl]benzene}palladium(II) [1.778 (4) and 1.781 (3) Å]. The same applies for the aromatic C1C2 bond, which is 1.384 (4) Å in (II) and 1.385 (5) Å in the reference compound dichlorido{1,2-bis[(2-methoxyethyl)sulfanyl]benzene}palladium(II). Comparing the bond lengths of the S1—C1C2—S2 unit in complex (II) with those in ligand (I), it becomes obvious that the thioether sulfoxide is very well preorganized for coordination to PdII. The changes observed in the geometry upon coordination are minimal. Only the C1—S1 bond is shortened by about 0.02 Å, resulting in a further closing of the distance between the two S atoms [ 3.2137 (7) Å in (I) and 3.1566 (9) Å in (II)].

Related literature top

For related literature, see: Abel et al. (1982); Allain et al. (1980); Boyd et al. (2004); Dräger et al. (1973); Grant (1990); James et al. (1980); Johnson et al. (1981); Lewis et al. (1976); Maezaki et al. (2000); Pettinari et al. (1999); Preston & du Preez (2002); Schwarze et al. (2012); Traeger, König, Städtke & Holdt (2012); Traeger, Klamroth, Kelling, Lubahn, Cleve, Mickler, Heydenreich, Müller & Holdt (2012).

Experimental top

The synthesis of ligand (I) has already been described (Traeger, König et al., 2012). Complex (II) was prepared following the procedure reported earlier (Traeger, Klamroth et al., 2012). Ligand (I) (30.18 mg, 0.11 mmol) was dissolved in MeOH (5 ml) and a solution of Na2PdCl4 (29.42 mg, 0.1 mmol) in MeOH (15 ml) was added. This solution was allowed to stand at 278 K for 48 h. The orange precipitate which formed was collected by filtration and washed with MeOH (yield: 0.38 mg, 0.08 mmol, 84%; m.p. 444.9–445.9 K).

Refinement top

H atoms were placed at calculated positions (aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å) and refined as riding atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2UUeq(C) otherwise. In (II), the methoxymethyl group at C7 is disordered over two sites of approximately equal occupancies. Similarity restraints were used for equivalent distances in the two disorder components. The H atoms were calculated in their expected positions and refined with a riding model.

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) based on ORTEPIII (Burnett & Johnson, 1996) for (I); ORTEP-3 for Windows (Farrugia, 1997), based on ORTEPIII (Burnett & Johnson, 1996) for (II). For both compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid plot of (I), with ellipsoids drawn at the 30% probability level. Atom S1 is chiral. Because of the centrosymmetric space group, both R and S forms exist in the crystal. The latter is shown here.
[Figure 2] Fig. 2. A displacement ellipsoid plot of (II), with ellipsoids drawn at the 30% probability level. Atoms S1 and S2 are chiral. The crystal is racemic. The R/R enantiomer is illustrated here.
(I) rac-1-[(2-methoxyethyl)sulfanyl]-2-[(2-methoxyethyl)sulfinyl]benzene top
Crystal data top
C12H18O3S2Dx = 1.309 Mg m3
Mr = 274.38Melting point = 313–314 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6089 (9) ÅCell parameters from 18173 reflections
b = 6.7055 (2) Åθ = 1.7–29.6°
c = 14.2492 (8) ŵ = 0.38 mm1
β = 111.044 (4)°T = 210 K
V = 1391.93 (12) Å3Block, colourless
Z = 40.50 × 0.33 × 0.20 mm
F(000) = 584
Data collection top
Stoe IPDS 2
diffractometer
2444 independent reflections
Radiation source: fine-focus sealed X-ray tube2154 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.021
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.8°
ω scan, Δω = 1°h = 1818
Absorption correction: integration
(X-SHAPE; Stoe & Cie, 2011)
k = 77
Tmin = 0.859, Tmax = 0.984l = 1616
10341 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.3882P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2444 reflectionsΔρmax = 0.22 e Å3
155 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (8)
Crystal data top
C12H18O3S2V = 1391.93 (12) Å3
Mr = 274.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6089 (9) ŵ = 0.38 mm1
b = 6.7055 (2) ÅT = 210 K
c = 14.2492 (8) Å0.50 × 0.33 × 0.20 mm
β = 111.044 (4)°
Data collection top
Stoe IPDS 2
diffractometer
2444 independent reflections
Absorption correction: integration
(X-SHAPE; Stoe & Cie, 2011)
2154 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.984Rint = 0.021
10341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2444 reflectionsΔρmin = 0.19 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.68937 (9)0.71705 (19)0.83999 (9)0.0272 (3)
C20.78244 (9)0.7206 (2)0.85505 (10)0.0303 (3)
C30.81156 (11)0.8366 (2)0.79106 (12)0.0406 (4)
H30.87350.84160.80000.049*
C40.74867 (12)0.9441 (2)0.71439 (12)0.0433 (4)
H40.76881.02200.67240.052*
C50.65681 (11)0.9374 (2)0.69937 (11)0.0389 (4)
H50.61481.00830.64670.047*
C60.62721 (10)0.8250 (2)0.76275 (10)0.0327 (3)
H60.56510.82170.75350.039*
C70.64129 (10)0.3427 (2)0.87859 (10)0.0341 (3)
H7A0.60210.34040.80820.041*
H7B0.70200.29750.88410.041*
C80.60265 (10)0.2066 (2)0.93804 (11)0.0349 (3)
H8A0.54790.26490.94390.042*
H8B0.58650.07850.90470.042*
C90.64138 (12)0.0546 (2)1.09608 (12)0.0454 (4)
H9A0.58770.11011.10410.068*
H9B0.68930.04171.16080.068*
H9C0.62700.07441.06510.068*
C100.93694 (10)0.7610 (3)1.02782 (12)0.0414 (4)
H10A0.98710.69651.08040.050*
H10B0.96280.83680.98640.050*
C110.88897 (10)0.9008 (2)1.07479 (11)0.0402 (4)
H11A0.84030.97091.02290.048*
H11B0.86200.82671.11570.048*
C120.91348 (13)1.1842 (3)1.17715 (14)0.0570 (5)
H12A0.86841.25701.12420.086*
H12B0.95981.27441.21760.086*
H12C0.88451.12041.21830.086*
O10.55041 (8)0.65819 (17)0.90010 (10)0.0509 (3)
O20.67121 (7)0.18233 (16)1.03438 (8)0.0408 (3)
O30.95426 (7)1.03838 (18)1.13509 (8)0.0444 (3)
S10.64788 (3)0.59443 (5)0.92771 (3)0.03315 (12)
S20.86032 (3)0.57247 (6)0.95139 (3)0.04182 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (7)0.0237 (6)0.0275 (6)0.0023 (5)0.0108 (5)0.0030 (5)
C20.0305 (7)0.0289 (7)0.0298 (7)0.0005 (6)0.0086 (6)0.0022 (5)
C30.0352 (8)0.0468 (9)0.0430 (8)0.0086 (7)0.0177 (7)0.0021 (7)
C40.0556 (10)0.0386 (9)0.0372 (8)0.0107 (7)0.0186 (7)0.0043 (7)
C50.0507 (9)0.0290 (7)0.0310 (7)0.0026 (7)0.0073 (6)0.0024 (6)
C60.0310 (7)0.0308 (7)0.0325 (7)0.0013 (6)0.0066 (6)0.0033 (6)
C70.0417 (8)0.0289 (7)0.0322 (7)0.0027 (6)0.0139 (6)0.0040 (6)
C80.0382 (8)0.0290 (7)0.0362 (7)0.0043 (6)0.0119 (6)0.0009 (6)
C90.0604 (11)0.0363 (8)0.0450 (9)0.0005 (7)0.0257 (8)0.0091 (7)
C100.0272 (7)0.0506 (9)0.0406 (8)0.0037 (7)0.0052 (6)0.0030 (7)
C110.0293 (7)0.0514 (9)0.0386 (8)0.0012 (7)0.0105 (6)0.0037 (7)
C120.0532 (11)0.0614 (12)0.0514 (10)0.0058 (9)0.0127 (8)0.0145 (9)
O10.0455 (7)0.0418 (6)0.0802 (9)0.0011 (5)0.0407 (6)0.0007 (6)
O20.0384 (6)0.0430 (6)0.0397 (6)0.0033 (5)0.0122 (5)0.0116 (5)
O30.0329 (6)0.0525 (7)0.0432 (6)0.0002 (5)0.0082 (5)0.0097 (5)
S10.0415 (2)0.02861 (19)0.0348 (2)0.00416 (15)0.02035 (16)0.00373 (14)
S20.0355 (2)0.0362 (2)0.0445 (2)0.00653 (16)0.00304 (16)0.00224 (16)
Geometric parameters (Å, º) top
C1—C61.3819 (19)C8—H8B0.9700
C1—C21.3905 (19)C9—O21.4204 (18)
C1—S11.7997 (13)C9—H9A0.9600
C2—C31.393 (2)C9—H9B0.9600
C2—S21.7748 (14)C9—H9C0.9600
C3—C41.381 (2)C10—C111.499 (2)
C3—H30.9300C10—S21.8110 (16)
C4—C51.372 (2)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—C61.377 (2)C11—O31.4140 (19)
C5—H50.9300C11—H11A0.9700
C6—H60.9300C11—H11B0.9700
C7—C81.5102 (19)C12—O31.412 (2)
C7—S11.8163 (14)C12—H12A0.9600
C7—H7A0.9700C12—H12B0.9600
C7—H7B0.9700C12—H12C0.9600
C8—O21.4146 (18)O1—S11.4907 (12)
C8—H8A0.9700
C6—C1—C2120.65 (12)O2—C9—H9A109.5
C6—C1—S1117.88 (10)O2—C9—H9B109.5
C2—C1—S1121.14 (10)H9A—C9—H9B109.5
C1—C2—C3118.48 (13)O2—C9—H9C109.5
C1—C2—S2119.82 (10)H9A—C9—H9C109.5
C3—C2—S2121.66 (11)H9B—C9—H9C109.5
C4—C3—C2120.20 (14)C11—C10—S2112.15 (11)
C4—C3—H3119.9C11—C10—H10A109.2
C2—C3—H3119.9S2—C10—H10A109.2
C5—C4—C3120.83 (14)C11—C10—H10B109.2
C5—C4—H4119.6S2—C10—H10B109.2
C3—C4—H4119.6H10A—C10—H10B107.9
C4—C5—C6119.57 (14)O3—C11—C10108.22 (12)
C4—C5—H5120.2O3—C11—H11A110.1
C6—C5—H5120.2C10—C11—H11A110.1
C5—C6—C1120.26 (14)O3—C11—H11B110.1
C5—C6—H6119.9C10—C11—H11B110.1
C1—C6—H6119.9H11A—C11—H11B108.4
C8—C7—S1108.91 (10)O3—C12—H12A109.5
C8—C7—H7A109.9O3—C12—H12B109.5
S1—C7—H7A109.9H12A—C12—H12B109.5
C8—C7—H7B109.9O3—C12—H12C109.5
S1—C7—H7B109.9H12A—C12—H12C109.5
H7A—C7—H7B108.3H12B—C12—H12C109.5
O2—C8—C7107.37 (11)C8—O2—C9111.60 (12)
O2—C8—H8A110.2C12—O3—C11111.92 (13)
C7—C8—H8A110.2O1—S1—C1105.86 (7)
O2—C8—H8B110.2O1—S1—C7104.70 (7)
C7—C8—H8B110.2C1—S1—C798.15 (6)
H8A—C8—H8B108.5C2—S2—C10101.27 (7)
C6—C1—C2—C30.5 (2)S2—C10—C11—O3178.29 (10)
S1—C1—C2—C3172.81 (11)C7—C8—O2—C9179.56 (12)
C6—C1—C2—S2177.34 (10)C10—C11—O3—C12176.14 (14)
S1—C1—C2—S29.33 (16)C6—C1—S1—O15.52 (12)
C1—C2—C3—C40.3 (2)C2—C1—S1—O1167.98 (11)
S2—C2—C3—C4177.49 (12)C6—C1—S1—C7102.36 (11)
C2—C3—C4—C50.6 (2)C2—C1—S1—C784.13 (12)
C3—C4—C5—C61.2 (2)C8—C7—S1—O168.44 (11)
C4—C5—C6—C11.0 (2)C8—C7—S1—C1177.28 (10)
C2—C1—C6—C50.2 (2)C1—C2—S2—C10120.77 (12)
S1—C1—C6—C5173.71 (11)C3—C2—S2—C1061.45 (13)
S1—C7—C8—O271.79 (13)C11—C10—S2—C264.48 (13)
(II) rac-dichlorido{1-[(2-methoxyethyl)sulfanyl]-2-[(2- methoxyethyl)sulfinyl]benzene-κ2S,S'}palladium(II) top
Crystal data top
[PdCl2(C12H18O3S2)]Dx = 1.776 Mg m3
Mr = 451.68Melting point = 455–456 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6595 (5) ÅCell parameters from 10870 reflections
b = 12.9818 (7) Åθ = 1.6–29.7°
c = 12.2828 (8) ŵ = 1.66 mm1
β = 96.416 (4)°T = 210 K
V = 1689.04 (15) Å3Block, yellow
Z = 40.20 × 0.13 × 0.10 mm
F(000) = 904
Data collection top
Stoe IPDS 2
diffractometer
2973 independent reflections
Radiation source: fine-focus sealed X-ray tube2571 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.025
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scan, Δω = 1°h = 1212
Absorption correction: integration
(X-SHAPE; Stoe & Cie, 2011)
k = 1515
Tmin = 0.820, Tmax = 0.897l = 1414
10614 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
2973 reflectionsΔρmax = 0.63 e Å3
213 parametersΔρmin = 0.39 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (3)
Crystal data top
[PdCl2(C12H18O3S2)]V = 1689.04 (15) Å3
Mr = 451.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6595 (5) ŵ = 1.66 mm1
b = 12.9818 (7) ÅT = 210 K
c = 12.2828 (8) Å0.20 × 0.13 × 0.10 mm
β = 96.416 (4)°
Data collection top
Stoe IPDS 2
diffractometer
2973 independent reflections
Absorption correction: integration
(X-SHAPE; Stoe & Cie, 2011)
2571 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.897Rint = 0.025
10614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0213 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.01Δρmax = 0.63 e Å3
2973 reflectionsΔρmin = 0.39 e Å3
213 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6020 (2)0.65338 (19)0.7083 (2)0.0339 (5)
C20.6188 (2)0.70384 (18)0.8082 (2)0.0349 (6)
C30.7396 (3)0.7301 (2)0.8545 (3)0.0485 (7)
H30.75170.76300.92210.058*
C40.8409 (3)0.7066 (3)0.7988 (3)0.0605 (9)
H40.92220.72290.82970.073*
C50.8234 (3)0.6593 (3)0.6983 (3)0.0626 (10)
H50.89290.64610.66090.075*
C60.7036 (3)0.6309 (2)0.6514 (3)0.0484 (7)
H60.69210.59770.58390.058*
C70.4431 (3)0.48078 (19)0.6701 (2)0.0411 (6)
H7A0.35870.45680.64480.049*0.51
H7B0.50030.44990.62330.049*0.51
H7C0.51990.45080.64840.049*0.49
H7D0.37240.45260.62290.049*0.49
C100.4874 (3)0.8756 (2)0.8654 (2)0.0484 (7)
H10A0.41210.90250.89300.058*
H10B0.55970.90240.91170.058*
C110.4920 (4)0.9150 (2)0.7532 (3)0.0598 (9)
H11A0.49500.98970.75450.072*
H11B0.56770.89010.72480.072*
C120.3852 (9)0.9213 (4)0.5798 (4)0.157 (3)
H12A0.39220.99500.58200.235*
H12B0.30700.90210.53820.235*
H12C0.45440.89290.54600.235*
Cl10.15133 (6)0.63419 (6)0.63733 (5)0.04489 (17)
Cl20.19145 (7)0.74338 (5)0.88979 (5)0.04498 (17)
O10.43262 (19)0.63931 (17)0.53435 (14)0.0466 (5)
O30.3879 (3)0.88304 (18)0.6868 (2)0.0899 (10)
Pd10.318552 (16)0.685109 (12)0.761851 (14)0.02647 (8)
S10.44711 (6)0.61825 (4)0.65221 (4)0.03019 (14)
S20.48669 (6)0.73508 (5)0.87884 (5)0.03579 (15)
C80.4772 (10)0.4422 (12)0.7840 (8)0.050 (3)0.504 (7)
H8A0.43770.48380.83620.060*0.504 (7)
H8B0.45090.37120.79060.060*0.504 (7)
O20.6097 (5)0.4506 (4)0.8020 (4)0.0500 (15)0.504 (7)
C90.648 (2)0.4126 (10)0.9068 (13)0.066 (4)0.504 (7)
H9A0.62590.34120.91040.099*0.504 (7)
H9B0.60770.45090.95980.099*0.504 (7)
H9C0.73830.41980.92220.099*0.504 (7)
C810.4313 (13)0.4511 (11)0.7870 (9)0.054 (3)0.496 (7)
H81A0.34950.47430.80450.065*0.496 (7)
H81B0.43130.37650.79100.065*0.496 (7)
O210.5236 (5)0.4879 (3)0.8698 (3)0.0533 (17)0.496 (7)
C910.6399 (16)0.4369 (13)0.8777 (17)0.084 (6)0.496 (7)
H91A0.66950.43400.80680.127*0.496 (7)
H91B0.63010.36830.90450.127*0.496 (7)
H91C0.70010.47360.92740.127*0.496 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0216 (12)0.0386 (12)0.0413 (13)0.0020 (10)0.0020 (10)0.0108 (11)
C20.0256 (13)0.0313 (12)0.0462 (14)0.0001 (10)0.0028 (11)0.0068 (10)
C30.0285 (15)0.0435 (15)0.0695 (19)0.0039 (12)0.0126 (14)0.0106 (14)
C40.0289 (16)0.0553 (18)0.093 (3)0.0060 (13)0.0107 (16)0.0303 (18)
C50.0291 (16)0.069 (2)0.093 (3)0.0121 (15)0.0214 (16)0.042 (2)
C60.0353 (16)0.0575 (17)0.0546 (17)0.0114 (13)0.0146 (13)0.0172 (14)
C70.0462 (16)0.0316 (12)0.0454 (14)0.0030 (12)0.0046 (12)0.0106 (11)
C100.0514 (18)0.0342 (13)0.0563 (17)0.0004 (12)0.0093 (14)0.0150 (12)
C110.075 (2)0.0315 (14)0.073 (2)0.0070 (14)0.0108 (18)0.0040 (14)
C120.323 (10)0.065 (3)0.068 (3)0.026 (4)0.042 (4)0.023 (2)
Cl10.0272 (3)0.0601 (4)0.0454 (4)0.0093 (3)0.0046 (3)0.0006 (3)
Cl20.0402 (4)0.0531 (4)0.0433 (4)0.0162 (3)0.0118 (3)0.0015 (3)
O10.0422 (11)0.0699 (13)0.0279 (9)0.0104 (10)0.0047 (8)0.0031 (8)
O30.146 (3)0.0509 (13)0.0625 (15)0.0321 (15)0.0319 (17)0.0170 (12)
Pd10.02235 (11)0.02810 (11)0.02865 (11)0.00241 (7)0.00151 (7)0.00010 (7)
S10.0271 (3)0.0360 (3)0.0272 (3)0.0034 (2)0.0020 (2)0.0014 (2)
S20.0344 (3)0.0376 (3)0.0335 (3)0.0012 (3)0.0047 (3)0.0052 (2)
C80.073 (9)0.029 (4)0.043 (4)0.022 (6)0.014 (4)0.001 (3)
O20.059 (3)0.049 (3)0.040 (3)0.003 (2)0.002 (2)0.020 (2)
C90.105 (8)0.042 (7)0.049 (5)0.008 (6)0.004 (4)0.003 (5)
C810.066 (8)0.025 (5)0.067 (6)0.008 (6)0.018 (5)0.002 (3)
O210.077 (4)0.036 (2)0.044 (3)0.002 (2)0.006 (2)0.0043 (17)
C910.075 (8)0.040 (7)0.14 (2)0.009 (5)0.004 (11)0.016 (9)
Geometric parameters (Å, º) top
C1—C61.384 (4)C11—H11B0.9700
C1—C21.384 (4)C12—O31.402 (5)
C1—S11.777 (2)C12—H12A0.9600
C2—C31.391 (4)C12—H12B0.9600
C2—S21.781 (3)C12—H12C0.9600
C3—C41.375 (5)Cl1—Pd12.3117 (6)
C3—H30.9300Cl2—Pd12.3137 (7)
C4—C51.373 (6)O1—S11.4644 (18)
C4—H40.9300Pd1—S12.2040 (6)
C5—C61.391 (5)Pd1—S22.2632 (6)
C5—H50.9300C8—O21.409 (11)
C6—H60.9300C8—H8A0.9700
C7—C81.492 (10)C8—H8B0.9700
C7—C811.505 (11)O2—C91.397 (12)
C7—S11.799 (3)C9—H9A0.9600
C7—H7A0.9700C9—H9B0.9600
C7—H7B0.9700C9—H9C0.9600
C7—H7C0.9700C81—O211.416 (13)
C7—H7D0.9700C81—H81A0.9700
C10—C111.476 (4)C81—H81B0.9700
C10—S21.832 (3)O21—C911.400 (15)
C10—H10A0.9700C91—H91A0.9600
C10—H10B0.9700C91—H91B0.9600
C11—O31.367 (4)C91—H91C0.9600
C11—H11A0.9700
C6—C1—C2121.1 (2)C10—C11—H11A109.7
C6—C1—S1119.7 (2)O3—C11—H11B109.7
C2—C1—S1119.17 (19)C10—C11—H11B109.7
C1—C2—C3120.0 (3)H11A—C11—H11B108.2
C1—C2—S2120.59 (19)O3—C12—H12A109.5
C3—C2—S2119.4 (2)O3—C12—H12B109.5
C4—C3—C2119.0 (3)H12A—C12—H12B109.5
C4—C3—H3120.5O3—C12—H12C109.5
C2—C3—H3120.5H12A—C12—H12C109.5
C5—C4—C3120.7 (3)H12B—C12—H12C109.5
C5—C4—H4119.6C11—O3—C12112.5 (4)
C3—C4—H4119.6S1—Pd1—S289.91 (2)
C4—C5—C6121.2 (3)S1—Pd1—Cl188.24 (2)
C4—C5—H5119.4S2—Pd1—Cl1177.96 (3)
C6—C5—H5119.4S1—Pd1—Cl2174.30 (2)
C1—C6—C5117.9 (3)S2—Pd1—Cl287.55 (3)
C1—C6—H6121.0Cl1—Pd1—Cl294.37 (3)
C5—C6—H6121.0O1—S1—C1109.05 (12)
C8—C7—C8119.5 (7)O1—S1—C7107.73 (12)
C8—C7—S1116.2 (6)C1—S1—C7103.94 (13)
C81—C7—S1112.1 (6)O1—S1—Pd1121.76 (8)
C8—C7—H7A108.2C1—S1—Pd1106.04 (9)
C81—C7—H7A92.9C7—S1—Pd1106.93 (10)
S1—C7—H7A108.2C2—S2—C1099.88 (14)
C8—C7—H7B108.2C2—S2—Pd1103.79 (9)
C81—C7—H7B125.7C10—S2—Pd1103.85 (9)
S1—C7—H7B108.2O2—C8—C7104.8 (8)
H7A—C7—H7B107.4O2—C8—H8A110.8
C8—C7—H7C89.9C7—C8—H8A110.8
C81—C7—H7C108.8O2—C8—H8B110.8
S1—C7—H7C109.4C7—C8—H8B110.8
H7A—C7—H7C124.3H8A—C8—H8B108.9
H7B—C7—H7C20.9C9—O2—C8107.8 (11)
C8—C7—H7D121.7O21—C81—C7118.2 (10)
C81—C7—H7D109.4O21—C81—H81A107.7
S1—C7—H7D109.2C7—C81—H81A107.7
H7A—C7—H7D19.2O21—C81—H81B107.7
H7B—C7—H7D89.3C7—C81—H81B107.7
H7C—C7—H7D107.9H81A—C81—H81B107.1
C11—C10—S2115.5 (2)C91—O21—C81115.4 (11)
C11—C10—H10A108.4O21—C91—H91A109.5
S2—C10—H10A108.4O21—C91—H91B109.5
C11—C10—H10B108.4H91A—C91—H91B109.5
S2—C10—H10B108.4O21—C91—H91C109.5
H10A—C10—H10B107.5H91A—C91—H91C109.5
O3—C11—C10110.0 (3)H91B—C91—H91C109.5
O3—C11—H11A109.7
C6—C1—C2—C31.9 (4)Cl1—Pd1—S1—O147.62 (11)
S1—C1—C2—C3178.68 (19)Cl2—Pd1—S1—O1164.9 (3)
C6—C1—C2—S2178.4 (2)S2—Pd1—S1—C16.23 (8)
S1—C1—C2—S21.0 (3)Cl1—Pd1—S1—C1172.90 (9)
C1—C2—C3—C41.0 (4)Cl2—Pd1—S1—C169.8 (3)
S2—C2—C3—C4179.4 (2)S2—Pd1—S1—C7104.23 (10)
C2—C3—C4—C51.0 (4)Cl1—Pd1—S1—C776.64 (10)
C3—C4—C5—C62.1 (5)Cl2—Pd1—S1—C740.6 (3)
C2—C1—C6—C50.8 (4)C1—C2—S2—C10111.1 (2)
S1—C1—C6—C5179.8 (2)C3—C2—S2—C1069.2 (2)
C4—C5—C6—C11.2 (4)C1—C2—S2—Pd14.1 (2)
S2—C10—C11—O361.3 (4)C3—C2—S2—Pd1176.26 (19)
C10—C11—O3—C12177.9 (4)C11—C10—S2—C250.9 (3)
C6—C1—S1—O141.0 (2)C11—C10—S2—Pd156.0 (3)
C2—C1—S1—O1138.4 (2)S1—Pd1—S2—C25.75 (8)
C6—C1—S1—C773.7 (2)Cl1—Pd1—S2—C219.4 (7)
C2—C1—S1—C7106.9 (2)Cl2—Pd1—S2—C2179.36 (8)
C6—C1—S1—Pd1173.74 (19)S1—Pd1—S2—C10109.79 (11)
C2—C1—S1—Pd15.7 (2)Cl1—Pd1—S2—C1084.6 (7)
C8—C7—S1—O1170.4 (5)Cl2—Pd1—S2—C1075.32 (11)
C81—C7—S1—O1168.7 (6)C81—C7—C8—O2159 (4)
C8—C7—S1—C154.8 (5)S1—C7—C8—O276.2 (10)
C81—C7—S1—C175.7 (6)C7—C8—O2—C9178.3 (9)
C8—C7—S1—Pd157.1 (5)C8—C7—C81—O2150 (3)
C81—C7—S1—Pd136.2 (6)S1—C7—C81—O2156.6 (11)
S2—Pd1—S1—O1131.51 (11)C7—C81—O21—C9176.7 (14)

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H18O3S2[PdCl2(C12H18O3S2)]
Mr274.38451.68
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)210210
a, b, c (Å)15.6089 (9), 6.7055 (2), 14.2492 (8)10.6595 (5), 12.9818 (7), 12.2828 (8)
β (°) 111.044 (4) 96.416 (4)
V3)1391.93 (12)1689.04 (15)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.381.66
Crystal size (mm)0.50 × 0.33 × 0.200.20 × 0.13 × 0.10
Data collection
DiffractometerStoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-SHAPE; Stoe & Cie, 2011)
Integration
(X-SHAPE; Stoe & Cie, 2011)
Tmin, Tmax0.859, 0.9840.820, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
10341, 2444, 2154 10614, 2973, 2571
Rint0.0210.025
(sin θ/λ)max1)0.5950.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.05 0.021, 0.054, 1.01
No. of reflections24442973
No. of parameters155213
No. of restraints03
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.190.63, 0.39

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) based on ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997), based on ORTEPIII (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) for (I) top
C1—C21.3905 (19)C8—O21.4146 (18)
C1—S11.7997 (13)C11—O31.4140 (19)
C2—S21.7748 (14)O1—S11.4907 (12)
C7—S11.8163 (14)
C6—C1—C2120.65 (12)C3—C2—S2121.66 (11)
C6—C1—S1117.88 (10)O1—S1—C1105.86 (7)
C2—C1—S1121.14 (10)O1—S1—C7104.70 (7)
C1—C2—C3118.48 (13)C1—S1—C798.15 (6)
C1—C2—S2119.82 (10)C2—S2—C10101.27 (7)
S1—C1—C2—S29.33 (16)C6—C1—S1—O15.52 (12)
S2—C2—C3—C4177.49 (12)C6—C1—S1—C7102.36 (11)
S1—C1—C6—C5173.71 (11)C1—C2—S2—C10120.77 (12)
Selected geometric parameters (Å, º) for (II) top
C1—C21.384 (4)Cl1—Pd12.3117 (6)
C1—S11.777 (2)Cl2—Pd12.3137 (7)
C2—S21.781 (3)Pd1—S12.2040 (6)
C11—O31.367 (4)Pd1—S22.2632 (6)
C6—C1—C2121.1 (2)Cl1—Pd1—Cl294.37 (3)
C6—C1—S1119.7 (2)O1—S1—C1109.05 (12)
C2—C1—S1119.17 (19)O1—S1—C7107.73 (12)
C1—C2—C3120.0 (3)C1—S1—C7103.94 (13)
C1—C2—S2120.59 (19)O1—S1—Pd1121.76 (8)
S1—Pd1—S289.91 (2)C1—S1—Pd1106.04 (9)
S1—Pd1—Cl188.24 (2)C7—S1—Pd1106.93 (10)
S2—Pd1—Cl1177.96 (3)C2—S2—C1099.88 (14)
S1—Pd1—Cl2174.30 (2)C2—S2—Pd1103.79 (9)
S2—Pd1—Cl287.55 (3)C10—S2—Pd1103.85 (9)
S1—C1—C2—S21.0 (3)C6—C1—S1—C773.7 (2)
S2—C2—C3—C4179.4 (2)C8—C7—S1—O1170.4 (5)
S1—C1—C6—C5179.8 (2)C1—C2—S2—C10111.1 (2)
C2—C1—S1—O1138.4 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds