Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex [systematic name: bis­(1,2-diamino­propane-2κ2N,N′)di-μ-chlorido-1:2κ2Cl,2:3κ2Cl-dichlorido-1κCl,3κCl-tetra­kis(triphenyl­phosphine)-1κ2P,3κ2P-tricopper(I,II,I) acetonitrile disolvate], [{(Ph3P)2Cl2Cu}2Cu(C3H10N2)2]·2C2H3N, is a centrosymmetric linear trinuclear mixed-valence copper complex in which the central CuII atom is bridged by Cl atoms to the two CuI atoms. The coordination geometry is octa­hedral for CuII, with Jahn–Teller elongation of the Cu—Cl bonds, and distorted tetra­hedral for CuI, with a wide P—Cu—P angle. The diamine ligands are twofold disordered, with occupancy factors of ca 0.6:0.4, and form one N—H...Cl hydrogen bond each with a terminal Cl atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037282/bt2455sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037282/bt2455Isup2.hkl
Contains datablock I

CCDC reference: 635750

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.007 Å
  • Disorder in main residue
  • R factor = 0.054
  • wR factor = 0.158
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.89 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C37X PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C40 PLAT301_ALERT_3_C Main Residue Disorder ......................... 10.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT420_ALERT_2_C D-H Without Acceptor >N2 - >H2A ... ? PLAT420_ALERT_2_C D-H Without Acceptor >N2 - >H2B ... ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C38 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C38X = ... R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 136
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Trinuclear metal complexes can be classified as linear and non-linear. Trinuclear copper complexes with two, three or four bridges (Prins et al., 1996; Feng et al., 2007; Onan et al., 1984; Choi et al., 2006) have been reported. There are also some reported singly-bridged copper complexes (Arrizabalaga et al., 1983; Bailey et al., 1995). We report here the crystal structure of a new linear trinuclear mixed-valence copper compound, (I) (Fig. 1). It contains two CuI atoms with distorted tetrahedral coordination, the four vertices being occupied by two P atoms of PPh3 ligands and two Cl atoms. The largest deviation from ideal tetrahedral geometry is the wide P—Cu—P angle of 121.92 (4)°. The central CuII atom lies on an inversion centre and has octahedral coordination, with two chelating bidentate diamines and two trans-chloro bridges to the CuI atoms. The diamine ligands are disordered over two orientations, with refined occupancy factors of 0.599:0.401 (10). Each of them forms one N—H···Cl hydrogen bond to a terminal Cl atom. The Cu—Cl bonds for the central CuII atom are elongated as a result of a typical Jahn-Teller distortion, and the bridging Cl atoms make longer bonds to the CuI atoms than do the terminal Cl atoms, as expected. There are no significant intermolecular interactions, and acetonitrile solvent molecules simply occupy what would otherwise be voids in the structure.

Related literature top

For related structures, see: Arrizabalaga et al. (1983); Bailey et al. (1995); Choi et al. (2006); Feng et al. (2007); Onan et al. (1984); Prins et al. (1996).

Experimental top

All chemicals used were of analytical reagent grade and were used directly without further purification. A solution of PPh3 (0.15 mg, 0.6 mmol) in acetonitrile (4 ml) was reacted with CuCl (0.03 mg, 0.3 mmol) in acetonitrile (5 ml). 1,2-Diaminopropane (0.02 mg, 0.3 mmol) in acetonitrile (3 ml) was added to the mixture, which was stirred for 1 h. Slow evaporation at room temperature of the solvent gave blue crystals.

Refinement top

The 1,2-diaminopropane ligand is twofold disordered, with refined occupancy factors of 0.599:0.401 (10); restraints were applied to the displacement parameters of this ligand. All H atoms were positioned geometrically, with N—H = 0.92 and C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(N,C) or 1.5Ueq(C) for methyl groups.

Structure description top

Trinuclear metal complexes can be classified as linear and non-linear. Trinuclear copper complexes with two, three or four bridges (Prins et al., 1996; Feng et al., 2007; Onan et al., 1984; Choi et al., 2006) have been reported. There are also some reported singly-bridged copper complexes (Arrizabalaga et al., 1983; Bailey et al., 1995). We report here the crystal structure of a new linear trinuclear mixed-valence copper compound, (I) (Fig. 1). It contains two CuI atoms with distorted tetrahedral coordination, the four vertices being occupied by two P atoms of PPh3 ligands and two Cl atoms. The largest deviation from ideal tetrahedral geometry is the wide P—Cu—P angle of 121.92 (4)°. The central CuII atom lies on an inversion centre and has octahedral coordination, with two chelating bidentate diamines and two trans-chloro bridges to the CuI atoms. The diamine ligands are disordered over two orientations, with refined occupancy factors of 0.599:0.401 (10). Each of them forms one N—H···Cl hydrogen bond to a terminal Cl atom. The Cu—Cl bonds for the central CuII atom are elongated as a result of a typical Jahn-Teller distortion, and the bridging Cl atoms make longer bonds to the CuI atoms than do the terminal Cl atoms, as expected. There are no significant intermolecular interactions, and acetonitrile solvent molecules simply occupy what would otherwise be voids in the structure.

For related structures, see: Arrizabalaga et al. (1983); Bailey et al. (1995); Choi et al. (2006); Feng et al. (2007); Onan et al. (1984); Prins et al. (1996).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD; program(s) used to solve structure: SHELXTL (Sheldrick, 2005); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 40% probability displacement ellipsoids. H atoms, solvent molecules, and the minor disorder components have been omitted. [Symmetry code for unlabelled atoms: 1 - x, 1 - y, 1 - z.]
bis(1,2-diaminopropane-2κ2N,N')di-µ-chlorido-1:2κ2Cl,2:3κ2Cl- dichlorido-1κCl,3κCl-tetrakis(triphenylphosphine)-1κ2P,3κ2P- tricopper(I,II,I) acetonitrile disolvate top
Crystal data top
[Cu3Cl4(C3H10N2)2(C18H15P)4]·2C2H3NF(000) = 1670
Mr = 1611.87Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.896 (3) ÅCell parameters from 32758 reflections
b = 9.4181 (15) Åθ = 4.1–25.0°
c = 26.533 (4) ŵ = 1.06 mm1
β = 94.957 (12)°T = 150 K
V = 3957.4 (11) Å3Block, blue
Z = 20.25 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
6923 independent reflections
Radiation source: sealed tube5038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
φ and ω scansθmax = 25.0°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1818
Tmin = 0.780, Tmax = 0.820k = 1111
32758 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0745P)2 + 8.3144P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6923 reflectionsΔρmax = 0.78 e Å3
496 parametersΔρmin = 0.81 e Å3
136 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (5)
Crystal data top
[Cu3Cl4(C3H10N2)2(C18H15P)4]·2C2H3NV = 3957.4 (11) Å3
Mr = 1611.87Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.896 (3) ŵ = 1.06 mm1
b = 9.4181 (15) ÅT = 150 K
c = 26.533 (4) Å0.25 × 0.20 × 0.20 mm
β = 94.957 (12)°
Data collection top
Nonius KappaCCD
diffractometer
6923 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
5038 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.820Rint = 0.074
32758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054136 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.03Δρmax = 0.78 e Å3
6923 reflectionsΔρmin = 0.81 e Å3
496 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.28031 (3)0.32452 (6)0.389429 (19)0.02994 (19)
Cl10.34277 (7)0.11509 (13)0.42371 (4)0.0381 (3)
Cl20.39546 (7)0.49353 (13)0.40612 (5)0.0395 (3)
P10.16988 (7)0.39615 (12)0.43263 (4)0.0267 (3)
P20.26663 (7)0.29168 (13)0.30384 (4)0.0273 (3)
C10.1891 (3)0.3852 (5)0.50241 (15)0.0291 (10)
C20.1611 (3)0.4882 (5)0.53478 (17)0.0365 (11)
H20.13270.57050.52130.044*
C30.1750 (3)0.4699 (7)0.58722 (19)0.0505 (14)
H30.15740.54100.60940.061*
C40.2143 (3)0.3488 (7)0.60679 (18)0.0531 (15)
H40.22250.33560.64240.064*
C50.2418 (4)0.2472 (7)0.5747 (2)0.0585 (16)
H50.26930.16450.58840.070*
C60.2298 (3)0.2639 (6)0.52255 (17)0.0421 (12)
H60.24910.19330.50070.050*
C70.1373 (3)0.5817 (5)0.42317 (15)0.0308 (10)
C80.2008 (3)0.6845 (5)0.42215 (18)0.0387 (12)
H80.25830.65570.42400.046*
C90.1808 (4)0.8288 (5)0.41839 (19)0.0436 (12)
H90.22470.89740.41870.052*
C100.0973 (3)0.8719 (5)0.41417 (17)0.0407 (12)
H100.08390.97010.41160.049*
C110.0332 (3)0.7719 (5)0.41377 (17)0.0394 (12)
H110.02410.80150.41000.047*
C120.0529 (3)0.6268 (5)0.41891 (16)0.0351 (11)
H120.00880.55890.41950.042*
C130.0702 (3)0.2987 (5)0.42097 (16)0.0285 (10)
C140.0274 (3)0.2347 (5)0.45891 (17)0.0344 (11)
H140.04960.24280.49320.041*
C150.0471 (3)0.1590 (6)0.4472 (2)0.0447 (13)
H150.07490.11540.47340.054*
C160.0808 (3)0.1471 (6)0.3976 (2)0.0455 (13)
H160.13140.09510.38980.055*
C170.0399 (3)0.2120 (6)0.35907 (19)0.0439 (13)
H170.06330.20590.32500.053*
C180.0353 (3)0.2857 (5)0.37077 (17)0.0363 (11)
H180.06330.32780.34430.044*
C190.3537 (3)0.1937 (5)0.27892 (17)0.0332 (11)
C200.4345 (3)0.2202 (6)0.3011 (2)0.0438 (12)
H200.44210.28120.32970.053*
C210.5043 (4)0.1580 (7)0.2818 (3)0.0645 (18)
H210.55940.17690.29720.077*
C220.4941 (4)0.0694 (7)0.2405 (3)0.0646 (18)
H220.54220.02870.22720.078*
C230.4144 (4)0.0390 (6)0.2182 (2)0.0527 (15)
H230.40740.02210.18970.063*
C240.3441 (3)0.0994 (5)0.23824 (17)0.0407 (12)
H240.28900.07590.22390.049*
C250.2624 (3)0.4519 (5)0.26432 (17)0.0317 (10)
C260.2333 (3)0.5768 (6)0.2848 (2)0.0460 (13)
H260.21680.57760.31840.055*
C270.2282 (4)0.7010 (6)0.2559 (3)0.0637 (17)
H270.20930.78640.27030.076*
C280.2503 (4)0.7013 (6)0.2066 (2)0.0577 (16)
H280.24510.78550.18690.069*
C290.2798 (3)0.5784 (6)0.1865 (2)0.0467 (13)
H290.29540.57810.15280.056*
C300.2870 (3)0.4546 (6)0.21499 (17)0.0399 (12)
H300.30890.37110.20080.048*
C310.1742 (3)0.1909 (5)0.27813 (15)0.0278 (10)
C320.1217 (3)0.2291 (5)0.23523 (16)0.0349 (11)
H320.13310.31290.21710.042*
C330.0521 (3)0.1441 (6)0.21885 (19)0.0479 (14)
H330.01720.17000.18940.057*
C340.0340 (3)0.0232 (6)0.24513 (19)0.0453 (13)
H340.01350.03340.23400.054*
C350.0852 (3)0.0154 (6)0.28761 (19)0.0445 (13)
H350.07300.09910.30560.053*
C360.1539 (3)0.0669 (5)0.30402 (18)0.0384 (11)
H360.18830.03930.33340.046*
Cu20.50000.50000.50000.0436 (3)
N10.5266 (6)0.7108 (10)0.4930 (4)0.044 (2)0.599 (10)
H1A0.57070.73640.51600.053*0.599 (10)
H1B0.54160.73000.46100.053*0.599 (10)
N20.3990 (6)0.5691 (12)0.5324 (4)0.051 (2)0.599 (10)
H2A0.35110.55580.51090.061*0.599 (10)
H2B0.39310.51890.56160.061*0.599 (10)
C370.4493 (8)0.7906 (14)0.5028 (5)0.063 (3)0.599 (10)
H37A0.46390.89030.51150.076*0.599 (10)
H37B0.40930.79060.47210.076*0.599 (10)
C380.4101 (14)0.724 (2)0.5445 (6)0.061 (4)0.599 (10)
H380.44930.73360.57580.073*0.599 (10)
C390.3253 (7)0.7951 (13)0.5539 (5)0.081 (4)0.599 (10)
H39A0.30090.74730.58200.121*0.599 (10)
H39B0.28630.78760.52330.121*0.599 (10)
H39C0.33490.89540.56230.121*0.599 (10)
N1X0.3985 (9)0.4925 (18)0.5435 (6)0.053 (4)0.401 (10)
H1X10.35050.46500.52410.064*0.401 (10)
H1X20.40860.42810.56940.064*0.401 (10)
N2X0.4906 (10)0.7100 (19)0.5076 (6)0.049 (3)0.401 (10)
H2X10.53190.74250.53120.059*0.401 (10)
H2X20.49730.75400.47730.059*0.401 (10)
C37X0.3874 (12)0.634 (2)0.5640 (9)0.078 (5)0.401 (10)
H37C0.42730.64860.59430.094*0.401 (10)
H37D0.32920.64440.57420.094*0.401 (10)
C38X0.403 (2)0.743 (3)0.5247 (10)0.064 (5)0.401 (10)
H38X0.35950.73340.49530.077*0.401 (10)
C39X0.3998 (12)0.8929 (17)0.5458 (6)0.072 (5)0.401 (10)
H39D0.41070.96130.51930.108*0.401 (10)
H39E0.44280.90310.57430.108*0.401 (10)
H39F0.34380.91060.55730.108*0.401 (10)
N30.4423 (5)0.3375 (13)0.1140 (3)0.156 (4)
C400.5077 (5)0.3358 (9)0.1341 (3)0.078 (2)
C410.5903 (4)0.3360 (6)0.1589 (2)0.0524 (14)
H41A0.62410.40970.14420.079*
H41B0.61660.24310.15470.079*
H41C0.58730.35520.19500.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0258 (3)0.0369 (4)0.0267 (3)0.0007 (2)0.0002 (2)0.0018 (2)
Cl10.0391 (6)0.0331 (7)0.0417 (6)0.0027 (5)0.0009 (5)0.0013 (5)
Cl20.0340 (6)0.0369 (7)0.0455 (7)0.0061 (5)0.0079 (5)0.0000 (5)
P10.0257 (6)0.0294 (7)0.0248 (6)0.0016 (5)0.0008 (4)0.0004 (5)
P20.0255 (6)0.0317 (7)0.0244 (6)0.0028 (5)0.0000 (4)0.0001 (5)
C10.025 (2)0.039 (3)0.023 (2)0.001 (2)0.0002 (17)0.0017 (19)
C20.031 (2)0.043 (3)0.035 (3)0.005 (2)0.000 (2)0.006 (2)
C30.046 (3)0.071 (4)0.035 (3)0.002 (3)0.003 (2)0.017 (3)
C40.048 (3)0.086 (5)0.024 (2)0.007 (3)0.006 (2)0.001 (3)
C50.062 (4)0.073 (4)0.039 (3)0.026 (3)0.002 (3)0.014 (3)
C60.046 (3)0.051 (3)0.029 (2)0.014 (3)0.001 (2)0.002 (2)
C70.031 (2)0.037 (3)0.025 (2)0.001 (2)0.0013 (18)0.0037 (19)
C80.036 (3)0.037 (3)0.043 (3)0.003 (2)0.001 (2)0.000 (2)
C90.056 (3)0.028 (3)0.048 (3)0.003 (2)0.009 (2)0.003 (2)
C100.059 (3)0.028 (3)0.035 (3)0.009 (2)0.008 (2)0.001 (2)
C110.044 (3)0.040 (3)0.035 (3)0.013 (2)0.006 (2)0.002 (2)
C120.035 (3)0.037 (3)0.034 (2)0.002 (2)0.0015 (19)0.001 (2)
C130.026 (2)0.025 (3)0.035 (2)0.0035 (18)0.0023 (18)0.0012 (18)
C140.036 (3)0.038 (3)0.029 (2)0.000 (2)0.0010 (19)0.002 (2)
C150.034 (3)0.048 (3)0.053 (3)0.005 (2)0.009 (2)0.002 (2)
C160.027 (2)0.052 (3)0.057 (3)0.004 (2)0.002 (2)0.011 (3)
C170.036 (3)0.056 (3)0.038 (3)0.007 (2)0.005 (2)0.010 (2)
C180.029 (2)0.048 (3)0.032 (2)0.005 (2)0.0004 (19)0.002 (2)
C190.035 (3)0.034 (3)0.032 (2)0.008 (2)0.0057 (19)0.009 (2)
C200.030 (3)0.041 (3)0.061 (3)0.001 (2)0.005 (2)0.001 (3)
C210.029 (3)0.050 (4)0.116 (6)0.004 (3)0.017 (3)0.002 (4)
C220.045 (4)0.055 (4)0.099 (5)0.017 (3)0.038 (3)0.007 (4)
C230.060 (4)0.048 (4)0.052 (3)0.021 (3)0.016 (3)0.001 (3)
C240.042 (3)0.047 (3)0.032 (2)0.016 (2)0.000 (2)0.001 (2)
C250.030 (2)0.028 (3)0.036 (2)0.002 (2)0.0036 (19)0.001 (2)
C260.045 (3)0.044 (3)0.048 (3)0.006 (2)0.001 (2)0.003 (2)
C270.064 (4)0.035 (4)0.089 (5)0.010 (3)0.007 (3)0.001 (3)
C280.051 (3)0.046 (4)0.071 (4)0.007 (3)0.021 (3)0.023 (3)
C290.046 (3)0.048 (4)0.045 (3)0.010 (3)0.006 (2)0.011 (3)
C300.040 (3)0.044 (3)0.034 (3)0.003 (2)0.003 (2)0.004 (2)
C310.026 (2)0.032 (3)0.026 (2)0.0050 (19)0.0030 (17)0.0022 (18)
C320.033 (3)0.040 (3)0.030 (2)0.002 (2)0.0031 (19)0.002 (2)
C330.044 (3)0.066 (4)0.033 (3)0.002 (3)0.007 (2)0.010 (3)
C340.041 (3)0.050 (3)0.045 (3)0.013 (2)0.002 (2)0.013 (3)
C350.050 (3)0.039 (3)0.044 (3)0.009 (2)0.004 (2)0.006 (2)
C360.041 (3)0.037 (3)0.037 (3)0.001 (2)0.002 (2)0.000 (2)
Cu20.0374 (5)0.0428 (6)0.0508 (5)0.0041 (4)0.0044 (4)0.0060 (4)
N10.033 (5)0.055 (5)0.042 (5)0.003 (4)0.003 (4)0.005 (4)
N20.050 (5)0.049 (6)0.055 (6)0.020 (5)0.016 (4)0.011 (5)
C370.054 (7)0.053 (7)0.084 (8)0.002 (5)0.012 (5)0.005 (6)
C380.069 (7)0.056 (8)0.060 (9)0.006 (6)0.019 (7)0.010 (7)
C390.071 (7)0.080 (8)0.095 (9)0.001 (6)0.026 (6)0.036 (7)
N1X0.042 (7)0.061 (8)0.057 (8)0.023 (8)0.008 (6)0.008 (7)
N2X0.035 (8)0.061 (9)0.051 (8)0.009 (7)0.004 (6)0.003 (6)
C37X0.070 (10)0.065 (8)0.106 (13)0.001 (9)0.040 (9)0.006 (9)
C38X0.067 (10)0.054 (8)0.076 (14)0.007 (9)0.030 (12)0.005 (9)
C39X0.098 (14)0.059 (8)0.057 (9)0.018 (9)0.001 (8)0.001 (7)
N30.065 (5)0.265 (13)0.133 (7)0.008 (6)0.014 (5)0.021 (7)
C400.057 (4)0.117 (6)0.059 (4)0.009 (4)0.001 (3)0.007 (4)
C410.056 (3)0.048 (4)0.053 (3)0.006 (3)0.001 (3)0.005 (3)
Geometric parameters (Å, º) top
Cu1—Cl12.3553 (13)C28—H280.950
Cu1—Cl22.4372 (13)C28—C291.374 (8)
Cu1—P12.2800 (13)C29—H290.950
Cu1—P22.2835 (12)C29—C301.388 (7)
P1—C11.853 (4)C30—H300.950
P1—C71.834 (5)C31—C321.400 (6)
P1—C131.834 (4)C31—C361.406 (7)
P2—C191.834 (5)C32—H320.950
P2—C251.836 (5)C32—C331.403 (7)
P2—C311.830 (4)C33—H330.950
C1—C21.394 (6)C33—C341.378 (8)
C1—C61.396 (7)C34—H340.950
C2—H20.950C34—C351.381 (7)
C2—C31.401 (7)C35—H350.950
C3—H30.950C35—C361.379 (7)
C3—C41.380 (8)C36—H360.950
C4—H40.950Cu2—Cl22.8731 (12)
C4—C51.377 (8)Cu2—Cl2i2.8731 (12)
C5—H50.950Cu2—N12.042 (10)
C5—C61.388 (7)Cu2—N1i2.042 (10)
C6—H60.950Cu2—N21.995 (10)
C7—C81.400 (7)Cu2—N2i1.995 (10)
C7—C121.402 (6)Cu2—N1X2.065 (14)
C8—H80.950Cu2—N1Xi2.065 (14)
C8—C91.397 (7)Cu2—N2X1.995 (18)
C9—H90.950Cu2—N2Xi1.995 (18)
C9—C101.383 (7)N1—H1A0.920
C10—H100.950N1—H1B0.920
C10—C111.388 (7)N1—C371.482 (15)
C11—H110.950N2—H2A0.920
C11—C121.406 (7)N2—H2B0.920
C12—H120.950N2—C381.50 (2)
C13—C141.399 (6)C37—H37A0.990
C13—C181.404 (6)C37—H37B0.990
C14—H140.950C37—C381.46 (2)
C14—C151.395 (7)C38—H381.000
C15—H150.950C38—C391.54 (2)
C15—C161.380 (7)C39—H39A0.980
C16—H160.950C39—H39B0.980
C16—C171.400 (7)C39—H39C0.980
C17—H170.950N1X—H1X10.920
C17—C181.393 (7)N1X—H1X20.920
C18—H180.950N1X—C37X1.46 (2)
C19—C201.388 (7)N2X—H2X10.920
C19—C241.396 (7)N2X—H2X20.920
C20—H200.950N2X—C38X1.54 (3)
C20—C211.392 (7)C37X—H37C0.990
C21—H210.950C37X—H37D0.990
C21—C221.376 (9)C37X—C38X1.50 (3)
C22—H220.950C38X—H38X1.000
C22—C231.381 (9)C38X—C39X1.52 (3)
C23—H230.950C39X—H39D0.980
C23—C241.399 (7)C39X—H39E0.980
C24—H240.950C39X—H39F0.980
C25—C261.392 (7)N3—C401.127 (9)
C25—C301.398 (7)C40—C411.417 (9)
C26—H260.950C41—H41A0.980
C26—C271.397 (8)C41—H41B0.980
C27—H270.950C41—H41C0.980
C27—C281.382 (9)
Cl1—Cu1—Cl2101.06 (5)C31—C32—H32119.9
Cl1—Cu1—P1111.76 (5)C31—C32—C33120.3 (5)
Cl1—Cu1—P2105.75 (5)H32—C32—C33119.9
Cl2—Cu1—P1108.31 (5)C32—C33—H33119.7
Cl2—Cu1—P2105.94 (5)C32—C33—C34120.5 (5)
P1—Cu1—P2121.92 (4)H33—C33—C34119.7
Cu1—Cl2—Cu2122.71 (5)C33—C34—H34120.1
Cu1—P1—C1114.74 (14)C33—C34—C35119.8 (5)
Cu1—P1—C7115.70 (15)H34—C34—C35120.1
Cu1—P1—C13117.30 (14)C34—C35—H35119.9
C1—P1—C7102.1 (2)C34—C35—C36120.3 (5)
C1—P1—C13101.9 (2)H35—C35—C36119.9
C7—P1—C13102.9 (2)C31—C36—C35121.4 (4)
Cu1—P2—C19114.63 (15)C31—C36—H36119.3
Cu1—P2—C25116.89 (15)C35—C36—H36119.3
Cu1—P2—C31116.44 (14)Cl2—Cu2—Cl2i180.0
C19—P2—C25101.5 (2)Cl2—Cu2—N192.9 (3)
C19—P2—C31102.2 (2)Cl2i—Cu2—N1i92.9 (3)
C25—P2—C31103.0 (2)Cl2i—Cu2—N187.1 (3)
P1—C1—C2122.9 (3)Cl2—Cu2—N1i87.1 (3)
P1—C1—C6117.3 (3)Cl2—Cu2—N287.4 (3)
C2—C1—C6119.7 (4)Cl2i—Cu2—N2i87.4 (3)
C1—C2—H2120.2Cl2i—Cu2—N292.6 (3)
C1—C2—C3119.6 (5)Cl2—Cu2—N2i92.6 (3)
H2—C2—C3120.2Cl2—Cu2—N1X93.6 (4)
C2—C3—H3119.9Cl2i—Cu2—N1Xi93.6 (4)
C2—C3—C4120.2 (5)Cl2i—Cu2—N1X86.4 (4)
H3—C3—C4119.9Cl2—Cu2—N1Xi86.4 (4)
C3—C4—H4120.0Cl2—Cu2—N2X93.8 (5)
C3—C4—C5119.9 (5)Cl2i—Cu2—N2Xi93.8 (5)
H4—C4—C5120.0Cl2i—Cu2—N2X86.2 (5)
C4—C5—H5119.5Cl2—Cu2—N2Xi86.2 (5)
C4—C5—C6121.0 (5)N1—Cu2—N1i180.0
H5—C5—C6119.5N1—Cu2—N284.4 (4)
C1—C6—C5119.5 (5)N1i—Cu2—N2i84.4 (4)
C1—C6—H6120.2N1i—Cu2—N295.6 (4)
C5—C6—H6120.2N1—Cu2—N2i95.6 (4)
P1—C7—C8117.8 (3)N2—Cu2—N2i180.0
P1—C7—C12123.8 (4)N1X—Cu2—N1Xi180.0
C8—C7—C12118.4 (4)N1X—Cu2—N2X84.7 (6)
C7—C8—H8119.5N1Xi—Cu2—N2Xi84.7 (6)
C7—C8—C9120.9 (5)N1Xi—Cu2—N2X95.3 (6)
H8—C8—C9119.5N1X—Cu2—N2Xi95.3 (6)
C8—C9—H9120.0N2X—Cu2—N2Xi180.0
C8—C9—C10120.1 (5)Cu2—N1—H1A110.3
H9—C9—C10120.0Cu2—N1—H1B110.3
C9—C10—H10120.0Cu2—N1—C37107.2 (7)
C9—C10—C11120.0 (5)H1A—N1—H1B108.5
H10—C10—C11120.0H1A—N1—C37110.3
C10—C11—H11119.9H1B—N1—C37110.3
C10—C11—C12120.1 (5)Cu2—N2—H2A109.9
H11—C11—C12119.9Cu2—N2—H2B109.9
C7—C12—C11120.4 (5)Cu2—N2—C38108.9 (10)
C7—C12—H12119.8H2A—N2—H2B108.3
C11—C12—H12119.8H2A—N2—C38109.9
P1—C13—C14124.1 (3)H2B—N2—C38109.9
P1—C13—C18118.0 (3)N1—C37—H37A109.8
C14—C13—C18117.9 (4)N1—C37—H37B109.8
C13—C14—H14119.5N1—C37—C38109.3 (12)
C13—C14—C15121.1 (4)H37A—C37—H37B108.3
H14—C14—C15119.5H37A—C37—C38109.8
C14—C15—H15119.8H37B—C37—C38109.8
C14—C15—C16120.4 (5)N2—C38—C37107.9 (13)
H15—C15—C16119.8N2—C38—H38108.5
C15—C16—H16120.2N2—C38—C39111.5 (15)
C15—C16—C17119.6 (5)C37—C38—H38108.5
H16—C16—C17120.2C37—C38—C39111.9 (14)
C16—C17—H17120.1H38—C38—C39108.5
C16—C17—C18119.9 (4)C38—C39—H39A109.5
H17—C17—C18120.1C38—C39—H39B109.5
C13—C18—C17121.1 (4)C38—C39—H39C109.5
C13—C18—H18119.4H39A—C39—H39B109.5
C17—C18—H18119.4H39A—C39—H39C109.5
P2—C19—C20117.1 (4)H39B—C39—H39C109.5
P2—C19—C24124.3 (4)Cu2—N1X—H1X1110.2
C20—C19—C24118.6 (4)Cu2—N1X—H1X2110.2
C19—C20—H20119.8Cu2—N1X—C37X107.6 (11)
C19—C20—C21120.4 (5)H1X1—N1X—H1X2108.5
H20—C20—C21119.8H1X1—N1X—C37X110.2
C20—C21—H21119.8H1X2—N1X—C37X110.2
C20—C21—C22120.3 (6)Cu2—N2X—H2X1110.1
H21—C21—C22119.8Cu2—N2X—H2X2110.1
C21—C22—H22119.7Cu2—N2X—C38X108.1 (14)
C21—C22—C23120.5 (5)H2X1—N2X—H2X2108.4
H22—C22—C23119.7H2X1—N2X—C38X110.1
C22—C23—H23120.4H2X2—N2X—C38X110.1
C22—C23—C24119.2 (5)N1X—C37X—H37C109.7
H23—C23—C24120.4N1X—C37X—H37D109.7
C19—C24—C23120.9 (5)N1X—C37X—C38X110 (2)
C19—C24—H24119.5H37C—C37X—H37D108.2
C23—C24—H24119.5H37C—C37X—C38X109.7
P2—C25—C26117.9 (4)H37D—C37X—C38X109.7
P2—C25—C30123.4 (4)N2X—C38X—C37X106 (2)
C26—C25—C30118.7 (5)N2X—C38X—H38X109.4
C25—C26—H26120.1N2X—C38X—C39X111 (2)
C25—C26—C27119.9 (5)C37X—C38X—H38X109.4
H26—C26—C27120.1C37X—C38X—C39X112 (2)
C26—C27—H27119.6H38X—C38X—C39X109.4
C26—C27—C28120.9 (6)C38X—C39X—H39D109.5
H27—C27—C28119.6C38X—C39X—H39E109.5
C27—C28—H28120.4C38X—C39X—H39F109.5
C27—C28—C29119.2 (5)H39D—C39X—H39E109.5
H28—C28—C29120.4H39D—C39X—H39F109.5
C28—C29—H29119.6H39E—C39X—H39F109.5
C28—C29—C30120.7 (5)N3—C40—C41179.0 (11)
H29—C29—C30119.6C40—C41—H41A109.5
C25—C30—C29120.5 (5)C40—C41—H41B109.5
C25—C30—H30119.7C40—C41—H41C109.5
C29—C30—H30119.7H41A—C41—H41B109.5
P2—C31—C32125.0 (4)H41A—C41—H41C109.5
P2—C31—C36117.3 (3)H41B—C41—H41C109.5
C32—C31—C36117.7 (4)
Cl1—Cu1—Cl2—Cu242.00 (6)C24—C19—C20—C212.4 (8)
P1—Cu1—Cl2—Cu275.56 (6)C19—C20—C21—C220.1 (9)
P2—Cu1—Cl2—Cu2152.08 (5)C20—C21—C22—C231.1 (10)
Cl1—Cu1—P1—C143.17 (17)C21—C22—C23—C240.1 (9)
Cl1—Cu1—P1—C7161.75 (15)P2—C19—C24—C23173.8 (4)
Cl1—Cu1—P1—C1376.36 (16)C20—C19—C24—C233.7 (7)
Cl2—Cu1—P1—C167.31 (17)C22—C23—C24—C192.5 (8)
Cl2—Cu1—P1—C751.28 (16)Cu1—P2—C25—C2626.0 (4)
Cl2—Cu1—P1—C13173.17 (16)Cu1—P2—C25—C30154.0 (3)
P2—Cu1—P1—C1169.53 (17)C19—P2—C25—C26151.4 (4)
P2—Cu1—P1—C771.88 (16)C19—P2—C25—C3028.6 (4)
P2—Cu1—P1—C1350.00 (17)C31—P2—C25—C26103.1 (4)
Cl1—Cu1—P2—C1936.71 (18)C31—P2—C25—C3077.0 (4)
Cl1—Cu1—P2—C25155.27 (17)P2—C25—C26—C27179.3 (4)
Cl1—Cu1—P2—C3182.45 (16)C30—C25—C26—C270.7 (7)
Cl2—Cu1—P2—C1970.02 (18)C25—C26—C27—C281.2 (9)
Cl2—Cu1—P2—C2548.54 (17)C26—C27—C28—C291.8 (9)
Cl2—Cu1—P2—C31170.83 (16)C27—C28—C29—C300.4 (8)
P1—Cu1—P2—C19165.73 (17)C28—C29—C30—C251.6 (8)
P1—Cu1—P2—C2575.71 (17)P2—C25—C30—C29178.0 (4)
P1—Cu1—P2—C3146.57 (17)C26—C25—C30—C292.1 (7)
Cu1—P1—C1—C2140.6 (3)Cu1—P2—C31—C32134.9 (3)
Cu1—P1—C1—C642.7 (4)Cu1—P2—C31—C3644.1 (4)
C7—P1—C1—C214.6 (4)C19—P2—C31—C3299.4 (4)
C7—P1—C1—C6168.7 (4)C19—P2—C31—C3681.6 (4)
C13—P1—C1—C291.6 (4)C25—P2—C31—C325.6 (4)
C13—P1—C1—C685.1 (4)C25—P2—C31—C36173.4 (3)
P1—C1—C2—C3177.5 (4)P2—C31—C32—C33179.8 (4)
C6—C1—C2—C30.8 (7)C36—C31—C32—C330.9 (7)
C1—C2—C3—C41.6 (8)C31—C32—C33—C340.9 (8)
C2—C3—C4—C51.5 (9)C32—C33—C34—C350.7 (8)
C3—C4—C5—C60.6 (9)C33—C34—C35—C360.4 (8)
C4—C5—C6—C10.2 (9)C34—C35—C36—C310.4 (8)
P1—C1—C6—C5176.7 (4)P2—C31—C36—C35179.7 (4)
C2—C1—C6—C50.1 (7)C32—C31—C36—C350.6 (7)
Cu1—P1—C7—C841.7 (4)Cu1—Cl2—Cu2—N1153.1 (3)
Cu1—P1—C7—C12140.8 (3)Cu1—Cl2—Cu2—N1i26.9 (3)
C1—P1—C7—C883.6 (4)Cu1—Cl2—Cu2—N268.8 (3)
C1—P1—C7—C1293.8 (4)Cu1—Cl2—Cu2—N2i111.2 (3)
C13—P1—C7—C8171.0 (3)Cu1—Cl2—Cu2—N1X47.7 (5)
C13—P1—C7—C1211.6 (4)Cu1—Cl2—Cu2—N1Xi132.3 (5)
P1—C7—C8—C9175.8 (4)Cu1—Cl2—Cu2—N2X132.6 (5)
C12—C7—C8—C91.8 (7)Cu1—Cl2—Cu2—N2Xi47.4 (5)
C7—C8—C9—C101.8 (7)Cl2—Cu2—N1—C3773.0 (7)
C8—C9—C10—C110.1 (7)Cl2i—Cu2—N1—C37107.0 (7)
C9—C10—C11—C121.6 (7)N2—Cu2—N1—C3714.1 (7)
P1—C7—C12—C11177.4 (3)N2i—Cu2—N1—C37165.9 (7)
C8—C7—C12—C110.0 (6)Cl2—Cu2—N2—C38106.5 (9)
C10—C11—C12—C71.6 (7)Cl2i—Cu2—N2—C3873.5 (9)
Cu1—P1—C13—C14124.8 (4)N1—Cu2—N2—C3813.3 (9)
Cu1—P1—C13—C1854.2 (4)N1i—Cu2—N2—C38166.7 (9)
C1—P1—C13—C141.3 (4)Cu2—N1—C37—C3840.1 (12)
C1—P1—C13—C18179.7 (4)N1—C37—C38—N252.5 (16)
C7—P1—C13—C14106.9 (4)N1—C37—C38—C39175.5 (11)
C7—P1—C13—C1874.1 (4)Cu2—N2—C38—C3739.0 (15)
P1—C13—C14—C15178.3 (4)Cu2—N2—C38—C39162.3 (9)
C18—C13—C14—C150.6 (7)Cl2—Cu2—N1X—C37X104.8 (12)
C13—C14—C15—C160.7 (8)Cl2i—Cu2—N1X—C37X75.2 (12)
C14—C15—C16—C170.3 (8)N2X—Cu2—N1X—C37X11.3 (13)
C15—C16—C17—C181.3 (8)N2Xi—Cu2—N1X—C37X168.7 (13)
C16—C17—C18—C131.4 (7)Cl2—Cu2—N2X—C38X75.9 (14)
P1—C13—C18—C17179.4 (4)Cl2i—Cu2—N2X—C38X104.1 (14)
C14—C13—C18—C170.4 (7)N1X—Cu2—N2X—C38X17.4 (14)
Cu1—P2—C19—C2037.6 (4)N1Xi—Cu2—N2X—C38X162.6 (14)
Cu1—P2—C19—C24145.0 (4)Cu2—N1X—C37X—C38X39 (2)
C25—P2—C19—C2089.4 (4)N1X—C37X—C38X—N2X54 (3)
C25—P2—C19—C2488.1 (4)N1X—C37X—C38X—C39X174.9 (19)
C31—P2—C19—C20164.5 (4)Cu2—N2X—C38X—C37X42 (2)
C31—P2—C19—C2418.1 (4)Cu2—N2X—C38X—C39X163.5 (14)
P2—C19—C20—C21175.2 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.922.453.330 (9)159
N2X—H2X1···Cl1i0.922.603.495 (15)163
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu3Cl4(C3H10N2)2(C18H15P)4]·2C2H3N
Mr1611.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)15.896 (3), 9.4181 (15), 26.533 (4)
β (°) 94.957 (12)
V3)3957.4 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.780, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
32758, 6923, 5038
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.158, 1.03
No. of reflections6923
No. of parameters496
No. of restraints136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.81

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), EVALCCD, SHELXTL (Sheldrick, 2005), SHELXTL and local programs.

Selected geometric parameters (Å, º) top
Cu1—Cl12.3553 (13)Cu2—N12.042 (10)
Cu1—Cl22.4372 (13)Cu2—N21.995 (10)
Cu1—P12.2800 (13)Cu2—N1X2.065 (14)
Cu1—P22.2835 (12)Cu2—N2X1.995 (18)
Cu2—Cl22.8731 (12)
Cl1—Cu1—Cl2101.06 (5)Cl2—Cu2—N192.9 (3)
Cl1—Cu1—P1111.76 (5)Cl2—Cu2—N287.4 (3)
Cl1—Cu1—P2105.75 (5)Cl2—Cu2—N1X93.6 (4)
Cl2—Cu1—P1108.31 (5)Cl2—Cu2—N2X93.8 (5)
Cl2—Cu1—P2105.94 (5)N1—Cu2—N284.4 (4)
P1—Cu1—P2121.92 (4)N1X—Cu2—N2X84.7 (6)
Cu1—Cl2—Cu2122.71 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.922.453.330 (9)159
N2X—H2X1···Cl1i0.922.603.495 (15)163
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds