Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of commensurately modulated Pr2SbO2 was solved in the orthorhombic superspace group Immm(0β0)000, q = 3/4b*, a = 13.5790 (15), b = 3.9818 (18), c = 4.0041 (18) Å (T = 40 K) from a crystal twinned by reticular pseudomerohedry applying the twin law (1 0 0, 0 0 1, 0 −1 0), corresponding to a rotation by 90° along the reciprocal a axis. The formation of Zintl-type Sb2−–Sb2− dumbbells in Pr23+Sb2−O22− is considered to be accountable for its semiconducting properties, as observed previously. The space group for the three-dimensional commensurate supercell a = 13.5790 (15), b = 15.9272 (18), c = 4.0041 (18) Å (T = 40 K) is Pmnm.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213029436/dk5015sup1.cif
Contains datablocks global, 40K

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213029436/dk5015sup2.cif
Contains datablocks global, 100K

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213029436/dk5015sup3.cif
Contains datablocks global, 250K

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213029436/dk5015sup4.cif
Contains datablocks global, RT_powder

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213029436/dk5015sup5.cif
Contains datablocks global, Pr2SbO2_40K_supercell

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052519213029436/dk5015sup6.pdf
Supplementary Material contains group-subgroup relation (Barnighausen trees) for the discussed structure

B-IncStrDB references: 8292Ebau5x; 8312EnSPI5; 8332EyvURZ; 8352EqCIs1

Computing details top

(40K) top
Crystal data top
Pr2SbO2Z = 2
Mr = 435.6 (1)F(000) = 370
Orthorhombic, Immm(0β0)000†Dx = 6.679 (1) Mg m3
q = 0.750000b*Mo Kα radiation, λ = 0.71069 Å
a = 13.579 ŵ = 28.16 (1) mm1
b = 3.9818 ÅT = 40 K
c = 4.0041 Å × × mm
V = 216.50 Å3
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, −x2, x3, −x4; (3) −x1, x2, −x3, x4; (4) x1, −x2, −x3, −x4; (5) −x1, −x2, −x3, −x4; (6) x1, x2, −x3, x4; (7) x1, −x2, x3, −x4; (8) −x1, x2, x3, x4; (9) x1+1/2, x2+1/2, x3+1/2, x4; (10) −x1+1/2, −x2+1/2, x3+1/2, −x4; (11) −x1+1/2, x2+1/2, −x3+1/2, x4; (12) x1+1/2, −x2+1/2, −x3+1/2, −x4; (13) −x1+1/2, −x2+1/2, −x3+1/2, −x4; (14) x1+1/2, x2+1/2, −x3+1/2, x4; (15) x1+1/2, −x2+1/2, x3+1/2, −x4; (16) −x1+1/2, x2+1/2, x3+1/2, x4.

Data collection top
Radiation source: X-ray tubeθmax = 54.8°, θmin = 2.0°
26960 measured reflectionsh = 030
2999 independent reflectionsk = 09
2561 reflections with I > 3σ(I)l = 08
Rint = 0.035
Refinement top
Refinement on F96 parameters
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.1290 constraints
S = 2.31Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
2999 reflections(Δ/σ)max = 0.002
Crystal data top
Pr2SbO2V = 216.50 Å3
Mr = 435.6 (1)Z = 2
Orthorhombic, Immm(0β0)000†Mo Kα radiation
q = 0.750000b*µ = 28.16 (1) mm1
a = 13.579 ÅT = 40 K
b = 3.9818 Å × × mm
c = 4.0041 Å
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, −x2, x3, −x4; (3) −x1, x2, −x3, x4; (4) x1, −x2, −x3, −x4; (5) −x1, −x2, −x3, −x4; (6) x1, x2, −x3, x4; (7) x1, −x2, x3, −x4; (8) −x1, x2, x3, x4; (9) x1+1/2, x2+1/2, x3+1/2, x4; (10) −x1+1/2, −x2+1/2, x3+1/2, −x4; (11) −x1+1/2, x2+1/2, −x3+1/2, x4; (12) x1+1/2, −x2+1/2, −x3+1/2, −x4; (13) −x1+1/2, −x2+1/2, −x3+1/2, −x4; (14) x1+1/2, x2+1/2, −x3+1/2, x4; (15) x1+1/2, −x2+1/2, x3+1/2, −x4; (16) −x1+1/2, x2+1/2, x3+1/2, x4.

Data collection top
26960 measured reflections2561 reflections with I > 3σ(I)
2999 independent reflectionsRint = 0.035
Refinement top
R[F2 > 2σ(F2)] = 0.0602999 reflections
wR(F2) = 0.12996 parameters
S = 2.310 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pr10.16224 (5)0.500.00470 (16)
Sb10.50.50.0326 (13)0.0532 (12)0.5
O10.2510 (3)000.0066 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00645 (16)0.0040 (3)0.0037 (3)000
Sb10.0098 (10)0.0701 (14)0.080 (3)000
O10.0114 (14)0.007 (2)0.0019 (19)000
Bond lengths (Å) top
AverageMinimumMaximum
Pr1—Pr1i3.6959 (12)3.6725 (11)3.7304 (11)
Pr1—Pr1ii3.6959 (12)3.6725 (11)3.7304 (11)
Pr1—Pr1iii3.6959 (12)3.6758 (12)3.7160 (12)
Pr1—Pr1iv3.6959 (12)3.6758 (12)3.7160 (12)
Pr1—Sb1i3.487 (3)3.345 (3)3.780 (3)
Pr1—Sb1ii3.635 (3)3.386 (3)3.857 (3)
Pr1—Sb1iii3.571 (3)3.365 (3)3.937 (3)
Pr1—Sb1v3.634 (3)3.382 (3)3.859 (3)
Pr1—Sb1vi3.486 (3)3.343 (3)3.782 (3)
Pr1—Sb1vii3.571 (3)3.365 (3)3.934 (3)
Pr1—O12.329 (4)2.322 (4)2.338 (4)
Pr1—O1viii2.329 (4)2.313 (4)2.339 (3)
Pr1—O1i2.323 (3)2.318 (3)2.327 (2)
Pr1—O1ii2.323 (3)2.318 (3)2.327 (2)
Sb1—Sb1ix3.9838 (2)2.90260 (14)4.43280 (11)
Sb1—Sb1viii3.9838 (2)2.90260 (14)4.43280 (11)
Sb1—Sb1x3.9917 (5)2.9036 (2)4.4536 (7)
Sb1—Sb1xi0.264 (8)0.039 (7)0.501 (8)
Sb1—Sb1xii3.9917 (5)2.9036 (2)4.4536 (7)
Symmetry codes: (i) x1, x2, x31, x4; (ii) x1, x2, x3, x4; (iii) x1, x2+1, x31, x4; (iv) x1, x2+1, x3, x4; (v) x11, x2, x31, x4; (vi) x11, x2, x3, x4; (vii) x11, x2+1, x3, x4; (viii) x1, x2+1, x3, x4; (ix) x1, x21, x3, x4; (x) x1+1, x21, x3, x4; (xi) x1+1, x2, x3, x4; (xii) x1+1, x2+1, x3, x4.

Experimental details

Crystal data
Chemical formulaPr2SbO2
Mr435.6 (1)
Crystal system, space groupOrthorhombic, Immm(0β0)000†
Temperature (K)40
Wave vectorsq = 0.750000b*
a, b, c (Å)13.579, 3.9818, 4.0041
V3)216.50
Z2
Radiation typeMo Kα
µ (mm1)28.16 (1)
Crystal size (mm) × ×
Data collection
Diffractometer?
Absorption correction?
No. of measured, independent and
observed [I > 3σ(I)] reflections
26960, 2999, 2561
Rint0.035
(sin θ/λ)max1)1.150
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.129, 2.31
No. of reflections2999
No. of parameters96
Δρmax, Δρmin (e Å3)?, ?

† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, −x2, x3, −x4; (3) −x1, x2, −x3, x4; (4) x1, −x2, −x3, −x4; (5) −x1, −x2, −x3, −x4; (6) x1, x2, −x3, x4; (7) x1, −x2, x3, −x4; (8) −x1, x2, x3, x4; (9) x1+1/2, x2+1/2, x3+1/2, x4; (10) −x1+1/2, −x2+1/2, x3+1/2, −x4; (11) −x1+1/2, x2+1/2, −x3+1/2, x4; (12) x1+1/2, −x2+1/2, −x3+1/2, −x4; (13) −x1+1/2, −x2+1/2, −x3+1/2, −x4; (14) x1+1/2, x2+1/2, −x3+1/2, x4; (15) x1+1/2, −x2+1/2, x3+1/2, −x4; (16) −x1+1/2, x2+1/2, x3+1/2, x4.

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds