Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two polytypic modifications of (1R,3S)-dimethyl 2-oxocyclohexane-1,3-dicarboxylate intergrow to form allotwins. One phase shows monoclinic symmetry, Cc, while the other is orthorhombic Pmc21. The structures may be considered as two different modes of superstructure ordering of an underlying, disordered structure. Considered in the same metrically orthorhombic unit cell a = 37.8883, b = 4.7233, c = 11.6835 Å, the two can be conveniently distinguished by their non-standard centering, Cc being represented as Xc with the centering vectors (0 0 0); (½ 0 ½); (¼ ½ ¾); (¾ ½ ¼); and Pmc21 as Xmc21 with the centering vectors (0 0 0); (½ 0 0). The difference between the allotwin domains lies only in the relationship between next-nearest neighbors along the stacking direction 100 and hence the conformations and packing efficiencies are identical for both phases and all three domains. The stacking sequences for the two phases correspond to ABAB for the orthorhombic stacking and ABA'B'/AB'A'B for the two (equivalent) monoclinic stackings. The monoclinic phase dominates comprising ca 80% of the total volume. Within the monoclinic phase, the ratio between the two possible orientations is highly unbalanced (6:1) indicating relatively large domains. The allotwinning detected in this sample may appear exotic in molecular compounds, but we suggest that the rarity of such examples in the literature is a reflection of the paucity of software that can identify and handle such cases. It is easy to overlook the possibility that a complex diffraction pattern originates from allotwinning and assume that normal mono-component twinning is the cause. The underlying mechanism in this case is the formation of two-dimensional layers of molecules that allow for two equivalent, but in terms of absolute geometry, different, ways of stacking.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213018605/dk5017sup1.cif
Contains datablocks global1, Phase_I, Phase_II

txt

Text file https://doi.org/10.1107/S2052519213018605/dk5017sup1.txt
JANA2006. m40 file. This file contains the atomic parameters for the two structures

txt

Text file https://doi.org/10.1107/S2052519213018605/dk5017sup2.txt
JANA2006. m50 file. This file contains symmetry information, the twin laws, constraints, scattering factor tables etc.

txt

Text file https://doi.org/10.1107/S2052519213018605/dk5017sup3.txt
JANA2006. m91 file. This file contains the symmetry averaged hkl, Fo, sig information

txt

Text file https://doi.org/10.1107/S2052519213018605/dk5017sup4.txt
JANA2006. m95 file. This file contains the unaveraged, raw data.

CCDC references: 971735; 971736

Computing details top

For both compounds, data collection: CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29); cell refinement: CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29); data reduction: CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29); program(s) used to solve structure: Palatinus L., Chapuis G. (2007). J. Appl. Cryst. 40, 786-790; program(s) used to refine structure: Petricek, V., Dusek, M. & Palatinus, L. (2006). Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
(Phase_I) top
Crystal data top
C10H14O5F(000) = 912
Mr = 214.2Dx = 1.361 Mg m3
Monoclinic, XcMo Kα radiation, λ = 0.7107 Å
Hall symbol: XcCell parameters from 5939 reflections
a = 37.8883 (18) Åθ = 2.7–29.2°
b = 4.7233 (2) ŵ = 0.11 mm1
c = 11.6835 (12) ÅT = 293 K
β = 90.000 (7)°Cube, colourless
V = 2090.9 (3) Å30.5 × 0.5 × 0.5 mm
Z = 8
Data collection top
Xcalibur, Sapphire3
diffractometer
7281 independent reflections
Radiation source: Enhance (Mo) X-ray Source3986 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 16.1829 pixels mm-1θmax = 29.2°, θmin = 3.2°
ω scansh = 5050
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 66
Tmin = 0.806, Tmax = 1l = 1515
31649 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.145(Δ/σ)max = 0.042
S = 1.34Δρmax = 0.16 e Å3
7281 reflectionsΔρmin = 0.12 e Å3
281 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 81E2 (7)
120 constraintsAbsolute structure: 2977 of Friedel pairs used in the refinement
Crystal data top
C10H14O5V = 2090.9 (3) Å3
Mr = 214.2Z = 8
Monoclinic, XcMo Kα radiation
a = 37.8883 (18) ŵ = 0.11 mm1
b = 4.7233 (2) ÅT = 293 K
c = 11.6835 (12) Å0.5 × 0.5 × 0.5 mm
β = 90.000 (7)°
Data collection top
Xcalibur, Sapphire3
diffractometer
7281 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
3986 reflections with I > 3σ(I)
Tmin = 0.806, Tmax = 1Rint = 0.068
31649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.34Δρmax = 0.16 e Å3
7281 reflectionsΔρmin = 0.12 e Å3
281 parametersAbsolute structure: 2977 of Friedel pairs used in the refinement
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10367 (15)0.0154 (6)0.8197 (4)0.0567 (13)
O10.07594 (7)0.1638 (4)0.7744 (2)0.0497 (6)
C20.06522 (8)0.1069 (5)0.6683 (3)0.0376 (8)
O20.07840 (8)0.0738 (5)0.6100 (3)0.0571 (7)
C30.03430 (8)0.2873 (4)0.6316 (2)0.0343 (6)
C40.00031 (8)0.1487 (4)0.6705 (3)0.0304 (6)
O300.0690 (4)0.7258790.0411 (6)
C50.03366 (9)0.3401 (5)0.5021 (3)0.0415 (7)
C60.00072 (12)0.4995 (5)0.4657 (4)0.0464 (15)
C70.03277 (9)0.3467 (5)0.5023 (3)0.0431 (8)
C80.03338 (8)0.2961 (4)0.6318 (3)0.0348 (6)
C90.06482 (8)0.1219 (5)0.6689 (3)0.0381 (8)
O40.07888 (9)0.0531 (6)0.6110 (3)0.0637 (8)
O50.07476 (8)0.1816 (4)0.7755 (2)0.0511 (6)
C100.10277 (14)0.0094 (6)0.8205 (4)0.0569 (14)
H1c10.1047330.0054110.9013780.068*
H2c10.1258850.0389020.7868540.068*
H3c10.0987660.2093490.8009210.068*
H1c30.0367790.4695120.6671190.0411*
H1c50.034730.1623450.4623860.0498*
H2c50.05420.4463340.4802970.0498*
H1c60.0010220.685880.4984820.0557*
H2c60.0007360.5225150.3840870.0557*
H1c70.0343180.1684530.4630920.0517*
H2c70.0529690.4569820.4805860.0517*
H1c80.0351350.4790390.6671270.0417*
H1c100.1055490.047090.9007710.0683*
H2c100.0971140.1868990.8096260.0683*
H3c100.1243580.0528570.7812810.0683*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (2)0.071 (2)0.053 (2)0.0032 (12)0.0055 (17)0.0122 (12)
O10.0483 (10)0.0564 (11)0.0444 (10)0.0021 (8)0.0103 (8)0.0074 (8)
C20.0319 (12)0.0404 (14)0.0404 (13)0.0079 (10)0.0017 (10)0.0011 (10)
O20.0544 (14)0.0631 (11)0.0539 (13)0.0193 (12)0.0024 (10)0.0099 (12)
C30.0399 (12)0.0281 (10)0.0349 (11)0.0036 (9)0.0023 (9)0.0039 (8)
C40.0388 (11)0.0260 (10)0.0265 (10)0.0008 (9)0.0011 (8)0.0055 (8)
O30.0425 (10)0.0366 (8)0.0443 (11)0.0007 (8)0.0008 (8)0.0112 (10)
C50.0439 (13)0.0434 (14)0.0372 (12)0.0069 (10)0.0063 (10)0.0024 (10)
C60.066 (3)0.033 (2)0.041 (2)0.0001 (9)0.0014 (16)0.0060 (8)
C70.0476 (14)0.0465 (14)0.0352 (12)0.0041 (11)0.0073 (11)0.0033 (10)
C80.0380 (11)0.0300 (11)0.0363 (11)0.0011 (9)0.0003 (9)0.0036 (8)
C90.0320 (12)0.0419 (14)0.0405 (13)0.0059 (10)0.0030 (10)0.0024 (10)
O40.0653 (16)0.0764 (14)0.0495 (13)0.0317 (13)0.0007 (11)0.0133 (12)
O50.0483 (10)0.0596 (11)0.0453 (10)0.0041 (8)0.0092 (7)0.0054 (8)
C100.044 (2)0.079 (3)0.048 (2)0.0042 (12)0.0053 (16)0.0075 (12)
Geometric parameters (Å, º) top
C1—O11.450 (5)C6—C71.521 (5)
C1—H1c10.96C6—H1c60.96
C1—H2c10.96C6—H2c60.96
C1—H3c10.96C7—C81.532 (4)
O1—C21.331 (4)C7—H1c70.96
C2—O21.201 (4)C7—H2c70.96
C2—C31.511 (4)C8—C91.511 (4)
C3—C41.515 (4)C8—H1c80.96
C3—C51.534 (4)C9—O41.193 (4)
C3—H1c30.96C9—O51.332 (4)
C4—O31.215 (3)O5—C101.437 (5)
C4—C81.523 (4)C10—H1c100.96
C5—C61.518 (5)C10—H2c100.96
C5—H1c50.96C10—H3c100.96
C5—H2c50.96
O1—C1—H1c1109.47C5—C6—H2c6109.47
O1—C1—H2c1109.47C7—C6—H1c6109.47
O1—C1—H3c1109.47C7—C6—H2c6109.47
H1c1—C1—H2c1109.47H1c6—C6—H2c6106.99
H1c1—C1—H3c1109.47C6—C7—C8111.3 (3)
H2c1—C1—H3c1109.47C6—C7—H1c7109.47
C1—O1—C2116.3 (3)C6—C7—H2c7109.47
O1—C2—O2123.0 (3)C8—C7—H1c7109.47
O1—C2—C3112.8 (2)C8—C7—H2c7109.47
O2—C2—C3124.2 (3)H1c7—C7—H2c7107.53
C2—C3—C4109.3 (2)C4—C8—C7110.6 (2)
C2—C3—C5112.6 (2)C4—C8—C9109.1 (2)
C2—C3—H1c3107.88C4—C8—H1c8110
C4—C3—C5110.7 (2)C7—C8—C9112.3 (2)
C4—C3—H1c3109.91C7—C8—H1c8106.57
C5—C3—H1c3106.4C9—C8—H1c8108.19
C3—C4—O3122.3 (2)C8—C9—O4124.5 (3)
C3—C4—C8115.2 (2)C8—C9—O5112.1 (2)
O3—C4—C8122.5 (2)O4—C9—O5123.4 (3)
C3—C5—C6111.7 (3)C9—O5—C10115.6 (3)
C3—C5—H1c5109.47O5—C10—H1c10109.47
C3—C5—H2c5109.47O5—C10—H2c10109.47
C6—C5—H1c5109.47O5—C10—H3c10109.47
C6—C5—H2c5109.47H1c10—C10—H2c10109.47
H1c5—C5—H2c5107.17H1c10—C10—H3c10109.47
C5—C6—C7111.8 (2)H2c10—C10—H3c10109.47
C5—C6—H1c6109.47
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H3c1···O20.962.452.645 (6)91.15
(Phase_II) top
Crystal data top
C10H14O5F(000) = 912
Mr = 214.2Dx = 1.361 Mg m3
Orthorhombic, Xmc21Mo Kα radiation, λ = 0.7107 Å
Hall symbol: Xmc21Cell parameters from 5939 reflections
a = 37.8883 Åθ = 2.7–29.2°
b = 4.7233 ŵ = 0.11 mm1
c = 11.6835 ÅT = 293 K
V = 2090.85 Å3Cube, colourless
Z = 80.5 × 0.5 × 0.5 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
7281 independent reflections
Radiation source: Enhance (Mo) X-ray Source3986 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 16.1829 pixels mm-1θmax = 29.2°, θmin = 3.2°
ω scansh = 5050
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 66
Tmin = 0.806, Tmax = 1l = 1515
31649 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.145(Δ/σ)max = 0.042
S = 1.34Δρmax = 0.16 e Å3
7281 reflectionsΔρmin = 0.12 e Å3
281 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 81E2 (7)
120 constraintsAbsolute structure: 3002 of Friedel pairs used in the refinement
Crystal data top
C10H14O5V = 2090.85 Å3
Mr = 214.2Z = 8
Orthorhombic, Xmc21Mo Kα radiation
a = 37.8883 ŵ = 0.11 mm1
b = 4.7233 ÅT = 293 K
c = 11.6835 Å0.5 × 0.5 × 0.5 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
7281 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
3986 reflections with I > 3σ(I)
Tmin = 0.806, Tmax = 1Rint = 0.068
31649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.34Δρmax = 0.16 e Å3
7281 reflectionsΔρmin = 0.12 e Å3
281 parametersAbsolute structure: 3002 of Friedel pairs used in the refinement
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1-2_10.1033 (3)0.0196 (13)0.818 (3)0.070 (4)
C1-2_20.1451 (3)0.4871 (12)1.562 (3)0.078 (4)
O1-2_10.07522 (6)0.1618 (6)0.774 (3)0.0363 (11)
O1-2_20.17446 (8)0.3180 (6)1.523 (3)0.0432 (11)
C2-2_10.06536 (10)0.1036 (10)0.668 (3)0.0256 (13)
C2-2_20.18476 (11)0.3747 (10)1.414 (3)0.0306 (15)
O2-2_10.07768 (12)0.0813 (10)0.611 (3)0.0491 (15)
O2-2_20.17179 (16)0.5564 (11)1.357 (3)0.0578 (17)
C3-2_10.03404 (8)0.2859 (7)0.631 (3)0.0226 (11)
C3-2_20.21646 (9)0.1961 (7)1.379 (3)0.0251 (12)
C4-2_100.1331 (13)0.671 (3)0.0180 (16)
C4-2_20.250.3457 (12)1.417 (3)0.0232 (17)
O3-2_100.0778 (11)0.726 (3)0.0291 (15)
O3-2_20.250.5617 (11)1.470 (3)0.0331 (16)
C5-2_10.03323 (10)0.3396 (8)0.502 (3)0.0267 (12)
C5-2_20.21710 (10)0.1505 (8)1.249 (3)0.0325 (13)
C6-2_100.4923 (10)0.464 (3)0.027 (3)
C6-2_20.250.0079 (12)1.212 (3)0.038 (4)
H1c1-2_10.0953660.2126970.8187090.0838*
H2c1-2_10.1092570.0377680.8943520.0838*
H3c1-2_10.1236960.0033540.7697130.0838*
H1c1-2_20.1292570.3703291.6055710.094*
H2c1-2_20.1537430.6376641.6097870.094*
H3c1-2_20.1328630.5655141.4976790.094*
H1c3-2_10.0360510.4693910.6659240.0271*
H1c3-2_20.2148230.0134521.4143080.0301*
H1c5-2_10.0351140.1626470.4618770.0321*
H2c5-2_10.0535470.448480.4800650.0321*
H1c5-2_20.196570.0454061.2263840.039*
H2c5-2_20.2162750.3304761.2110010.039*
H1c6-2_100.6811880.4941090.0326*
H2c6-2_100.5100370.3818880.0326*
H1c6-2_20.250.0296981.1307960.0461*
H2c6-2_20.250.1930551.2463990.0461*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1-2_10.033 (5)0.097 (7)0.079 (6)0.010 (3)0.025 (5)0.015 (3)
C1-2_20.039 (6)0.095 (7)0.101 (8)0.008 (3)0.034 (5)0.022 (3)
O1-2_10.0190 (14)0.051 (2)0.039 (2)0.0044 (13)0.0063 (13)0.0039 (14)
O1-2_20.0375 (17)0.052 (2)0.0397 (19)0.0045 (14)0.0084 (14)0.0106 (15)
C2-2_10.0145 (19)0.034 (3)0.028 (2)0.0027 (16)0.0039 (17)0.001 (2)
C2-2_20.033 (2)0.032 (3)0.027 (2)0.0019 (18)0.0052 (18)0.0000 (19)
O2-2_10.035 (2)0.054 (2)0.059 (3)0.014 (2)0.005 (2)0.011 (3)
O2-2_20.060 (3)0.059 (2)0.054 (3)0.019 (3)0.002 (2)0.022 (3)
C3-2_10.0126 (16)0.0245 (19)0.031 (2)0.0063 (13)0.0005 (16)0.0022 (15)
C3-2_20.030 (2)0.021 (2)0.024 (2)0.0017 (15)0.0016 (16)0.0020 (14)
C4-2_10.012 (2)0.031 (3)0.011 (3)000.008 (2)
C4-2_20.035 (3)0.020 (3)0.014 (3)000.005 (2)
O3-2_10.028 (2)0.022 (2)0.037 (3)000.010 (3)
O3-2_20.050 (3)0.018 (2)0.032 (3)000.001 (3)
C5-2_10.0177 (18)0.034 (2)0.028 (2)0.0063 (15)0.0058 (15)0.0018 (16)
C5-2_20.039 (2)0.031 (2)0.027 (2)0.0067 (17)0.0066 (19)0.0025 (16)
C6-2_10.025 (6)0.038 (6)0.019 (5)000.0054 (19)
C6-2_20.059 (9)0.038 (7)0.017 (5)000.008 (2)
Bond lengths (Å) top
C1-2_1—O1-2_11.46 (2)C3-2_1—H1c3-2_10.96
C1-2_1—H1c1-2_10.96C3-2_2—C4-2_21.522 (17)
C1-2_1—H2c1-2_10.96C3-2_2—C5-2_21.53 (6)
C1-2_1—H3c1-2_10.96C3-2_2—H1c3-2_20.96
C1-2_2—O1-2_21.45 (2)C4-2_1—O3-2_11.18 (3)
C1-2_2—H1c1-2_20.96C4-2_2—O3-2_21.19 (3)
C1-2_2—H2c1-2_20.96C5-2_1—C6-2_11.517 (17)
C1-2_2—H3c1-2_20.96C5-2_1—H1c5-2_10.96
O1-2_1—C2-2_11.32 (5)C5-2_1—H2c5-2_10.96
O1-2_2—C2-2_21.35 (5)C5-2_2—C6-2_21.515 (17)
C2-2_1—O2-2_11.19 (3)C5-2_2—H1c5-2_20.96
C2-2_1—C3-2_11.527 (17)C5-2_2—H2c5-2_20.96
C2-2_2—O2-2_21.20 (3)C6-2_1—H1c6-2_10.96
C2-2_2—C3-2_21.524 (16)C6-2_1—H2c6-2_10.96
C3-2_1—C4-2_11.550 (17)C6-2_2—H1c6-2_20.96
C3-2_1—C5-2_11.53 (6)C6-2_2—H2c6-2_20.96
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1-2_2—H3c1-2_2···O2-2_20.962.212.63 (5)104.81

Experimental details

(Phase_I)(Phase_II)
Crystal data
Chemical formulaC10H14O5C10H14O5
Mr214.2214.2
Crystal system, space groupMonoclinic, XcOrthorhombic, Xmc21
Temperature (K)293293
a, b, c (Å)37.8883 (18), 4.7233 (2), 11.6835 (12)37.8883, 4.7233, 11.6835
α, β, γ (°)90, 90.000 (7), 9090, 90, 90
V3)2090.9 (3)2090.85
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.110.11
Crystal size (mm)0.5 × 0.5 × 0.50.5 × 0.5 × 0.5
Data collection
DiffractometerXcalibur, Sapphire3
diffractometer
Xcalibur, Sapphire3
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax0.806, 10.806, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
31649, 7281, 3986 31649, 7281, 3986
Rint0.0680.068
(sin θ/λ)max1)0.6870.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.34 0.050, 0.145, 1.34
No. of reflections72817281
No. of parameters281281
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.120.16, 0.12
Absolute structure2977 of Friedel pairs used in the refinement3002 of Friedel pairs used in the refinement

Computer programs: CrysAlis PRO, Agilent Technologies, Version 1.171.35.6 (release 27-01-2011 CrysAlis171 .NET) (compiled Jan 27 2011,13:34:29), Palatinus L., Chapuis G. (2007). J. Appl. Cryst. 40, 786-790, Petricek, V., Dusek, M. & Palatinus, L. (2006). Jana2006. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic..

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds