Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In poly[[bis­(μ-4,4′-bi-1H-pyrazole-κ2N2:N2′)bis­(3-carb­oxy­ada­mantane-1-carboxyl­ato-κO1)cobalt(II)] dihydrate], {[Co(C12H15O4)2(C6H6N4)2]·2H2O}n, (I), the Co2+ cation lies on an inversion centre and the 4,4′-bipyrazole (4,4′-bpz) ligands are also situated across centres of inversion. In its non-isomorphous cadmium analogue, {[Cd(C12H15O4)2(C6H6N4)2]·2H2O}n, (II), the Cd2+ cation lies on a twofold axis. In both compounds, the metal cations adopt an octa­hedral coordination, with four pyrazole N atoms in the equatorial plane [Co—N = 2.156 (2) and 2.162 (2) Å; Cd—N = 2.298 (2) and 2.321 (2) Å] and two axial carboxyl­ate O atoms [Co—O = 2.1547 (18) Å and Cd—O = 2.347 (2) Å]. In both structures, inter­ligand hydrogen bonding [N...O = 2.682 (3)–2.819 (3) Å] is essential for stabilization of the MN4O2 environment with its unusually high (for bulky adamantane­carboxyl­ates) number of coordinated N-donor co-ligands. The compounds adopt two-dimensional coordination connectivities and exist as square-grid [M(4,4′-bpz)2]n networks accommodating monodentate carboxyl­ate ligands. The interlayer linkage is provided by hydrogen bonds from the carboxylic acid groups via the solvent water molecules [O...O = 2.565 (3) and 2.616 (3) Å] to the carboxylate groups in the next layer [O...O = 2.717 (3)–2.841 (3) Å], thereby extending the structures in the third dimension.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113003405/eg3109sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113003405/eg3109Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113003405/eg3109IIsup3.hkl
Contains datablock II

CCDC references: 934554; 934555

Comment top

Adamantane-1,3-dicarboxylate (ADC2-) is a paradigmatic ligand used for the generation of metal–organic frameworks (MOFs), providing such important features as multivalence and geometrically rigid angular configuration of binding sites at the entirely aliphatic `nanodiamond scaffold'. These issues are particularly significant for the elegant three-dimensional frameworks adopted by Eu3+ (Millange et al., 2004) and Ca2+ cations (Nielsen et al., 2012), the layered network in Mg(ADC) (Plonka et al., 2011), and one-dimensional polymers of UO22+ (Rusanova et al., 2010) and Th4+ (Nazarenko et al., 2010). From the perspective of crystal design, even more versatile possibilities may be found for transition metal complexes when combining anionic ADC2- or HADC- and exo-bidentate neutral N-donor co-ligands. Following this methodology, two groups have developed a variety of heteroligand Ag+, Co2+, Zn2+ and Cd2+ frameworks based on bipyridine (Jin et al., 2009, 2010) and bis(1,2,4-triazole) linkers (Ren et al., 2011). However, in these cases the local coordination geometries were suggestive of steric influence of the bulky adamantane scaffold, mitigating against coordination of more than two N-atom donors, irrespective of the nature of the metal cation. In this context, we have examined the prototypical linker 4,4'-bipyrazole (H2bpz). Unlike the more common pyridine and N-substituted imidazole and 1,2,4-triazole species, coordination of the pyrazole N-atom site is complemented by the strong hydrogen-bond-donor ability of the adjacent NH site. This dual function of pyrazole could be especially important for dense interaction between the coordinated pyrazole and anionic groups, in effect stabilizing higher ligand/M ratios and providing wider possibilities for the generation of highly connected coordination frameworks (Rusanov et al., 2003). We have prepared the title coordination polymers of Co, (I), and Cd, (II), supported with 4,4'-bipyrazole and mediated by singly charged HADC- anions, and we report their structures here.

The CoII compound, (I), and its CdII analogue, (II), are not isostructural, although they possess similar compositions and very closely related structures. In triclinic (I), the Co2+ cation is situated on an inversion centre and two independent bipyrazole ligands are situated across a centre of inversion (Fig. 1). In monoclinic (II), the Cd2+ cation lies on a twofold axis (Fig. 2). In both structures, the central atoms adopt a typical sixfold coordination [MN4O2] in a slightly distorted octahedral geometry. Their coordination environments comprise four pyrazole N-atom donors in the equatorial planes and two carboxylate O atoms in axial positions (Tables 1 and 3). The appreciably longer Cd–ligand bonds are responsible for the greater volume per formula unit in (II) [916.3 Å3 in (I) and 965.2 Å3 in (II)] and the lower packing index [68.7 in (I) and 65.4 in (II)]. Thus, the H2bpz ligands act as bitopic connectors, while HADC- represents a monodentate carboxylate ligand retaining a noncoordinated neutral carboxylic acid group. It is worth noting that bridging of HADC- is also possible, as shown by the structures [Co(HADC)2(H2O)2] (Tang et al., 2009) and [Th(HADC)4] (Nazarenko et al., 2010).

The most striking feature of the coordination environments of (I) and (II) is self-complementary hydrogen bonding between four pyrazole NH donors and four carboxylate O atoms. There are two kinds of bonding patterns, leading to the organization of five- and seven-membered pseudo-chelate cycles (Figs. 1 and 2), with coordinated O1 and carbonyl O2 atoms, respectively. The corresponding N···O separations [2.682 (3)–2.819 (3) Å; Tables 2 and 4] are characteristic of relatively strong hydrogen bonding. The mutual orientation of these rings provides the primary structural difference for (I) and (II). Two pyrazole groups, constituting either five- or seven-membered rings, adopt a trans configuration in the Co2+ complex (Fig. 1) and a cis configuration in the Cd2+ analogue (Fig. 2). With respect to the overall structures, this variation appears to be very subtle; it does not affect either the composition of the compounds or the topology of the coordination and hydrogen bonding. Isomerism of the hydrogen-bonding patterns adopted by pyrazole and carboxylate co-ligands is also known for simpler molecular species, such as [Ni(Hpz)4(AcO)2] (Hpz = pyrazole; Papánková et al., 2005) and [Ni(Hpz)4(AcO)2].H2O (Döring et al., 1994).

The metal–bipyrazole part of the two structures exists in the form of two-dimensional square-grid networks, which are parallel to the bc plane in (I) and parallel to the ab plane in (II). This topology was also observed for [Cu(H2bpz)2(NO3)2] (Pettinari et al., 2012), while [Cd(H2bpz)2(NO3)2] exhibits a three-dimensional array of polycatenated square grids (Boldog et al., 2002). The ligands act as simple bitopic linkers and connect the Co2+ cations at distances of 10.1568 (8) and 10.2186 (8) Å [parameters b and c of the unit cell of (I), respectively]. For the Cd analogue, (II), this distance is slightly longer [Cd1···Cd1iii = 10.4390 (6) Å; symmetry code: (iii) x - 1/2, y + 1/2, z]. The planar arrangement of the H2bpz ligands in (I) or the nearly planar arrangement in (II) [torsion angle C3—C2—C5—C4 = -6.7 (6)°], and the anti configuration of the two N—M bonds, are responsible for the collinear orientation of the M—H2bpz links and the generation of flat coordination layers. The singly charged HADC- anions are accommodated on both axial sides of these layers (Fig. 3) and the presence of the bulky adamantane groups is appreciable for the relatively large interlayer separations of 8.8287 (9) and 8.8613 (5) Å for (I) and (II), respectively (Fig. 4). Since all the metal cations of a single layer are coplanar in both structures, the latter parameters are defined as the deviation of the metal cation from the neighbouring plane. These interlayer separations significantly exceed the usual values for square-grid polymers adopted by H2bpz (4.7–7.0 Å; Boldog et al., 2002).

Thus, the monodentate HADC- anions terminate the coordination connectivity, which is restricted to the M/H2bpz linkage. However, the noncoordinated carboxylic acid groups of the HADC- anions are important for crosslinking of the layers by means of hydrogen bonding. In both structures, the bonds formed by the solvent water molecules lead to the assembly of typical anion/aqua dimers [O···O = 2.717 (3)–2.841 (3) Å] joining the coordinated carboxylate groups of successive layers (Fig. 4). Considering these dimers as links between the coordination layers, three-dimensional six-connected hybrid coordination and hydrogen-bonded frameworks (primitive cubic net) are found for both compounds. The carboxylic acid group is involved in strong hydrogen bonding with the solvent water molecules, i.e. COOH···OH2 [for (I), O3···O5iv = 2.565 (3) Å; symmetry code: (iv) -x + 1, -y + 1, -z + 1]; for (II), O3···O5iv = 2.616 (3) Å; symmetry code: (iv) -x + 1/2, -y + 1/2, -z + 1] (Tables 2 and 4), providing further integration of the dimers. Similar bonding was observed in [Ag(4,4'-bipy)(HADC)].H2O (4,4'-bipy is 4,4'-bipyridine), with the same O···O separation of 2.565 (4) Å (Jin et al., 2009). The carbonyl O atom of the carboxylic acid group maintains only one weak C—H···O hydrogen bond with the pyrazole ring [for (I), C···O = 3.407 (4) Å; symmetry code: -x + 1, -y, -z + 1; for (II), C···O = 3.465 (4) Å; symmetry code: x + 1/2, -y + 1/2, z - 1/2], whereas the C7O2 carboxylate group accepts three strong hydrogen bonds from a pyrazole NH donor and two solvent water molecules (Tables 2 and 4). Such a functionality of coordinated carboxylate is relatively rare; a related pattern involving triple hydrogen bonding, together with the formation of COO-/aqua dimers, was observed in hydrated bis(pyridazine-3-carboxylato)zinc(II) (Gryz et al., 2003).

In brief, the title compounds demonstrate the special potential of bipyrazole species as efficient bridging co-ligands for coordination polymers formed by bulky adamantanecarboxylates. This approach, relying on a synergism of coordination and hydrogen bonding, could be particularly important for the stabilization of the inner coordination sphere and may find wider applications in developing frameworks based on polyfunctionalized adamantanes.

Related literature top

For related literature, see: Boldog et al. (2001, 2002); Döring et al. (1994); Gryz et al. (2003); Jin et al. (2009, 2010); Millange et al. (2004); Nazarenko et al. (2010); Nielsen et al. (2012); Papánková et al. (2005); Pettinari et al. (2012); Plonka et al. (2011); Ren et al. (2011); Rusanov et al. (2003); Rusanova et al. (2010); Stetter & Wulff (1960); Tang et al. (2009).

Experimental top

Adamantane-1,3-dicarboxylic acid (H2ADC) was synthesized by the Koch–Haaf carboxylation of adamantane-1,3-diol (Stetter & Wulff, 1960) and 4,4'-bipyrazole (H2bpz) was prepared by a multistage synthesis starting from butyne-1,4-diol (Boldog et al., 2001).

For the preparation of (I), a mixture of H2ADC (17.9 mg, 0.080 mmol), Co(AcO)2.4H2O (10.2 mg, 0.041 mmol) and H2bpz (10.8 mg, 0.081 mmol) in water (4 ml) was sealed in a 15 ml Pyrex tube, heated at 423 K for 24 h and then cooled to room temperature at a rate of 2 K h-1. Pink crystals of (I) were collected by filtration (yield 19 mg, 60%).

The Cd analogue, (II) (colourless prisms; yield 19 mg, 55%), was prepared in a similar manner starting with Cd(AcO)2.2H2O (10.6 mg, 0.040 mmol).

Elemental analysis for (I), calculated: C 53.40, H 5.73, N 13.84%; found: C 53.57, H 5.68, N 14.03%. Elemental analysis for (II), calculated: C 50.09, H 5.37, N 12.98%; found: C 50.43, H 5.31, N 13.18%.

Refinement top

All H atoms were located from difference maps and then refined as riding, with the angles constrained and with distance restraints of O—H = 0.85 Å, N—H = 0.86 Å, methylene C—H = 0.97 Å, adamantane C—H = 0.98 Å and pyrazole C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O,N).

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. N and O atoms are shaded grey and dashed lines indicate hydrogen bonding. [Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, -y + 1, -z; (iii) -x + 2, -y, -z + 1.]
[Figure 2] Fig. 2. The structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. N and O atoms are shaded grey and dashed lines indicate hydrogen bonding. [Symmetry codes: (i) -x + 1, y, -z + 1/2; (ii) -x + 3/2, y + 1/2, -z + 1/2; (iii) x - 1/2, y + 1/2, z.]
[Figure 3] Fig. 3. A projection of the structure of (I) on the bc plane, showing the Co2+/H2bpz layer (indicated as a grey grid) accommodating HADC- anions by coordination and hydrogen bonding (dashed lines). The carbocyclic skeletons are shown as grey wires, and O and N atoms are shaded grey.
[Figure 4] Fig. 4. The interconnection of successive coordination layers in (I) (which are nearly orthogonal to the drawing plane) by hydrogen bonding (dashed lines) involving either coordinated carboxylate or carboxy groups and water molecules. Note the location of bulky adamantane ligands in the interlayer space (the carbocyclic skeletons are shown as grey wires). [Symmetry codes: (i) -x + 2, -y, -z; (iv) -x + 1, -y + 1, -z + 1, (v) -x + 1, -y, -z + 1.]
(I) Poly[[bis(µ-4,4'-bi-1H-pyrazole-κ2N2:N2')bis(3-carboxyadamantane-1-carboxylato-κO1)cobalt(II)] dihydrate] top
Crystal data top
[Co(C12H15O4)2(C6H6N4)2]·2H2OZ = 1
Mr = 809.74F(000) = 425
Triclinic, P1Dx = 1.467 Mg m3
a = 10.0002 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1568 (8) ÅCell parameters from 16309 reflections
c = 10.2186 (8) Åθ = 2.1–26.8°
α = 89.906 (6)°µ = 0.54 mm1
β = 66.363 (5)°T = 296 K
γ = 75.805 (5)°Prism, pink
V = 916.32 (13) Å30.22 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3857 independent reflections
Radiation source: fine-focus sealed tube3006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 26.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.891, Tmax = 0.909k = 1212
16309 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.3148P]
where P = (Fo2 + 2Fc2)/3
3857 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(C12H15O4)2(C6H6N4)2]·2H2Oγ = 75.805 (5)°
Mr = 809.74V = 916.32 (13) Å3
Triclinic, P1Z = 1
a = 10.0002 (9) ÅMo Kα radiation
b = 10.1568 (8) ŵ = 0.54 mm1
c = 10.2186 (8) ÅT = 296 K
α = 89.906 (6)°0.22 × 0.22 × 0.18 mm
β = 66.363 (5)°
Data collection top
Bruker APEXII area-detector
diffractometer
3857 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3006 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.909Rint = 0.052
16309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 1.20 e Å3
3857 reflectionsΔρmin = 0.33 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.00000.00000.01857 (16)
O10.7623 (2)0.10514 (19)0.08758 (19)0.0291 (4)
O20.6465 (2)0.01954 (19)0.2881 (2)0.0339 (5)
O30.4723 (3)0.6279 (2)0.3208 (3)0.0605 (7)
H1O0.48600.69840.35260.091*
O40.2746 (3)0.6306 (3)0.5213 (3)0.0637 (8)
O50.5378 (3)0.1396 (2)0.5727 (2)0.0531 (7)
H1W0.57450.10770.48490.080*
H2W0.47840.09350.62230.080*
N11.0309 (2)0.2026 (2)0.0276 (2)0.0229 (5)
N21.1426 (3)0.2249 (2)0.1442 (2)0.0297 (5)
H1N1.20750.16190.21110.045*
N31.0226 (2)0.0046 (2)0.2018 (2)0.0237 (5)
N41.1443 (3)0.1002 (3)0.1982 (2)0.0357 (6)
H2N1.21210.15070.12180.054*
C10.9562 (3)0.3252 (3)0.0465 (3)0.0247 (6)
H10.87120.34140.13340.030*
C21.0226 (3)0.4263 (2)0.0235 (3)0.0217 (5)
C31.1419 (3)0.3571 (3)0.1453 (3)0.0313 (7)
H31.21020.39480.21590.038*
C40.9484 (3)0.0473 (3)0.3382 (3)0.0254 (6)
H40.85820.11640.37350.030*
C51.0220 (3)0.0144 (3)0.4229 (3)0.0232 (6)
C61.1475 (4)0.1072 (3)0.3273 (3)0.0387 (8)
H61.22230.16520.34840.046*
C70.6456 (3)0.1019 (3)0.1966 (3)0.0227 (6)
C80.3607 (3)0.5777 (3)0.4030 (4)0.0364 (7)
C90.4962 (3)0.2089 (3)0.2225 (3)0.0257 (6)
C100.5017 (3)0.3397 (3)0.2947 (3)0.0253 (6)
H10A0.58700.37100.23070.030*
H10B0.51510.32010.38230.030*
C110.3527 (3)0.4524 (3)0.3301 (3)0.0291 (6)
C120.3383 (4)0.4845 (3)0.1885 (3)0.0386 (7)
H12A0.24660.55650.20790.046*
H12B0.42400.51610.12590.046*
C130.3335 (4)0.3563 (3)0.1148 (4)0.0450 (8)
H130.32380.37720.02480.054*
C140.4808 (4)0.2433 (3)0.0821 (3)0.0386 (7)
H14A0.47910.16220.03330.046*
H14B0.56710.27400.01920.046*
C150.3576 (3)0.1627 (3)0.3218 (3)0.0360 (7)
H15A0.35400.08060.27640.043*
H15B0.36620.14150.41120.043*
C160.2125 (3)0.2752 (3)0.3530 (4)0.0445 (8)
H160.12510.24440.41620.053*
C170.2187 (3)0.4023 (3)0.4275 (4)0.0397 (8)
H17A0.12560.47370.45070.048*
H17B0.22820.38100.51650.048*
C180.1981 (4)0.3083 (4)0.2132 (4)0.0551 (10)
H18A0.19350.22760.16620.066*
H18B0.10540.37920.23330.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0251 (3)0.0158 (3)0.0166 (3)0.0062 (2)0.0099 (2)0.00106 (19)
O10.0257 (10)0.0330 (11)0.0231 (10)0.0050 (8)0.0061 (8)0.0037 (8)
O20.0319 (11)0.0266 (11)0.0307 (11)0.0009 (9)0.0044 (9)0.0062 (9)
O30.0529 (15)0.0441 (14)0.0732 (18)0.0244 (12)0.0081 (13)0.0107 (13)
O40.0625 (17)0.0596 (17)0.0521 (16)0.0141 (14)0.0078 (14)0.0238 (14)
O50.0844 (18)0.0401 (13)0.0414 (13)0.0331 (13)0.0233 (13)0.0073 (11)
N10.0258 (12)0.0180 (11)0.0247 (12)0.0080 (9)0.0091 (10)0.0000 (9)
N20.0323 (13)0.0192 (12)0.0262 (12)0.0049 (10)0.0017 (10)0.0038 (10)
N30.0271 (12)0.0255 (12)0.0201 (11)0.0058 (9)0.0121 (9)0.0020 (9)
N40.0351 (14)0.0408 (15)0.0203 (12)0.0113 (11)0.0128 (11)0.0058 (11)
C10.0233 (14)0.0214 (13)0.0269 (14)0.0053 (11)0.0081 (11)0.0039 (11)
C20.0248 (13)0.0187 (13)0.0234 (13)0.0056 (11)0.0118 (11)0.0003 (11)
C30.0347 (16)0.0239 (14)0.0292 (16)0.0120 (12)0.0047 (13)0.0020 (12)
C40.0275 (14)0.0267 (14)0.0223 (14)0.0048 (11)0.0121 (11)0.0004 (11)
C50.0296 (14)0.0254 (14)0.0175 (13)0.0100 (11)0.0111 (11)0.0020 (11)
C60.0392 (17)0.0470 (19)0.0251 (15)0.0058 (15)0.0186 (14)0.0005 (14)
C70.0238 (13)0.0208 (13)0.0214 (13)0.0057 (11)0.0074 (11)0.0038 (11)
C80.0335 (16)0.0274 (16)0.0452 (19)0.0005 (13)0.0182 (15)0.0040 (14)
C90.0249 (14)0.0241 (14)0.0274 (15)0.0078 (11)0.0096 (12)0.0014 (11)
C100.0197 (13)0.0248 (14)0.0300 (15)0.0053 (11)0.0091 (11)0.0006 (11)
C110.0252 (14)0.0264 (15)0.0343 (16)0.0031 (12)0.0132 (12)0.0002 (12)
C120.0357 (17)0.0324 (17)0.0448 (19)0.0004 (13)0.0188 (15)0.0031 (14)
C130.049 (2)0.049 (2)0.0448 (19)0.0014 (16)0.0344 (17)0.0012 (16)
C140.0470 (19)0.0364 (17)0.0322 (16)0.0032 (14)0.0208 (15)0.0033 (14)
C150.0293 (16)0.0304 (16)0.0480 (19)0.0118 (13)0.0133 (14)0.0058 (14)
C160.0237 (15)0.046 (2)0.062 (2)0.0128 (14)0.0139 (15)0.0032 (17)
C170.0224 (15)0.0410 (18)0.0454 (19)0.0016 (13)0.0078 (14)0.0010 (15)
C180.044 (2)0.049 (2)0.087 (3)0.0076 (17)0.045 (2)0.003 (2)
Geometric parameters (Å, º) top
Co1—O12.1547 (18)C6—H60.9300
Co1—O1i2.1547 (18)C7—C91.541 (4)
Co1—N12.156 (2)C8—C111.510 (4)
Co1—N1i2.156 (2)C9—C141.534 (4)
Co1—N32.162 (2)C9—C151.536 (4)
Co1—N3i2.162 (2)C9—C101.544 (4)
O1—C71.257 (3)C10—C111.547 (4)
O2—C71.254 (3)C10—H10A0.9700
O3—C81.318 (4)C10—H10B0.9700
O3—H1O0.8500C11—C171.519 (4)
O4—C81.196 (4)C11—C121.537 (4)
O5—H1W0.8500C12—C131.526 (4)
O5—H2W0.8500C12—H12A0.9700
N1—C11.332 (3)C12—H12B0.9700
N1—N21.332 (3)C13—C181.521 (5)
N2—C31.341 (3)C13—C141.542 (4)
N2—H1N0.8600C13—H130.9800
N3—C41.324 (3)C14—H14A0.9700
N3—N41.345 (3)C14—H14B0.9700
N4—C61.333 (4)C15—C161.526 (4)
N4—H2N0.8600C15—H15A0.9700
C1—C21.399 (4)C15—H15B0.9700
C1—H10.9300C16—C181.521 (5)
C2—C31.366 (4)C16—C171.527 (4)
C2—C2ii1.475 (5)C16—H160.9800
C3—H30.9300C17—H17A0.9700
C4—C51.403 (4)C17—H17B0.9700
C4—H40.9300C18—H18A0.9700
C5—C61.363 (4)C18—H18B0.9700
C5—C5iii1.464 (5)
O1—Co1—O1i180.00 (6)C14—C9—C10107.9 (2)
O1—Co1—N184.13 (8)C15—C9—C10109.6 (2)
O1i—Co1—N195.87 (8)C7—C9—C10105.8 (2)
O1—Co1—N1i95.87 (8)C9—C10—C11109.7 (2)
O1i—Co1—N1i84.13 (8)C9—C10—H10A109.7
N1—Co1—N1i180.00 (12)C11—C10—H10A109.7
O1—Co1—N396.61 (7)C9—C10—H10B109.7
O1i—Co1—N383.39 (7)C11—C10—H10B109.7
N1—Co1—N393.21 (8)H10A—C10—H10B108.2
N1i—Co1—N386.79 (8)C8—C11—C17110.6 (2)
O1—Co1—N3i83.39 (7)C8—C11—C12110.3 (2)
O1i—Co1—N3i96.61 (7)C17—C11—C12109.5 (2)
N1—Co1—N3i86.79 (8)C8—C11—C10108.3 (2)
N1i—Co1—N3i93.21 (8)C17—C11—C10109.8 (2)
N3—Co1—N3i180.0C12—C11—C10108.3 (2)
C7—O1—Co1136.67 (18)C13—C12—C11109.6 (3)
C8—O3—H1O119.8C13—C12—H12A109.7
H1W—O5—H2W108.4C11—C12—H12A109.7
C1—N1—N2105.1 (2)C13—C12—H12B109.7
C1—N1—Co1134.55 (18)C11—C12—H12B109.7
N2—N1—Co1120.33 (16)H12A—C12—H12B108.2
N1—N2—C3112.1 (2)C18—C13—C12109.4 (3)
N1—N2—H1N123.9C18—C13—C14109.7 (3)
C3—N2—H1N123.9C12—C13—C14109.4 (3)
C4—N3—N4104.4 (2)C18—C13—H13109.4
C4—N3—Co1141.30 (19)C12—C13—H13109.4
N4—N3—Co1113.90 (16)C14—C13—H13109.4
C6—N4—N3112.0 (2)C9—C14—C13109.8 (2)
C6—N4—H2N124.0C9—C14—H14A109.7
N3—N4—H2N124.0C13—C14—H14A109.7
N1—C1—C2111.1 (2)C9—C14—H14B109.7
N1—C1—H1124.5C13—C14—H14B109.7
C2—C1—H1124.5H14A—C14—H14B108.2
C3—C2—C1104.3 (2)C16—C15—C9110.2 (2)
C3—C2—C2ii127.3 (3)C16—C15—H15A109.6
C1—C2—C2ii128.3 (3)C9—C15—H15A109.6
N2—C3—C2107.4 (2)C16—C15—H15B109.6
N2—C3—H3126.3C9—C15—H15B109.6
C2—C3—H3126.3H15A—C15—H15B108.1
N3—C4—C5111.9 (2)C18—C16—C15109.8 (3)
N3—C4—H4124.1C18—C16—C17109.8 (3)
C5—C4—H4124.1C15—C16—C17108.9 (3)
C6—C5—C4103.7 (2)C18—C16—H16109.4
C6—C5—C5iii127.5 (3)C15—C16—H16109.4
C4—C5—C5iii128.8 (3)C17—C16—H16109.4
N4—C6—C5108.0 (3)C11—C17—C16110.1 (2)
N4—C6—H6126.0C11—C17—H17A109.6
C5—C6—H6126.0C16—C17—H17A109.6
O2—C7—O1123.2 (2)C11—C17—H17B109.6
O2—C7—C9118.6 (2)C16—C17—H17B109.6
O1—C7—C9118.2 (2)H17A—C17—H17B108.2
O4—C8—O3121.9 (3)C13—C18—C16109.7 (3)
O4—C8—C11125.2 (3)C13—C18—H18A109.7
O3—C8—C11112.9 (3)C16—C18—H18A109.7
C14—C9—C15109.1 (2)C13—C18—H18B109.7
C14—C9—C7112.5 (2)C16—C18—H18B109.7
C15—C9—C7111.8 (2)H18A—C18—H18B108.2
N1—Co1—O1—C7133.0 (3)O1—C7—C9—C1435.8 (3)
N1i—Co1—O1—C747.0 (3)O2—C7—C9—C1523.9 (3)
N3—Co1—O1—C740.4 (3)O1—C7—C9—C15159.0 (2)
N3i—Co1—O1—C7139.6 (3)O2—C7—C9—C1095.3 (3)
O1—Co1—N1—C134.9 (2)O1—C7—C9—C1081.8 (3)
O1i—Co1—N1—C1145.1 (2)C14—C9—C10—C1161.4 (3)
N3—Co1—N1—C161.4 (3)C15—C9—C10—C1157.3 (3)
N3i—Co1—N1—C1118.6 (3)C7—C9—C10—C11178.0 (2)
O1—Co1—N1—N2141.6 (2)O4—C8—C11—C170.3 (4)
O1i—Co1—N1—N238.4 (2)O3—C8—C11—C17177.8 (3)
N3—Co1—N1—N2122.05 (19)O4—C8—C11—C12121.6 (4)
N3i—Co1—N1—N257.95 (19)O3—C8—C11—C1256.5 (3)
C1—N1—N2—C30.7 (3)O4—C8—C11—C10120.1 (3)
Co1—N1—N2—C3178.20 (18)O3—C8—C11—C1061.8 (3)
O1—Co1—N3—C411.2 (3)C9—C10—C11—C8178.9 (2)
O1i—Co1—N3—C4168.8 (3)C9—C10—C11—C1758.1 (3)
N1—Co1—N3—C473.3 (3)C9—C10—C11—C1261.5 (3)
N1i—Co1—N3—C4106.7 (3)C8—C11—C12—C13178.9 (2)
O1—Co1—N3—N4159.88 (18)C17—C11—C12—C1359.1 (3)
O1i—Co1—N3—N420.12 (18)C10—C11—C12—C1360.6 (3)
N1—Co1—N3—N4115.66 (19)C11—C12—C13—C1859.9 (3)
N1i—Co1—N3—N464.34 (19)C11—C12—C13—C1460.4 (3)
C4—N3—N4—C60.7 (3)C15—C9—C14—C1358.5 (3)
Co1—N3—N4—C6174.9 (2)C7—C9—C14—C13176.9 (2)
N2—N1—C1—C20.6 (3)C10—C9—C14—C1360.5 (3)
Co1—N1—C1—C2177.53 (18)C18—C13—C14—C959.4 (3)
N1—C1—C2—C30.3 (3)C12—C13—C14—C960.6 (4)
N1—C1—C2—C2ii178.5 (3)C14—C9—C15—C1658.8 (3)
N1—N2—C3—C20.6 (3)C7—C9—C15—C16176.2 (2)
C1—C2—C3—N20.2 (3)C10—C9—C15—C1659.2 (3)
C2ii—C2—C3—N2179.0 (3)C9—C15—C16—C1859.6 (3)
N4—N3—C4—C50.1 (3)C9—C15—C16—C1760.6 (3)
Co1—N3—C4—C5171.7 (2)C8—C11—C17—C16179.6 (3)
N3—C4—C5—C60.5 (3)C12—C11—C17—C1658.6 (3)
N3—C4—C5—C5iii179.3 (3)C10—C11—C17—C1660.1 (3)
N3—N4—C6—C51.0 (4)C18—C16—C17—C1159.1 (3)
C4—C5—C6—N40.9 (3)C15—C16—C17—C1161.1 (4)
C5iii—C5—C6—N4179.7 (3)C12—C13—C18—C1660.3 (4)
Co1—O1—C7—O22.4 (4)C14—C13—C18—C1659.8 (3)
Co1—O1—C7—C9174.57 (17)C15—C16—C18—C1359.9 (3)
O2—C7—C9—C14147.0 (2)C17—C16—C18—C1359.8 (3)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O5iv0.851.742.565 (3)164
O5—H1W···O20.851.972.820 (3)174
O5—H2W···O2v0.851.872.717 (3)174
N2—H1N···O2i0.861.982.781 (3)155
N4—H2N···O1i0.862.112.682 (3)123
C4—H4···O4iv0.932.593.407 (4)147
Symmetry codes: (i) x+2, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1.
(II) Poly[[bis(µ-4,4'-bi-1H-pyrazole-κ2N2:N2')bis(3-carboxyadamantane-1-carboxylato-κO1)cadmium(II)] dihydrate] top
Crystal data top
[Cd(C12H15O4)2(C6H6N4)2]·2H2OF(000) = 1784
Mr = 863.21Dx = 1.485 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.5363 (12) ÅCell parameters from 12693 reflections
b = 14.9862 (13) Åθ = 2.1–26.4°
c = 18.3813 (17) ŵ = 0.63 mm1
β = 105.384 (7)°T = 296 K
V = 3860.8 (6) Å3Prism, colourless
Z = 40.23 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3945 independent reflections
Radiation source: fine-focus sealed tube3056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1418
Tmin = 0.868, Tmax = 0.889k = 1818
12693 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0264P)2 + 1.6268P]
where P = (Fo2 + 2Fc2)/3
3945 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cd(C12H15O4)2(C6H6N4)2]·2H2OV = 3860.8 (6) Å3
Mr = 863.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.5363 (12) ŵ = 0.63 mm1
b = 14.9862 (13) ÅT = 296 K
c = 18.3813 (17) Å0.23 × 0.22 × 0.19 mm
β = 105.384 (7)°
Data collection top
Bruker APEXII area-detector
diffractometer
3945 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3056 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.889Rint = 0.052
12693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
3945 reflectionsΔρmin = 0.43 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.209765 (19)0.25000.02024 (10)
O10.52757 (16)0.24394 (13)0.37859 (12)0.0329 (6)
O20.52525 (16)0.11352 (13)0.43394 (12)0.0354 (6)
O30.28963 (19)0.40998 (18)0.51619 (15)0.0666 (9)
H1O0.23280.42910.50870.100*
O40.2789 (2)0.3313 (2)0.61387 (16)0.0695 (9)
O50.37647 (16)0.02616 (14)0.47978 (14)0.0518 (7)
H1W0.41860.05450.46460.078*
H2W0.40330.01750.50660.078*
N10.61043 (18)0.09640 (16)0.27108 (15)0.0299 (7)
N20.61718 (19)0.04162 (16)0.33006 (15)0.0340 (7)
H1N0.58750.04940.36430.051*
N30.88300 (19)0.18159 (16)0.23721 (15)0.0322 (7)
N40.8645 (2)0.13287 (17)0.17452 (16)0.0386 (7)
H2N0.89020.14180.13800.058*
C10.6657 (2)0.0608 (2)0.23276 (18)0.0297 (8)
H10.67470.08470.18840.036*
C20.7095 (2)0.01746 (18)0.26681 (17)0.0241 (7)
C30.6760 (2)0.0265 (2)0.32876 (18)0.0335 (8)
H30.69130.07220.36410.040*
C40.8292 (2)0.1464 (2)0.27713 (18)0.0365 (9)
H40.82690.16770.32410.044*
C50.7762 (2)0.0740 (2)0.24144 (17)0.0266 (7)
C60.8013 (3)0.0684 (2)0.1751 (2)0.0410 (9)
H60.77830.02700.13690.049*
C70.5296 (2)0.19788 (19)0.43565 (17)0.0243 (7)
C80.3238 (3)0.3549 (2)0.5714 (2)0.0381 (9)
C90.5325 (2)0.24696 (19)0.50917 (18)0.0250 (7)
C100.4302 (2)0.2778 (2)0.50451 (17)0.0278 (7)
H10A0.40800.31700.46140.033*
H10B0.38820.22640.49750.033*
C110.4266 (2)0.3272 (2)0.57656 (17)0.0307 (8)
C120.4627 (3)0.2660 (2)0.64389 (18)0.0406 (9)
H12A0.45930.29660.68960.049*
H12B0.42240.21340.63820.049*
C130.5646 (3)0.2382 (3)0.65038 (19)0.0472 (10)
H130.58700.19920.69430.057*
C140.5676 (3)0.1874 (2)0.57865 (17)0.0407 (9)
H14A0.63240.16820.58240.049*
H14B0.52760.13470.57350.049*
C150.5961 (3)0.3306 (2)0.5186 (2)0.0437 (10)
H15A0.66130.31330.52150.052*
H15B0.57390.36940.47530.052*
C160.5929 (3)0.3806 (3)0.5906 (2)0.0535 (11)
H160.63380.43350.59610.064*
C170.6298 (3)0.3201 (3)0.6587 (2)0.0665 (13)
H17A0.63000.35200.70470.080*
H17B0.69460.30150.66170.080*
C180.4910 (3)0.4099 (2)0.5856 (2)0.0441 (10)
H18A0.46850.44940.54270.053*
H18B0.48920.44210.63090.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02006 (17)0.01415 (15)0.0288 (2)0.0000.01052 (14)0.000
O10.0489 (15)0.0285 (11)0.0259 (13)0.0042 (10)0.0181 (12)0.0015 (11)
O20.0550 (16)0.0239 (11)0.0352 (14)0.0058 (10)0.0259 (13)0.0009 (10)
O30.0598 (19)0.092 (2)0.0531 (19)0.0411 (17)0.0240 (16)0.0213 (17)
O40.0523 (19)0.102 (2)0.066 (2)0.0201 (17)0.0364 (17)0.0163 (18)
O50.0382 (15)0.0416 (14)0.081 (2)0.0156 (11)0.0253 (15)0.0188 (14)
N10.0290 (16)0.0292 (14)0.0373 (17)0.0117 (12)0.0191 (14)0.0040 (13)
N20.0451 (18)0.0319 (14)0.0337 (17)0.0147 (13)0.0254 (15)0.0100 (14)
N30.0370 (17)0.0356 (15)0.0267 (16)0.0188 (13)0.0130 (14)0.0065 (13)
N40.0496 (19)0.0405 (16)0.0347 (18)0.0196 (15)0.0269 (15)0.0099 (15)
C10.0307 (19)0.0335 (17)0.028 (2)0.0068 (15)0.0140 (16)0.0030 (16)
C20.0215 (17)0.0249 (16)0.0267 (19)0.0045 (13)0.0078 (15)0.0001 (15)
C30.045 (2)0.0312 (18)0.029 (2)0.0148 (16)0.0191 (18)0.0099 (16)
C40.044 (2)0.046 (2)0.0232 (19)0.0240 (17)0.0163 (17)0.0114 (17)
C50.0270 (18)0.0281 (16)0.0251 (19)0.0077 (14)0.0074 (16)0.0031 (15)
C60.053 (2)0.0328 (18)0.042 (2)0.0228 (17)0.021 (2)0.0121 (18)
C70.0227 (16)0.0271 (17)0.0264 (18)0.0015 (13)0.0124 (14)0.0027 (15)
C80.041 (2)0.045 (2)0.030 (2)0.0056 (18)0.0141 (19)0.0088 (18)
C90.0257 (18)0.0269 (15)0.0246 (18)0.0018 (13)0.0104 (15)0.0013 (14)
C100.0319 (18)0.0293 (17)0.0219 (17)0.0051 (14)0.0066 (15)0.0019 (15)
C110.0295 (19)0.0430 (18)0.0219 (19)0.0037 (15)0.0109 (16)0.0061 (16)
C120.046 (2)0.055 (2)0.0210 (19)0.0015 (18)0.0092 (17)0.0030 (17)
C130.055 (3)0.065 (3)0.019 (2)0.023 (2)0.0047 (19)0.0045 (18)
C140.045 (2)0.051 (2)0.0240 (19)0.0199 (17)0.0052 (17)0.0007 (17)
C150.038 (2)0.051 (2)0.048 (2)0.0172 (18)0.0231 (19)0.016 (2)
C160.047 (3)0.062 (3)0.053 (3)0.027 (2)0.017 (2)0.029 (2)
C170.031 (2)0.110 (4)0.049 (3)0.002 (2)0.005 (2)0.037 (3)
C180.052 (3)0.040 (2)0.044 (2)0.0037 (18)0.021 (2)0.0141 (19)
Geometric parameters (Å, º) top
Cd1—N1i2.298 (2)C6—H60.9300
Cd1—N12.298 (2)C7—C91.529 (4)
Cd1—N3ii2.321 (2)C8—C111.530 (4)
Cd1—N3iii2.321 (2)C9—C141.530 (4)
Cd1—O1i2.347 (2)C9—C101.538 (4)
Cd1—O12.347 (2)C9—C151.540 (4)
O1—C71.249 (3)C10—C111.530 (4)
O2—C71.266 (3)C10—H10A0.9700
O3—C81.300 (4)C10—H10B0.9700
O3—H1O0.8500C11—C121.518 (4)
O4—C81.196 (4)C11—C181.536 (4)
O5—H1W0.8500C12—C131.514 (5)
O5—H2W0.8500C12—H12A0.9700
N1—C11.314 (4)C12—H12B0.9700
N1—N21.343 (3)C13—C171.532 (5)
N2—C31.336 (4)C13—C141.533 (5)
N2—H1N0.8600C13—H130.9800
N3—C41.316 (4)C14—H14A0.9700
N3—N41.330 (3)C14—H14B0.9700
N3—Cd1iv2.321 (2)C15—C161.533 (5)
N4—C61.335 (4)C15—H15A0.9700
N4—H2N0.8600C15—H15B0.9700
C1—C21.401 (4)C16—C181.523 (5)
C1—H10.9300C16—C171.524 (5)
C2—C31.359 (4)C16—H160.9800
C2—C51.455 (4)C17—H17A0.9700
C3—H30.9300C17—H17B0.9700
C4—C51.390 (4)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C61.365 (4)
N1i—Cd1—N184.69 (13)C7—C9—C15111.5 (3)
N1i—Cd1—N3ii174.76 (9)C14—C9—C15108.9 (3)
N1—Cd1—N3ii92.36 (9)C10—C9—C15107.7 (3)
N1i—Cd1—N3iii92.36 (9)C11—C10—C9110.6 (2)
N1—Cd1—N3iii174.76 (9)C11—C10—H10A109.5
N3ii—Cd1—N3iii90.90 (14)C9—C10—H10A109.5
N1i—Cd1—O1i93.81 (8)C11—C10—H10B109.5
N1—Cd1—O1i104.84 (8)C9—C10—H10B109.5
N3ii—Cd1—O1i82.75 (8)H10A—C10—H10B108.1
N3iii—Cd1—O1i79.64 (8)C12—C11—C8109.6 (3)
N1i—Cd1—O1104.84 (8)C12—C11—C10109.3 (3)
N1—Cd1—O193.81 (8)C8—C11—C10109.6 (3)
N3ii—Cd1—O179.64 (8)C12—C11—C18109.3 (3)
N3iii—Cd1—O182.75 (8)C8—C11—C18110.2 (3)
O1i—Cd1—O1154.79 (10)C10—C11—C18108.9 (3)
C7—O1—Cd1133.21 (19)C13—C12—C11110.5 (3)
C8—O3—H1O119.7C13—C12—H12A109.6
H1W—O5—H2W108.4C11—C12—H12A109.6
C1—N1—N2105.1 (2)C13—C12—H12B109.6
C1—N1—Cd1135.1 (2)C11—C12—H12B109.6
N2—N1—Cd1119.10 (18)H12A—C12—H12B108.1
C3—N2—N1111.3 (3)C12—C13—C17110.7 (3)
C3—N2—H1N124.4C12—C13—C14108.6 (3)
N1—N2—H1N124.4C17—C13—C14109.0 (3)
C4—N3—N4104.5 (2)C12—C13—H13109.5
C4—N3—Cd1iv138.8 (2)C17—C13—H13109.5
N4—N3—Cd1iv116.56 (18)C14—C13—H13109.5
N3—N4—C6111.8 (3)C9—C14—C13110.4 (3)
N3—N4—H2N124.1C9—C14—H14A109.6
C6—N4—H2N124.1C13—C14—H14A109.6
N1—C1—C2111.7 (3)C9—C14—H14B109.6
N1—C1—H1124.1C13—C14—H14B109.6
C2—C1—H1124.1H14A—C14—H14B108.1
C3—C2—C1103.7 (3)C16—C15—C9109.9 (3)
C3—C2—C5128.9 (3)C16—C15—H15A109.7
C1—C2—C5127.4 (3)C9—C15—H15A109.7
N2—C3—C2108.2 (3)C16—C15—H15B109.7
N2—C3—H3125.9C9—C15—H15B109.7
C2—C3—H3125.9H15A—C15—H15B108.2
N3—C4—C5112.7 (3)C18—C16—C17110.2 (3)
N3—C4—H4123.6C18—C16—C15109.9 (3)
C5—C4—H4123.6C17—C16—C15109.5 (3)
C6—C5—C4102.9 (3)C18—C16—H16109.1
C6—C5—C2127.6 (3)C17—C16—H16109.1
C4—C5—C2129.5 (3)C15—C16—H16109.1
N4—C6—C5108.1 (3)C16—C17—C13108.7 (3)
N4—C6—H6126.0C16—C17—H17A109.9
C5—C6—H6126.0C13—C17—H17A109.9
O1—C7—O2122.8 (3)C16—C17—H17B109.9
O1—C7—C9117.7 (3)C13—C17—H17B109.9
O2—C7—C9119.5 (3)H17A—C17—H17B108.3
O4—C8—O3122.4 (4)C16—C18—C11109.2 (3)
O4—C8—C11124.9 (3)C16—C18—H18A109.8
O3—C8—C11112.7 (3)C11—C18—H18A109.8
C7—C9—C14112.5 (2)C16—C18—H18B109.8
C7—C9—C10107.2 (2)C11—C18—H18B109.8
C14—C9—C10109.0 (3)H18A—C18—H18B108.3
N1i—Cd1—O1—C734.2 (3)O2—C7—C9—C1097.8 (3)
N1—Cd1—O1—C751.3 (3)O1—C7—C9—C1538.3 (4)
N3ii—Cd1—O1—C7143.0 (3)O2—C7—C9—C15144.6 (3)
N3iii—Cd1—O1—C7124.8 (3)C7—C9—C10—C11179.5 (2)
O1i—Cd1—O1—C7170.6 (3)C14—C9—C10—C1157.6 (3)
N1i—Cd1—N1—C1104.4 (3)C15—C9—C10—C1160.4 (3)
N3ii—Cd1—N1—C171.3 (3)O4—C8—C11—C120.4 (5)
O1i—Cd1—N1—C111.8 (3)O3—C8—C11—C12177.8 (3)
O1—Cd1—N1—C1151.1 (3)O4—C8—C11—C10119.5 (4)
N1i—Cd1—N1—N264.6 (2)O3—C8—C11—C1062.3 (4)
N3ii—Cd1—N1—N2119.7 (2)O4—C8—C11—C18120.7 (4)
O1i—Cd1—N1—N2157.2 (2)O3—C8—C11—C1857.5 (4)
O1—Cd1—N1—N239.9 (2)C9—C10—C11—C1258.4 (3)
C1—N1—N2—C30.4 (4)C9—C10—C11—C8178.5 (3)
Cd1—N1—N2—C3172.4 (2)C9—C10—C11—C1860.9 (3)
C4—N3—N4—C60.4 (4)C8—C11—C12—C13179.6 (3)
Cd1iv—N3—N4—C6175.6 (2)C10—C11—C12—C1360.3 (4)
N2—N1—C1—C20.3 (4)C18—C11—C12—C1358.8 (4)
Cd1—N1—C1—C2170.4 (2)C11—C12—C13—C1758.7 (4)
N1—C1—C2—C30.2 (4)C11—C12—C13—C1461.0 (4)
N1—C1—C2—C5179.0 (3)C7—C9—C14—C13177.2 (3)
N1—N2—C3—C20.3 (4)C10—C9—C14—C1358.5 (4)
C1—C2—C3—N20.0 (4)C15—C9—C14—C1358.7 (4)
C5—C2—C3—N2179.2 (3)C12—C13—C14—C960.3 (4)
N4—N3—C4—C50.7 (4)C17—C13—C14—C960.5 (4)
Cd1iv—N3—C4—C5173.8 (2)C7—C9—C15—C16176.9 (3)
N3—C4—C5—C60.8 (4)C14—C9—C15—C1658.4 (4)
N3—C4—C5—C2179.6 (3)C10—C9—C15—C1659.6 (4)
C3—C2—C5—C6172.8 (4)C9—C15—C16—C1860.7 (4)
C1—C2—C5—C68.3 (5)C9—C15—C16—C1760.5 (4)
C3—C2—C5—C46.7 (6)C18—C16—C17—C1359.5 (4)
C1—C2—C5—C4172.3 (3)C15—C16—C17—C1361.5 (4)
N3—N4—C6—C50.1 (4)C12—C13—C17—C1658.3 (4)
C4—C5—C6—N40.5 (4)C14—C13—C17—C1661.2 (4)
C2—C5—C6—N4179.9 (3)C17—C16—C18—C1160.6 (4)
Cd1—O1—C7—O27.7 (5)C15—C16—C18—C1160.1 (4)
Cd1—O1—C7—C9169.26 (18)C12—C11—C18—C1659.5 (4)
O1—C7—C9—C14161.0 (3)C8—C11—C18—C16180.0 (3)
O2—C7—C9—C1421.9 (4)C10—C11—C18—C1659.8 (4)
O1—C7—C9—C1079.3 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O5v0.851.792.616 (3)164
O5—H1W···O20.851.992.841 (3)175
O5—H2W···O2vi0.851.932.781 (3)175
N2—H1N···O20.862.002.819 (3)159
N4—H2N···O1vii0.862.162.763 (3)127
C1—H1···O4viii0.932.623.465 (4)151
Symmetry codes: (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x+3/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C12H15O4)2(C6H6N4)2]·2H2O[Cd(C12H15O4)2(C6H6N4)2]·2H2O
Mr809.74863.21
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)296296
a, b, c (Å)10.0002 (9), 10.1568 (8), 10.2186 (8)14.5363 (12), 14.9862 (13), 18.3813 (17)
α, β, γ (°)89.906 (6), 66.363 (5), 75.805 (5)90, 105.384 (7), 90
V3)916.32 (13)3860.8 (6)
Z14
Radiation typeMo KαMo Kα
µ (mm1)0.540.63
Crystal size (mm)0.22 × 0.22 × 0.180.23 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Bruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.891, 0.9090.868, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
16309, 3857, 3006 12693, 3945, 3056
Rint0.0520.052
(sin θ/λ)max1)0.6340.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.125, 1.03 0.044, 0.077, 1.02
No. of reflections38573945
No. of parameters250249
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.330.36, 0.43

Computer programs: SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012).

Selected geometric parameters (Å, º) for (I) top
Co1—O12.1547 (18)Co1—N32.162 (2)
Co1—N12.156 (2)
O1—Co1—N184.13 (8)O1i—Co1—N383.39 (7)
O1—Co1—N1i95.87 (8)N1—Co1—N393.21 (8)
O1—Co1—N396.61 (7)N1i—Co1—N386.79 (8)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O5ii0.851.742.565 (3)164
O5—H1W···O20.851.972.820 (3)174
O5—H2W···O2iii0.851.872.717 (3)174
N2—H1N···O2i0.861.982.781 (3)155
N4—H2N···O1i0.862.112.682 (3)123
C4—H4···O4ii0.932.593.407 (4)147
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
Cd1—N12.298 (2)Cd1—O12.347 (2)
Cd1—N3i2.321 (2)
N1ii—Cd1—N184.69 (13)N1—Cd1—O193.81 (8)
N1—Cd1—N3i92.36 (9)N3i—Cd1—O179.64 (8)
N1—Cd1—N3iii174.76 (9)N3iii—Cd1—O182.75 (8)
N3i—Cd1—N3iii90.90 (14)O1ii—Cd1—O1154.79 (10)
N1—Cd1—O1ii104.84 (8)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O5iv0.851.792.616 (3)164
O5—H1W···O20.851.992.841 (3)175
O5—H2W···O2v0.851.932.781 (3)175
N2—H1N···O20.862.002.819 (3)159
N4—H2N···O1vi0.862.162.763 (3)127
C1—H1···O4vii0.932.623.465 (4)151
Symmetry codes: (iv) x+1/2, y+1/2, z+1; (v) x+1, y, z+1; (vi) x+3/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds