Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the open-chain amide carb­oxy­lic acid rac-cis-2-[(2-meth­oxy­phen­yl)carbamo­yl]cyclo­hexane-1-carb­oxy­lic acid, C15H19NO4, (I), and the cyclic imides rac-cis-2-(4-meth­oxy­phen­yl)-3a,4,5,6,7,7a-hexa­hydro­isoindole-1,3-dione, C15H17NO3, (II), chiral cis-3-(1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol-2-yl)benzoic acid, C15H15NO4, (III), and rac-cis-4-(1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol-2-yl)benzoic acid monohydrate, C15H15NO4·H2O, (IV), are reported. In the amide acid (I), the phenyl­carbamoyl group is essentially planar [maximum deviation from the least-squares plane = 0.060 (1) Å for the amide O atom] and the mol­ecules form discrete centrosymmetric dimers through inter­molecular cyclic carbox­y–carboxy O—H...O hydrogen-bonding inter­actions [graph-set notation R22(8)]. The cyclic imides (II)–(IV) are conformationally similar, with comparable benzene ring rotations about the imide N—Car bond [dihedral angles between the benzene and isoindole rings = 51.55 (7)° in (II), 59.22 (12)° in (III) and 51.99 (14)° in (IV)]. Unlike (II), in which only weak inter­molecular C—H...Oimide hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong inter­molecular carb­oxy­lic acid O—H...O hydrogen-bonding associations. With (III), these involve imide O-atom acceptors, giving one-dimensional zigzag chains [graph-set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water mol­ecule which also bridges mol­ecules through both imide and carboxy O-atom acceptors in a cyclic R44(12) association, giving a two-dimensional sheet structure. The structures reported here expand the structural database for compounds of this series formed from the facile reaction of cis-cyclo­hexane-1,2-dicarb­oxy­lic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carb­oxy­lic acids.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112030168/bm3120sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112030168/bm3120Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112030168/bm3120IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112030168/bm3120IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112030168/bm3120IVsup5.hkl
Contains datablock IV

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112030168/bm3120Isup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112030168/bm3120IIsup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112030168/bm3120IIIsup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112030168/bm3120IVsup9.cml
Supplementary material

CCDC references: 908125; 908126; 908127; 908128

Comment top

The 1:1 stoichiometric reaction of cis-cyclohexane-1,2-dicarboxylic anhydride (cis-CHDC anhydride) with substituted anilines has been found to give both open-chain amide carboxylic acids or more commonly cyclic imides under mild reaction conditions (Smith & Wermuth, 2012a). These products are analogous to the phthalanilic acids and phthalimides formed in the reactions of phthalic anhydride with anilines (Perry & Parveen, 2001). We previously reported the structure of the amide acid from the reaction of cis-CHDC anhydride with 3-fluoroaniline and the isomeric cyclic imides from the parallel reactions with the 2- and 4-fluoroanilines (Smith & Wermuth, 2012a), which are among only the very few crystallographically characterized examples of these compounds.

The parallel reaction of 2-methoxyaniline (o-anisidine), 4-methoxyaniline (p-anisidine), 3-carboxyaniline (m-aminobenzoic acid) and 4-carboxyaniline (p-aminobenzoic acid) with cis-CHDC anhydride under common mild reaction conditions in 50% ethanol–water solution yielded, respectively, the open-chain amide carboxylic acid racemic cis-2-[(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid, (I), and the cyclic imides racemic 2-(4-methoxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, (II), chiral 2-(3-carboxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, (III), and racemic 2-(4-carboxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione monohydrate, (IV) (Figs. 1–4), and the structures are reported here.

With the racemic amide acid (I) (Fig. 1), the phenylcarbamoyl group is essentially planar [C21—C11—N11—C12 torsion angle = 175.18 (12)°], with a maximum deviation from the least-squares plane of 0.060 (1) Å for the carbonyl O atom. The conformation is stabilized by intramolecular N11—H···O211(methoxy) and aromatic C61—H···O12(carbonyl) interactions [2.6003 (14) and 2.8812 (17) Å, respectively]. The carboxylic acid group on the cyclohexane ring is almost parallel to the C1—C3 bond [C1—C2—C22—O22 torsion angle = 173.17 (10)°] and the methoxy group is close to coplanar with the benzene ring [C11—C21—O211—C211 torsion angle = 173.23 (11)°]. The molecules form discrete centrosymmetric dimers through classical intermolecular cyclic carboxyl–carboxyl O—H···O hydrogen-bonding interactions (Table 1) [graph-set notation R22(8); Etter et al., 1990] (Fig. 5). The amide group is not involved in intermolecular interactions, which is unlike the p-chloro-substituted analogue in which the amide group links hydrogen-bonded carboxylic acid chains into a two-dimensional sheet structure (Smith & Wermuth, 2012b).

The cyclic imides (II) and (IV) (Figs. 2 and 4) are racemic while compound (III) is chiral. However, the absolute configurations for the two chiral centres in (II) were not determined, being arbitrarily assigned (C8S,C9R). Conformationally, compounds (II)–(IV) are similar, with comparable ring rotations about the imide N—Car bond [minimum torsion angles C1/C3—N2—C11—C21 = -56.72 (18)° for (II), 61.8 (2)° for (III) and -53.8 (2)° for (IV)]. These correspond to dihedral angles of 51.55 (7), 59.22 (12) and 51.99 (14)°, respectively, between the benzene ring and the plane of the isoindole ring, in which distortion results in either atom C8 or C9 showing a maximum deviation of 0.157 (1) Å in (II), 0.139 (2) Å in (III) and 0.131 (3) Å in (IV). These values compare closely to those of 0.152 and 0.149 Å for the 2- and 4-fluoro analogues, respectively (Smith & Wermuth, 2012a), and 0.153 and 0.138 Å for the 4-bromo- and 3-carboxy-4-hydroxy-substituted analogues, respectively (Smith & Wermuth, 2012b). In (III) and (IV), the carboxylic acid substituent groups are close to being coplanar with the benzene rings [C21—C31—C311—O32 = -172.2 (2)° in (III) and C31—C41—C411—O42 = -177.3 (3)° in (IV)].

Unlike the structure of (II), in which there is only weak aromatic C—H···Oimide hydrogen-bonding interactions (Table 2), the crystal packing of both imides (III) and (IV) show strong intermolecular O—H···O hydrogen-bonding interactions involving carboxylic acid groups. In (III), these are with imide O-atom acceptors (Table 3), giving one-dimensional (C9) zigzag chains which extend along (010) (Fig. 6). With the monohydrate (IV), the para-related carboxylic acid substituent group forms a hydrogen bond with the partially disordered water molecule [O1W, occupancy factor = 0.81 (1); O2W, occupancy factor = 0.19 (1)], both components of which also act as donors to both imide and carboxyl O-atom acceptors (Table 4). These interactions give an R44(12) ring motif and extend the structure into a two-dimensional sheet (Fig. 7).

The structures reported here expand the structural database for compounds of this series, formed in the facile reaction of cis-CHDC anhydride with substituted anilines, among which there is a much larger incidence of cyclic imides compared to amide carboxylic acids [currently 8:3, among known examples, which, apart from our previously reported structures, include the imide from the reaction with 5-benzyloxy-2,4-dichloroaniline (Wang et al., 2005) and those from the reactions with 4-bromoaniline and 5-aminosalicylic acid (Smith & Wermuth, 2012b)]. However, there are no apparent structural features which might allow a definitive prediction of the preferred reaction product.

Related literature top

For related literature, see: Etter et al. (1990); Perry & Parveen (2001); Smith & Wermuth (2012a, 2012b); Wang et al. (2005).

Experimental top

The title compounds were synthesized by heating together under reflux for 15 min quantities (1 mmol) of cis-cyclohexane-1,2-dicarboxylic anhydride and o-anisidine [for (I)], p-anisidine [for (II)], m-aminobenzoic acid [for (III)] and p-aminobenzoic acid [for (IV)] in ethanol–water (50 ml, 1:1 v/v). After volume reduction to 30 ml, the hot-filtered solutions were allowed to evaporate to incipient dryness at room temperature over a period of several weeks, giving either colourless plates [of (I)–(III)] or fine needles [of (IV)] from which specimens were cleaved for structural analyses.

Refinement top

H atoms potentially involved in hydrogen-bonding interactions in (I), (III) and (IV) were located by difference methods but their positional parameters were allowed to ride in the refinement with the isotropic displacement parameters Uiso(H) = 1.2Ueq(O). Other H atoms in all structures were included in the respective refinements at calculated positions (C—H = 0.93–0.97 Å), with Uiso(H) = 1.2Ueq(C), using a riding-model approximation. The water molecule of solvation in (IV) was found to be disordered over two adjacent sites [O···O = 1.503 (12) Å], with occupancy factors determined as 0.81 (1) (O1W) and 0.19 (1) (O2W). The occupancies were subsequently fixed and the minor component was refined isotropically. With chiral (III), in the absence of a suitable heavy atom, Friedel pairs (1062) were merged, the configuration of the chiral centres (C8S and C9R) being arbitrarily assigned.

Computing details top

For all compounds, data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010). Program(s) used to solve structure: SIR92 (Altomare et al., 1993) for (I), (III), (IV); SHELXS97 (Sheldrick, 2008) for (II). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-labelling scheme for (I). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The molecular conformation and atom-labelling scheme for (II). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 3] Fig. 3. The molecular conformation and atom-labelling scheme for (III). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 4] Fig. 4. The molecular conformation and atom-labelling scheme for (IV). Displacement ellipsoids are drawn at the 40% probability level. The disordered water molecule of solvation is disordered over two sites [O1W, occupancy factor = 0.81 (1); O2W, occupancy factor = 0.19 (1)]. Inter-species hydrogen bonds are shown as dashed lines.
[Figure 5] Fig. 5. The centrosymmetric hydrogen-bonded dimers in the structure of (I), showing hydrogen-bonding interactions as dashed lines. Non-associative H atoms have been omitted. For symmetry code (i), see Table 1.
[Figure 6] Fig. 6. The one-dimensional hydrogen-bonded chain structures in (III), viewed down the a-cell direction of the unit cell, showing hydrogen-bonding interactions as dashed lines. Non-associative H atoms have been omitted. For symmetry code (i), see Table 2.
[Figure 7] Fig. 7. The two-dimensional hydrogen-bonded structure in (IV), viewed approximately down the a-cell direction of the unit cell, showing hydrogen-bonding interactions as dashed lines. Non-associative H atoms have been omitted as has the minor-component water molecule O2W. For symmetry codes, see Table 3.
(I) 2-[(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid top
Crystal data top
C15H19NO4Z = 2
Mr = 277.31F(000) = 296
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3557 (4) ÅCell parameters from 4313 reflections
b = 8.3630 (4) Åθ = 3.3–28.8°
c = 11.7128 (6) ŵ = 0.10 mm1
α = 100.453 (4)°T = 200 K
β = 97.232 (4)°Flat prism, colourless
γ = 104.042 (4)°0.45 × 0.30 × 0.18 mm
V = 676.40 (6) Å3
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2640 independent reflections
Radiation source: Enhance (Mo) X-ray source2082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.975, Tmax = 0.980l = 1414
8079 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
2640 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H19NO4γ = 104.042 (4)°
Mr = 277.31V = 676.40 (6) Å3
Triclinic, P1Z = 2
a = 7.3557 (4) ÅMo Kα radiation
b = 8.3630 (4) ŵ = 0.10 mm1
c = 11.7128 (6) ÅT = 200 K
α = 100.453 (4)°0.45 × 0.30 × 0.18 mm
β = 97.232 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2640 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2082 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.980Rint = 0.024
8079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2640 reflectionsΔρmin = 0.20 e Å3
189 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O120.14926 (13)0.07111 (14)0.19578 (9)0.0449 (4)
O210.08493 (13)0.41630 (11)0.38713 (8)0.0321 (3)
O220.01483 (14)0.29940 (13)0.53760 (8)0.0375 (4)
O2110.19154 (12)0.36885 (11)0.06244 (8)0.0318 (3)
N110.04741 (16)0.20455 (13)0.08805 (9)0.0258 (3)
C10.18449 (16)0.13300 (15)0.26727 (10)0.0213 (4)
C20.13519 (16)0.14141 (14)0.39152 (10)0.0211 (4)
C30.30154 (18)0.12408 (16)0.47820 (11)0.0267 (4)
C40.48581 (17)0.25512 (16)0.47911 (11)0.0282 (4)
C50.53572 (17)0.24351 (17)0.35632 (12)0.0316 (4)
C60.37447 (17)0.25898 (16)0.26619 (11)0.0259 (4)
C110.08286 (17)0.22259 (15)0.00513 (10)0.0235 (4)
C120.01120 (17)0.13474 (15)0.18109 (11)0.0236 (4)
C210.00335 (18)0.31266 (15)0.08506 (11)0.0248 (4)
C220.07697 (16)0.29933 (15)0.43665 (10)0.0219 (4)
C310.12003 (19)0.34059 (16)0.17739 (11)0.0301 (4)
C410.3160 (2)0.27757 (17)0.19104 (12)0.0322 (4)
C510.39563 (19)0.18700 (16)0.11428 (12)0.0314 (4)
C610.27918 (18)0.15905 (16)0.02087 (11)0.0284 (4)
C2110.2820 (2)0.44485 (18)0.14755 (13)0.0378 (5)
H10.203900.020800.243100.0260*
H20.026100.044400.386500.0250*
H3A0.271100.137600.557000.0320*
H3B0.318500.011900.455800.0320*
H4A0.588400.238000.532000.0340*
H4B0.472700.367200.508400.0340*
H5A0.563100.136100.330900.0380*
H5B0.649700.332700.359300.0380*
H6A0.406400.238300.188000.0310*
H6B0.361200.373000.284100.0310*
H110.164 (2)0.2508 (18)0.0824 (13)0.045 (4)*
H21A0.417500.478500.121700.0450*
H21B0.239000.542300.156400.0450*
H21C0.250300.365000.221900.0450*
H220.015 (3)0.402 (3)0.5587 (17)0.082 (6)*
H310.067300.401200.230000.0360*
H410.394500.296800.252800.0390*
H510.527100.144400.124700.0380*
H610.333000.097700.031100.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O120.0229 (5)0.0766 (8)0.0336 (6)0.0013 (5)0.0032 (4)0.0261 (5)
O210.0487 (6)0.0297 (5)0.0297 (5)0.0212 (4)0.0179 (4)0.0142 (4)
O220.0604 (7)0.0392 (6)0.0276 (6)0.0274 (5)0.0234 (5)0.0153 (4)
O2110.0295 (5)0.0369 (5)0.0288 (5)0.0041 (4)0.0088 (4)0.0113 (4)
N110.0217 (6)0.0309 (6)0.0247 (6)0.0042 (5)0.0033 (5)0.0102 (5)
C10.0237 (6)0.0200 (6)0.0205 (7)0.0071 (5)0.0046 (5)0.0031 (5)
C20.0231 (6)0.0189 (6)0.0214 (7)0.0040 (5)0.0043 (5)0.0069 (5)
C30.0336 (7)0.0246 (7)0.0248 (7)0.0118 (6)0.0040 (5)0.0084 (5)
C40.0280 (7)0.0273 (7)0.0285 (8)0.0097 (6)0.0027 (5)0.0068 (5)
C50.0220 (7)0.0364 (8)0.0349 (8)0.0062 (6)0.0019 (6)0.0084 (6)
C60.0237 (6)0.0308 (7)0.0236 (7)0.0064 (5)0.0058 (5)0.0073 (5)
C110.0272 (7)0.0222 (6)0.0202 (7)0.0085 (5)0.0013 (5)0.0018 (5)
C120.0236 (6)0.0245 (7)0.0204 (7)0.0046 (5)0.0043 (5)0.0015 (5)
C210.0294 (7)0.0217 (6)0.0223 (7)0.0074 (5)0.0057 (5)0.0010 (5)
C220.0197 (6)0.0288 (7)0.0172 (6)0.0065 (5)0.0025 (5)0.0058 (5)
C310.0430 (8)0.0297 (7)0.0216 (7)0.0143 (6)0.0089 (6)0.0073 (5)
C410.0392 (8)0.0347 (8)0.0241 (7)0.0174 (6)0.0023 (6)0.0055 (6)
C510.0275 (7)0.0331 (8)0.0313 (8)0.0095 (6)0.0005 (6)0.0037 (6)
C610.0287 (7)0.0282 (7)0.0278 (8)0.0060 (6)0.0040 (6)0.0083 (6)
C2110.0412 (8)0.0416 (9)0.0365 (9)0.0113 (7)0.0199 (7)0.0147 (7)
Geometric parameters (Å, º) top
O12—C121.2188 (17)C31—C411.387 (2)
O21—C221.2180 (15)C41—C511.375 (2)
O22—C221.3202 (15)C51—C611.3926 (19)
O22—H220.94 (2)C1—H10.9800
O211—C2111.4255 (18)C2—H20.9800
O211—C211.3705 (16)C3—H3A0.9700
N11—C111.4138 (16)C3—H3B0.9700
N11—C121.3520 (16)C4—H4A0.9700
N11—H110.867 (15)C4—H4B0.9700
C1—C121.5278 (17)C5—H5A0.9700
C1—C61.5355 (18)C5—H5B0.9700
C1—C21.5370 (16)C6—H6A0.9700
C2—C31.5413 (18)C6—H6B0.9700
C2—C221.5117 (17)C31—H310.9300
C3—C41.5197 (19)C41—H410.9300
C4—C51.5206 (18)C51—H510.9300
C5—C61.5319 (19)C61—H610.9300
C11—C611.3881 (19)C211—H21A0.9600
C11—C211.4021 (17)C211—H21B0.9600
C21—C311.3842 (18)C211—H21C0.9600
C22—O22—H22106.5 (13)C22—C2—H2107.00
C21—O211—C211117.55 (10)C2—C3—H3A109.00
C11—N11—C12128.84 (12)C2—C3—H3B109.00
C12—N11—H11119.8 (10)C4—C3—H3A109.00
C11—N11—H11111.3 (10)C4—C3—H3B109.00
C2—C1—C6112.86 (10)H3A—C3—H3B108.00
C2—C1—C12109.56 (10)C3—C4—H4A109.00
C6—C1—C12116.96 (10)C3—C4—H4B109.00
C1—C2—C3110.70 (10)C5—C4—H4A109.00
C1—C2—C22112.47 (10)C5—C4—H4B109.00
C3—C2—C22111.18 (10)H4A—C4—H4B108.00
C2—C3—C4111.44 (10)C4—C5—H5A109.00
C3—C4—C5111.35 (11)C4—C5—H5B109.00
C4—C5—C6112.20 (11)C6—C5—H5A109.00
C1—C6—C5111.51 (11)C6—C5—H5B109.00
N11—C11—C21116.06 (11)H5A—C5—H5B108.00
C21—C11—C61119.37 (11)C1—C6—H6A109.00
N11—C11—C61124.56 (11)C1—C6—H6B109.00
N11—C12—C1116.37 (11)C5—C6—H6A109.00
O12—C12—C1120.40 (11)C5—C6—H6B109.00
O12—C12—N11123.19 (12)H6A—C6—H6B108.00
O211—C21—C11114.89 (11)C21—C31—H31120.00
O211—C21—C31124.91 (12)C41—C31—H31120.00
C11—C21—C31120.20 (12)C31—C41—H41120.00
O22—C22—C2112.97 (10)C51—C41—H41120.00
O21—C22—O22122.14 (12)C41—C51—H51120.00
O21—C22—C2124.89 (11)C61—C51—H51120.00
C21—C31—C41119.62 (12)C11—C61—H61120.00
C31—C41—C51120.77 (13)C51—C61—H61120.00
C41—C51—C61119.94 (13)O211—C211—H21A110.00
C11—C61—C51120.10 (12)O211—C211—H21B109.00
C2—C1—H1106.00O211—C211—H21C109.00
C6—C1—H1105.00H21A—C211—H21B109.00
C12—C1—H1105.00H21A—C211—H21C109.00
C1—C2—H2107.00H21B—C211—H21C109.00
C3—C2—H2107.00
C211—O211—C21—C11173.23 (11)C1—C2—C22—O216.84 (17)
C211—O211—C21—C317.53 (18)C1—C2—C22—O22173.17 (10)
C12—N11—C11—C21175.18 (12)C3—C2—C22—O21117.95 (13)
C12—N11—C11—C614.3 (2)C3—C2—C22—O2262.04 (14)
C11—N11—C12—O121.7 (2)C2—C3—C4—C556.81 (14)
C11—N11—C12—C1179.56 (11)C3—C4—C5—C655.64 (15)
C6—C1—C2—C352.76 (13)C4—C5—C6—C152.67 (14)
C6—C1—C2—C2272.30 (13)N11—C11—C21—O2110.97 (16)
C12—C1—C2—C3175.02 (10)N11—C11—C21—C31178.31 (11)
C12—C1—C2—C2259.92 (13)C61—C11—C21—O211179.48 (11)
C2—C1—C6—C551.65 (14)C61—C11—C21—C311.24 (19)
C12—C1—C6—C5179.88 (10)N11—C11—C61—C51178.56 (12)
C2—C1—C12—O1231.79 (16)C21—C11—C61—C510.95 (19)
C2—C1—C12—N11150.33 (11)O211—C21—C31—C41179.81 (12)
C6—C1—C12—O12161.82 (12)C11—C21—C31—C410.61 (19)
C6—C1—C12—N1120.30 (16)C21—C31—C41—C510.3 (2)
C1—C2—C3—C455.06 (13)C31—C41—C51—C610.6 (2)
C22—C2—C3—C470.72 (13)C41—C51—C61—C110.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O2110.867 (15)2.119 (15)2.6003 (14)114.4 (12)
O22—H22···O21i0.94 (2)1.76 (2)2.6866 (14)173 (2)
C3—H3A···O220.972.582.9294 (17)101
C6—H6B···O210.972.563.1171 (16)117
C51—H51···O12ii0.932.553.4232 (18)157
C61—H61···O120.932.292.8812 (17)121
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.
(II) 2-(4-methoxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione top
Crystal data top
C15H17NO3F(000) = 552
Mr = 259.30Dx = 1.352 Mg m3
Monoclinic, P21/nMelting point: 428 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.7119 (5) ÅCell parameters from 4720 reflections
b = 6.6705 (3) Åθ = 3.3–28.7°
c = 17.2898 (8) ŵ = 0.09 mm1
β = 109.482 (5)°T = 200 K
V = 1273.42 (11) Å3Flat prism, purple brown
Z = 40.40 × 0.25 × 0.12 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2498 independent reflections
Radiation source: Enhance (Mo) X-ray source1959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1414
Tmin = 0.929, Tmax = 0.981k = 88
8552 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
2498 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H17NO3V = 1273.42 (11) Å3
Mr = 259.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7119 (5) ŵ = 0.09 mm1
b = 6.6705 (3) ÅT = 200 K
c = 17.2898 (8) Å0.40 × 0.25 × 0.12 mm
β = 109.482 (5)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2498 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1959 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.981Rint = 0.024
8552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.09Δρmax = 0.18 e Å3
2498 reflectionsΔρmin = 0.17 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60601 (9)0.55074 (13)0.38265 (6)0.0389 (3)
O30.44297 (8)0.03988 (12)0.20453 (5)0.0335 (3)
O410.69783 (9)0.65459 (13)0.03909 (6)0.0371 (3)
N20.54233 (9)0.31061 (14)0.28078 (6)0.0248 (3)
C10.55873 (11)0.39094 (19)0.35851 (8)0.0274 (4)
C30.48336 (11)0.12526 (17)0.26984 (8)0.0243 (4)
C40.38378 (12)0.08664 (18)0.35410 (8)0.0307 (4)
C50.26841 (12)0.02011 (19)0.35074 (9)0.0337 (4)
C60.29309 (12)0.18467 (19)0.41557 (9)0.0343 (5)
C70.37770 (12)0.34107 (19)0.40050 (8)0.0316 (4)
C80.49925 (11)0.25028 (18)0.40214 (8)0.0270 (4)
C90.48592 (12)0.05478 (17)0.35351 (7)0.0263 (4)
C110.58123 (11)0.40478 (18)0.21881 (7)0.0243 (4)
C210.54235 (11)0.59554 (18)0.19122 (8)0.0270 (4)
C310.57910 (11)0.68403 (18)0.13073 (8)0.0283 (4)
C410.65478 (11)0.58023 (18)0.09807 (8)0.0266 (4)
C420.64175 (13)0.8314 (2)0.00325 (9)0.0400 (5)
C510.69393 (12)0.38858 (18)0.12627 (8)0.0293 (4)
C610.65808 (11)0.30128 (18)0.18673 (8)0.0272 (4)
H4A0.366500.176400.307500.0370*
H4B0.410900.167700.403500.0370*
H5A0.211800.076000.359600.0400*
H5B0.231600.078600.296800.0400*
H6A0.217400.247500.413500.0410*
H6B0.329600.126700.469700.0410*
H7A0.392800.444400.442200.0380*
H7B0.338700.403600.347600.0380*
H80.552100.229600.458900.0320*
H90.561800.019500.377400.0320*
H210.491400.664800.213200.0320*
H310.553000.812500.112200.0340*
H42A0.655900.941000.034800.0480*
H42B0.556200.809400.027600.0480*
H42C0.675500.862600.045400.0480*
H510.744600.318900.104200.0350*
H610.685200.173700.205900.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0453 (6)0.0348 (5)0.0367 (6)0.0172 (5)0.0137 (5)0.0077 (4)
O30.0460 (6)0.0277 (5)0.0285 (5)0.0054 (4)0.0147 (4)0.0053 (4)
O410.0447 (6)0.0356 (5)0.0411 (6)0.0045 (4)0.0279 (5)0.0094 (4)
N20.0272 (6)0.0238 (5)0.0252 (6)0.0029 (4)0.0112 (4)0.0004 (4)
C10.0250 (7)0.0285 (7)0.0269 (7)0.0027 (5)0.0063 (5)0.0008 (6)
C30.0247 (7)0.0206 (6)0.0289 (7)0.0032 (5)0.0105 (5)0.0006 (5)
C40.0418 (8)0.0227 (7)0.0291 (7)0.0045 (6)0.0138 (6)0.0022 (6)
C50.0316 (7)0.0332 (7)0.0373 (8)0.0089 (6)0.0127 (6)0.0009 (6)
C60.0355 (8)0.0366 (8)0.0359 (8)0.0021 (6)0.0187 (6)0.0003 (6)
C70.0394 (8)0.0256 (7)0.0329 (7)0.0014 (6)0.0161 (6)0.0032 (6)
C80.0307 (7)0.0288 (7)0.0200 (6)0.0048 (5)0.0066 (5)0.0001 (5)
C90.0279 (7)0.0238 (6)0.0269 (7)0.0024 (5)0.0089 (5)0.0046 (5)
C110.0237 (7)0.0255 (6)0.0246 (6)0.0025 (5)0.0093 (5)0.0004 (5)
C210.0253 (7)0.0265 (7)0.0326 (7)0.0026 (5)0.0143 (6)0.0007 (6)
C310.0296 (7)0.0234 (6)0.0331 (7)0.0044 (5)0.0122 (6)0.0049 (6)
C410.0258 (7)0.0282 (7)0.0276 (7)0.0022 (5)0.0112 (5)0.0010 (5)
C420.0452 (9)0.0434 (8)0.0342 (8)0.0015 (7)0.0168 (7)0.0125 (7)
C510.0272 (7)0.0283 (7)0.0372 (8)0.0036 (5)0.0171 (6)0.0005 (6)
C610.0244 (7)0.0235 (6)0.0339 (7)0.0032 (5)0.0100 (6)0.0038 (5)
Geometric parameters (Å, º) top
O1—C11.2095 (16)C41—C511.3904 (17)
O3—C31.2112 (15)C51—C611.3787 (19)
O41—C411.3723 (17)C4—H4A0.9700
O41—C421.4274 (17)C4—H4B0.9700
N2—C11.3993 (16)C5—H5A0.9700
N2—C31.3980 (15)C5—H5B0.9700
N2—C111.4408 (16)C6—H6A0.9700
C1—C81.5117 (18)C6—H6B0.9700
C3—C91.5119 (17)C7—H7A0.9700
C4—C51.511 (2)C7—H7B0.9700
C4—C91.5262 (19)C8—H80.9800
C5—C61.5260 (19)C9—H90.9800
C6—C71.520 (2)C21—H210.9300
C7—C81.539 (2)C31—H310.9300
C8—C91.5311 (17)C42—H42A0.9600
C11—C211.3817 (17)C42—H42B0.9600
C11—C611.3883 (18)C42—H42C0.9600
C21—C311.3884 (18)C51—H510.9300
C31—C411.3848 (19)C61—H610.9300
C41—O41—C42117.36 (11)C4—C5—H5A109.00
C1—N2—C3111.84 (10)C4—C5—H5B109.00
C1—N2—C11124.83 (10)C6—C5—H5A109.00
C3—N2—C11123.33 (10)C6—C5—H5B109.00
O1—C1—N2124.70 (12)H5A—C5—H5B108.00
O1—C1—C8127.51 (12)C5—C6—H6A110.00
N2—C1—C8107.64 (10)C5—C6—H6B110.00
O3—C3—N2124.32 (12)C7—C6—H6A110.00
O3—C3—C9128.52 (11)C7—C6—H6B110.00
N2—C3—C9107.12 (10)H6A—C6—H6B108.00
C5—C4—C9113.66 (10)C6—C7—H7A109.00
C4—C5—C6111.27 (12)C6—C7—H7B109.00
C5—C6—C7110.02 (12)C8—C7—H7A109.00
C6—C7—C8112.26 (11)C8—C7—H7B109.00
C1—C8—C7108.91 (10)H7A—C7—H7B108.00
C1—C8—C9103.54 (10)C1—C8—H8110.00
C7—C8—C9113.63 (11)C7—C8—H8110.00
C3—C9—C4115.67 (10)C9—C8—H8110.00
C3—C9—C8103.09 (9)C3—C9—H9107.00
C4—C9—C8117.35 (11)C4—C9—H9107.00
N2—C11—C21120.58 (11)C8—C9—H9107.00
N2—C11—C61119.23 (11)C11—C21—H21120.00
C21—C11—C61120.20 (12)C31—C21—H21120.00
C11—C21—C31120.15 (12)C21—C31—H31120.00
C21—C31—C41119.73 (11)C41—C31—H31120.00
O41—C41—C31124.48 (11)O41—C42—H42A109.00
O41—C41—C51115.66 (12)O41—C42—H42B109.00
C31—C41—C51119.85 (12)O41—C42—H42C109.00
C41—C51—C61120.40 (13)H42A—C42—H42B109.00
C11—C61—C51119.66 (11)H42A—C42—H42C110.00
C5—C4—H4A109.00H42B—C42—H42C110.00
C5—C4—H4B109.00C41—C51—H51120.00
C9—C4—H4A109.00C61—C51—H51120.00
C9—C4—H4B109.00C11—C61—H61120.00
H4A—C4—H4B108.00C51—C61—H61120.00
C42—O41—C41—C3113.59 (19)C5—C4—C9—C838.31 (15)
C42—O41—C41—C51167.66 (12)C5—C4—C9—C383.79 (14)
C3—N2—C1—C83.10 (14)C9—C4—C5—C650.57 (15)
C11—N2—C1—C8177.11 (11)C4—C5—C6—C761.34 (14)
C11—N2—C3—C9166.12 (11)C5—C6—C7—C858.69 (15)
C1—N2—C11—C2156.72 (18)C6—C7—C8—C1160.25 (11)
C3—N2—C11—C21123.52 (13)C6—C7—C8—C945.42 (15)
C3—N2—C1—O1179.06 (13)C7—C8—C9—C392.97 (13)
C11—N2—C1—O11.2 (2)C7—C8—C9—C435.41 (15)
C11—N2—C3—O311.6 (2)C1—C8—C9—C325.01 (13)
C1—N2—C3—C913.68 (14)C1—C8—C9—C4153.39 (11)
C1—N2—C11—C61123.53 (13)N2—C11—C61—C51178.75 (12)
C3—N2—C11—C6156.23 (17)C21—C11—C61—C511.00 (19)
C1—N2—C3—O3168.63 (13)N2—C11—C21—C31179.18 (12)
N2—C1—C8—C7103.15 (12)C61—C11—C21—C310.57 (19)
O1—C1—C8—C9166.11 (14)C11—C21—C31—C410.08 (19)
N2—C1—C8—C918.08 (13)C21—C31—C41—C510.3 (2)
O1—C1—C8—C772.67 (17)C21—C31—C41—O41179.00 (12)
O3—C3—C9—C8158.30 (14)O41—C41—C51—C61178.67 (12)
N2—C3—C9—C4153.56 (11)C31—C41—C51—C610.1 (2)
O3—C3—C9—C428.9 (2)C41—C51—C61—C110.8 (2)
N2—C3—C9—C824.14 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O3i0.932.563.2205 (15)128
C51—H51···O1ii0.932.463.2914 (17)149
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y1/2, z+1/2.
(III) cis-3-(1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol-2-yl)benzoic acid top
Crystal data top
C15H15NO4F(000) = 576
Mr = 273.28Dx = 1.383 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2474 reflections
a = 6.4958 (2) Åθ = 3.3–28.7°
b = 12.5236 (4) ŵ = 0.10 mm1
c = 16.1281 (6) ÅT = 200 K
V = 1312.03 (8) Å3Needles, colourless
Z = 40.45 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
1728 independent reflections
Radiation source: Enhance (Mo) X-ray source1395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.077 pixels mm-1θmax = 28.0°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1612
Tmin = 0.980, Tmax = 0.990l = 219
4693 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0446P)2]
where P = (Fo2 + 2Fc2)/3
1728 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H15NO4V = 1312.03 (8) Å3
Mr = 273.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4958 (2) ŵ = 0.10 mm1
b = 12.5236 (4) ÅT = 200 K
c = 16.1281 (6) Å0.45 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
1728 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1395 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.024
4693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.18 e Å3
1728 reflectionsΔρmin = 0.18 e Å3
185 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3742 (2)0.03578 (12)0.64532 (10)0.0283 (5)
O30.0620 (3)0.20661 (15)0.46989 (11)0.0471 (7)
O310.3658 (3)0.40076 (13)0.77921 (11)0.0336 (6)
O320.1156 (3)0.41628 (12)0.87409 (10)0.0306 (5)
N20.1305 (3)0.12973 (13)0.57271 (11)0.0190 (5)
C10.2977 (3)0.06243 (16)0.57948 (15)0.0203 (7)
C30.0710 (4)0.14497 (18)0.49016 (15)0.0267 (7)
C40.0431 (4)0.0268 (2)0.41929 (17)0.0337 (8)
C50.1575 (4)0.1282 (2)0.39722 (17)0.0394 (9)
C60.3037 (4)0.15842 (19)0.46748 (18)0.0407 (9)
C70.4642 (4)0.07326 (19)0.47977 (17)0.0352 (8)
C80.3732 (4)0.03688 (18)0.49230 (15)0.0273 (7)
C90.1892 (4)0.06670 (18)0.43767 (15)0.0281 (8)
C110.0356 (3)0.18358 (16)0.64192 (14)0.0176 (6)
C210.1500 (3)0.25567 (16)0.68784 (13)0.0190 (6)
C310.0592 (3)0.30532 (17)0.75634 (13)0.0201 (6)
C410.1440 (3)0.28329 (18)0.77614 (15)0.0248 (7)
C510.2570 (3)0.21244 (19)0.72850 (15)0.0280 (7)
C610.1674 (3)0.16229 (17)0.66081 (15)0.0235 (7)
C3110.1794 (3)0.37990 (17)0.80984 (15)0.0216 (7)
H4A0.042300.039900.467600.0400*
H4B0.046800.007400.373700.0400*
H5A0.235100.117500.346500.0470*
H5B0.060000.185600.388000.0470*
H6A0.226100.167700.518300.0490*
H6B0.370500.225700.454500.0490*
H7A0.554000.071800.431700.0420*
H7B0.547400.091400.527700.0420*
H80.482700.088200.479700.0330*
H90.235500.100400.386100.0340*
H210.285500.270900.673300.0230*
H310.427 (4)0.444 (2)0.8157 (19)0.049 (9)*
H410.204800.316300.821700.0300*
H510.393600.198400.741900.0340*
H610.243300.114900.628600.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0247 (9)0.0310 (8)0.0292 (9)0.0063 (8)0.0091 (8)0.0012 (7)
O30.0641 (13)0.0478 (11)0.0293 (10)0.0328 (11)0.0152 (10)0.0065 (9)
O310.0260 (9)0.0416 (10)0.0332 (10)0.0113 (9)0.0027 (8)0.0162 (8)
O320.0373 (10)0.0321 (8)0.0225 (9)0.0037 (8)0.0027 (8)0.0083 (8)
N20.0194 (9)0.0179 (8)0.0197 (10)0.0011 (8)0.0033 (8)0.0012 (7)
C10.0166 (11)0.0141 (10)0.0303 (13)0.0029 (9)0.0039 (10)0.0014 (10)
C30.0352 (14)0.0235 (11)0.0215 (12)0.0037 (11)0.0058 (11)0.0011 (10)
C40.0342 (14)0.0375 (14)0.0294 (14)0.0048 (13)0.0093 (13)0.0062 (12)
C50.0484 (17)0.0354 (13)0.0344 (15)0.0015 (14)0.0098 (14)0.0127 (12)
C60.0509 (18)0.0283 (13)0.0429 (17)0.0087 (13)0.0094 (15)0.0073 (12)
C70.0299 (14)0.0391 (14)0.0367 (15)0.0108 (13)0.0038 (12)0.0102 (12)
C80.0242 (12)0.0299 (12)0.0279 (13)0.0015 (11)0.0001 (12)0.0064 (10)
C90.0358 (14)0.0271 (12)0.0215 (13)0.0061 (11)0.0007 (11)0.0008 (10)
C110.0181 (11)0.0158 (10)0.0188 (11)0.0030 (9)0.0038 (10)0.0007 (9)
C210.0169 (11)0.0203 (10)0.0198 (11)0.0011 (10)0.0014 (10)0.0013 (9)
C310.0216 (11)0.0198 (10)0.0188 (11)0.0009 (10)0.0023 (10)0.0024 (9)
C410.0229 (12)0.0293 (11)0.0223 (11)0.0034 (11)0.0035 (11)0.0024 (10)
C510.0169 (11)0.0346 (13)0.0326 (14)0.0040 (11)0.0019 (11)0.0029 (12)
C610.0194 (12)0.0218 (11)0.0292 (13)0.0035 (10)0.0051 (10)0.0010 (10)
C3110.0223 (12)0.0202 (11)0.0223 (12)0.0026 (10)0.0018 (10)0.0016 (9)
Geometric parameters (Å, º) top
O1—C11.219 (3)C31—C411.386 (3)
O3—C31.204 (3)C31—C3111.492 (3)
O31—C3111.334 (3)C41—C511.384 (3)
O32—C3111.206 (3)C51—C611.388 (3)
O31—H310.89 (3)C4—H4A0.9700
N2—C31.399 (3)C4—H4B0.9700
N2—C111.443 (3)C5—H5A0.9700
N2—C11.379 (3)C5—H5B0.9700
C1—C81.523 (3)C6—H6A0.9700
C3—C91.506 (3)C6—H6B0.9700
C4—C91.536 (4)C7—H7A0.9700
C4—C51.514 (4)C7—H7B0.9700
C5—C61.526 (4)C8—H80.9800
C6—C71.505 (4)C9—H90.9800
C7—C81.514 (3)C21—H210.9300
C8—C91.531 (4)C41—H410.9300
C11—C611.379 (3)C51—H510.9300
C11—C211.384 (3)C61—H610.9300
C21—C311.398 (3)
C311—O31—H31106.2 (18)C9—C4—H4A109.00
C1—N2—C3112.10 (19)C4—C5—H5A110.00
C3—N2—C11123.67 (18)C4—C5—H5B110.00
C1—N2—C11124.13 (18)C6—C5—H5A110.00
O1—C1—C8127.98 (19)C6—C5—H5B110.00
N2—C1—C8107.99 (19)H5A—C5—H5B108.00
O1—C1—N2123.9 (2)C7—C6—H6A110.00
O3—C3—N2123.0 (2)C7—C6—H6B110.00
N2—C3—C9107.78 (19)C5—C6—H6B109.00
O3—C3—C9129.1 (2)C5—C6—H6A110.00
C5—C4—C9112.4 (2)H6A—C6—H6B108.00
C4—C5—C6109.8 (2)H7A—C7—H7B108.00
C5—C6—C7110.7 (2)C6—C7—H7B109.00
C6—C7—C8113.1 (2)C8—C7—H7B109.00
C1—C8—C7116.1 (2)C6—C7—H7A109.00
C7—C8—C9116.8 (2)C8—C7—H7A109.00
C1—C8—C9103.22 (19)C1—C8—H8107.00
C3—C9—C4106.8 (2)C7—C8—H8107.00
C4—C9—C8114.04 (19)C9—C8—H8107.00
C3—C9—C8103.49 (19)C3—C9—H9111.00
N2—C11—C61119.28 (19)C8—C9—H9111.00
C21—C11—C61121.4 (2)C4—C9—H9111.00
N2—C11—C21119.31 (18)C11—C21—H21120.00
C11—C21—C31119.10 (18)C31—C21—H21120.00
C21—C31—C41119.69 (19)C51—C41—H41120.00
C21—C31—C311120.97 (18)C31—C41—H41120.00
C41—C31—C311119.33 (19)C41—C51—H51120.00
C31—C41—C51120.3 (2)C61—C51—H51120.00
C41—C51—C61120.29 (19)C11—C61—H61120.00
C11—C61—C51119.2 (2)C51—C61—H61120.00
H4A—C4—H4B108.00O31—C311—C31112.55 (19)
C5—C4—H4B109.00O32—C311—C31123.63 (19)
C9—C4—H4B109.00O31—C311—O32123.8 (2)
C5—C4—H4A109.00
C3—N2—C1—O1178.5 (2)C4—C5—C6—C762.6 (3)
C3—N2—C1—C85.7 (2)C5—C6—C7—C853.8 (3)
C11—N2—C1—O15.1 (3)C6—C7—C8—C181.3 (3)
C11—N2—C1—C8170.65 (18)C6—C7—C8—C940.9 (3)
C1—N2—C3—O3174.6 (2)C1—C8—C9—C322.7 (2)
C1—N2—C3—C99.7 (3)C1—C8—C9—C493.0 (2)
C11—N2—C3—O31.8 (4)C7—C8—C9—C3151.4 (2)
C11—N2—C3—C9173.96 (19)C7—C8—C9—C435.7 (3)
C1—N2—C11—C2161.8 (3)N2—C11—C21—C31178.14 (18)
C1—N2—C11—C61118.4 (2)C61—C11—C21—C312.0 (3)
C3—N2—C11—C21114.2 (2)N2—C11—C61—C51178.6 (2)
C3—N2—C11—C6165.7 (3)C21—C11—C61—C511.5 (3)
O1—C1—C8—C737.3 (3)C11—C21—C31—C411.2 (3)
O1—C1—C8—C9166.3 (2)C11—C21—C31—C311177.28 (19)
N2—C1—C8—C7147.2 (2)C21—C31—C41—C510.1 (3)
N2—C1—C8—C918.1 (2)C311—C31—C41—C51178.5 (2)
O3—C3—C9—C475.2 (3)C21—C31—C311—O317.1 (3)
O3—C3—C9—C8164.1 (3)C21—C31—C311—O32172.2 (2)
N2—C3—C9—C4100.2 (2)C41—C31—C311—O31174.4 (2)
N2—C3—C9—C820.5 (2)C41—C31—C311—O326.3 (3)
C9—C4—C5—C657.4 (3)C31—C41—C51—C610.4 (3)
C5—C4—C9—C3157.6 (2)C41—C51—C61—C110.3 (3)
C5—C4—C9—C843.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O1i0.89 (3)1.84 (3)2.682 (2)156 (3)
C21—H21···O3ii0.932.533.193 (3)129
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1.
(IV) rac-cis-4-(1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol- 2-yl)benzoic acid monohydrate top
Crystal data top
C15H15NO4·H2OF(000) = 616
Mr = 291.30Dx = 1.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2417 reflections
a = 13.077 (2) Åθ = 3.1–28.7°
b = 6.6713 (7) ŵ = 0.10 mm1
c = 16.432 (2) ÅT = 200 K
β = 97.982 (13)°Prism, colourless
V = 1419.6 (3) Å30.30 × 0.10 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2790 independent reflections
Radiation source: Enhance (Mo) X-ray source1374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1613
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 88
Tmin = 0.813, Tmax = 0.980l = 1420
9649 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0704P)2]
where P = (Fo2 + 2Fc2)/3
2790 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H15NO4·H2OV = 1419.6 (3) Å3
Mr = 291.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.077 (2) ŵ = 0.10 mm1
b = 6.6713 (7) ÅT = 200 K
c = 16.432 (2) Å0.30 × 0.10 × 0.08 mm
β = 97.982 (13)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2790 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1374 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.980Rint = 0.055
9649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.85Δρmax = 0.34 e Å3
2790 reflectionsΔρmin = 0.20 e Å3
194 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.80344 (15)0.0890 (3)0.54274 (11)0.0502 (7)
O30.58298 (15)0.6120 (2)0.56137 (11)0.0480 (7)
O410.50408 (17)0.2147 (3)0.82985 (12)0.0632 (9)
O420.53908 (18)0.0528 (3)0.90848 (13)0.0732 (10)
N20.68963 (16)0.3350 (3)0.57093 (12)0.0333 (7)
C10.7620 (2)0.2489 (4)0.52623 (16)0.0370 (9)
C30.6525 (2)0.5193 (3)0.53794 (15)0.0371 (10)
C40.6735 (3)0.7105 (4)0.40365 (19)0.0664 (14)
C50.6294 (3)0.5965 (5)0.3295 (2)0.0707 (14)
C60.7017 (3)0.4390 (4)0.30655 (18)0.0656 (13)
C70.7239 (3)0.2867 (4)0.37592 (16)0.0580 (13)
C80.7723 (2)0.3861 (4)0.45460 (15)0.0422 (10)
C90.7219 (2)0.5812 (4)0.47533 (17)0.0490 (10)
C110.65230 (19)0.2395 (3)0.64028 (14)0.0312 (8)
C210.6115 (2)0.0499 (3)0.63172 (15)0.0361 (9)
C310.5750 (2)0.0399 (4)0.69778 (15)0.0376 (9)
C410.57975 (19)0.0608 (4)0.77213 (15)0.0341 (9)
C510.6220 (2)0.2516 (4)0.78004 (16)0.0397 (9)
C610.6595 (2)0.3428 (4)0.71395 (15)0.0370 (9)
C4110.5398 (2)0.0315 (4)0.84418 (18)0.0461 (11)
O1W0.9383 (2)0.1718 (3)0.46543 (15)0.0644 (10)0.810
O2W0.9381 (10)0.0061 (18)0.4139 (7)0.079 (3)*0.190
H4A0.619200.791000.421800.0800*
H4B0.725600.801500.388700.0800*
H5A0.613300.688700.283800.0850*
H5B0.565500.533400.339500.0850*
H6A0.765800.500900.296100.0790*
H6B0.671200.371700.256700.0790*
H7A0.660000.222000.384900.0690*
H7B0.770200.184400.360300.0690*
H80.845600.410100.451800.0510*
H90.777100.662400.505500.0590*
H210.608500.017500.581900.0430*
H310.547200.168300.692400.0450*
H410.481900.254000.876900.0950*
H510.625300.319200.829800.0480*
H610.688600.470100.719100.0440*
H11W0.896500.090800.479900.0970*0.810
H12W0.946500.261800.499900.0970*0.810
H21W0.897200.029100.452700.1180*0.190
H22W0.966200.129100.411700.1180*0.190
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0626 (14)0.0463 (11)0.0474 (12)0.0216 (10)0.0273 (10)0.0153 (9)
O30.0564 (14)0.0348 (10)0.0570 (13)0.0078 (9)0.0228 (11)0.0050 (9)
O410.0800 (17)0.0664 (14)0.0488 (13)0.0164 (11)0.0285 (12)0.0104 (10)
O420.0885 (19)0.1014 (17)0.0363 (13)0.0290 (13)0.0319 (12)0.0105 (12)
N20.0435 (15)0.0305 (11)0.0289 (12)0.0023 (9)0.0157 (11)0.0005 (9)
C10.0432 (18)0.0394 (15)0.0311 (15)0.0026 (13)0.0148 (13)0.0002 (12)
C30.0484 (19)0.0287 (14)0.0355 (16)0.0019 (12)0.0102 (14)0.0047 (11)
C40.091 (3)0.0535 (19)0.059 (2)0.0228 (17)0.026 (2)0.0202 (16)
C50.070 (3)0.071 (2)0.065 (2)0.0037 (18)0.012 (2)0.0190 (18)
C60.093 (3)0.063 (2)0.0380 (18)0.0043 (18)0.0004 (18)0.0000 (15)
C70.090 (3)0.0442 (17)0.0397 (18)0.0029 (15)0.0088 (18)0.0030 (13)
C80.054 (2)0.0395 (15)0.0356 (16)0.0060 (12)0.0150 (14)0.0066 (12)
C90.066 (2)0.0412 (16)0.0426 (17)0.0025 (14)0.0178 (15)0.0070 (13)
C110.0349 (16)0.0317 (13)0.0291 (14)0.0027 (11)0.0120 (12)0.0015 (11)
C210.0458 (18)0.0348 (15)0.0299 (15)0.0016 (12)0.0133 (13)0.0035 (11)
C310.0413 (18)0.0350 (14)0.0378 (16)0.0031 (11)0.0102 (13)0.0014 (12)
C410.0306 (16)0.0423 (15)0.0312 (15)0.0007 (11)0.0107 (12)0.0009 (12)
C510.0389 (17)0.0520 (16)0.0298 (15)0.0018 (13)0.0104 (13)0.0099 (12)
C610.0335 (16)0.0390 (14)0.0402 (16)0.0046 (11)0.0113 (13)0.0078 (13)
C4110.0396 (18)0.061 (2)0.0399 (18)0.0030 (14)0.0136 (14)0.0037 (15)
O1W0.078 (2)0.0581 (14)0.0693 (18)0.0183 (13)0.0533 (15)0.0055 (13)
Geometric parameters (Å, º) top
O1—C11.210 (3)C11—C611.385 (3)
O3—C31.206 (3)C21—C311.382 (3)
O41—C4111.318 (3)C31—C411.388 (4)
O42—C4111.198 (4)C41—C4111.492 (4)
O41—H410.9000C41—C511.387 (4)
O1W—H12W0.8200C51—C611.392 (4)
O1W—H11W0.8300C4—H4B0.9700
O2W—H22W0.9000C4—H4A0.9700
O2W—H21W0.9000C5—H5B0.9700
N2—C11.399 (3)C5—H5A0.9700
N2—C31.403 (3)C6—H6B0.9700
N2—C111.448 (3)C6—H6A0.9700
C1—C81.512 (4)C7—H7A0.9700
C3—C91.521 (4)C7—H7B0.9700
C4—C51.483 (5)C8—H80.9800
C4—C91.525 (4)C9—H90.9800
C5—C61.496 (5)C21—H210.9300
C6—C71.525 (4)C31—H310.9300
C7—C81.512 (4)C51—H510.9300
C8—C91.519 (4)C61—H610.9300
C11—C211.372 (3)
C411—O41—H41105.00C9—C4—H4A109.00
H11W—O1W—H12W108.00C9—C4—H4B109.00
H21W—O2W—H22W99.00C4—C5—H5B109.00
C1—N2—C3112.3 (2)C6—C5—H5A109.00
C1—N2—C11124.0 (2)H5A—C5—H5B108.00
C3—N2—C11123.6 (2)C4—C5—H5A109.00
N2—C1—C8107.5 (2)C6—C5—H5B109.00
O1—C1—C8128.5 (2)C5—C6—H6B110.00
O1—C1—N2124.0 (2)C7—C6—H6A110.00
N2—C3—C9107.0 (2)H6A—C6—H6B108.00
O3—C3—N2124.2 (2)C7—C6—H6B110.00
O3—C3—C9128.6 (2)C5—C6—H6A110.00
C5—C4—C9114.6 (2)C8—C7—H7B109.00
C4—C5—C6112.3 (3)C6—C7—H7A109.00
C5—C6—C7109.9 (3)C6—C7—H7B109.00
C6—C7—C8111.2 (2)C8—C7—H7A109.00
C1—C8—C7109.2 (2)H7A—C7—H7B108.00
C7—C8—C9115.1 (2)C7—C8—H8109.00
C1—C8—C9104.8 (2)C9—C8—H8109.00
C3—C9—C4117.0 (2)C1—C8—H8109.00
C4—C9—C8117.3 (2)C8—C9—H9106.00
C3—C9—C8103.7 (2)C3—C9—H9106.00
N2—C11—C61118.7 (2)C4—C9—H9106.00
C21—C11—C61121.8 (2)C11—C21—H21120.00
N2—C11—C21119.6 (2)C31—C21—H21120.00
C11—C21—C31119.4 (2)C21—C31—H31120.00
C21—C31—C41120.2 (2)C41—C31—H31120.00
C31—C41—C51119.7 (2)C41—C51—H51120.00
C51—C41—C411118.9 (2)C61—C51—H51120.00
C31—C41—C411121.4 (2)C11—C61—H61121.00
C41—C51—C61120.5 (2)C51—C61—H61121.00
C11—C61—C51118.4 (2)O42—C411—C41123.6 (2)
H4A—C4—H4B108.00O41—C411—O42123.2 (3)
C5—C4—H4A109.00O41—C411—C41113.3 (2)
C5—C4—H4B109.00
C3—N2—C1—O1179.1 (2)C4—C5—C6—C761.6 (4)
C3—N2—C1—C81.8 (3)C5—C6—C7—C859.7 (4)
C11—N2—C1—O12.7 (4)C6—C7—C8—C1162.2 (3)
C11—N2—C1—C8174.6 (2)C6—C7—C8—C944.7 (4)
C1—N2—C3—O3172.9 (2)C1—C8—C9—C320.8 (3)
C1—N2—C3—C911.9 (3)C1—C8—C9—C4151.4 (2)
C11—N2—C3—O33.5 (4)C7—C8—C9—C399.2 (3)
C11—N2—C3—C9171.7 (2)C7—C8—C9—C431.4 (4)
C1—N2—C11—C2153.8 (3)N2—C11—C21—C31179.3 (2)
C1—N2—C11—C61125.9 (3)C61—C11—C21—C311.0 (4)
C3—N2—C11—C21122.2 (3)N2—C11—C61—C51179.0 (2)
C3—N2—C11—C6158.2 (3)C21—C11—C61—C511.4 (4)
O1—C1—C8—C767.9 (4)C11—C21—C31—C410.1 (4)
O1—C1—C8—C9168.3 (3)C21—C31—C41—C510.5 (4)
N2—C1—C8—C7109.3 (3)C21—C31—C41—C411179.3 (2)
N2—C1—C8—C914.6 (3)C31—C41—C51—C610.1 (4)
O3—C3—C9—C434.1 (4)C411—C41—C51—C61179.6 (2)
O3—C3—C9—C8164.9 (3)C31—C41—C411—O412.0 (4)
N2—C3—C9—C4151.1 (2)C31—C41—C411—O42177.3 (3)
N2—C3—C9—C820.3 (3)C51—C41—C411—O41178.3 (2)
C9—C4—C5—C647.3 (4)C51—C41—C411—O422.4 (4)
C5—C4—C9—C391.9 (3)C41—C51—C61—C110.8 (4)
C5—C4—C9—C832.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H41···O1Wi0.901.712.609 (3)179
O1W—H11W···O10.832.082.894 (3)167
O1W—H12W···O42ii0.821.942.754 (3)172
O2W—H21W···O10.902.102.991 (12)179
O2W—H22W···O42iii0.902.333.233 (12)178
C9—H9···O1Wiv0.982.553.298 (4)133
C21—H21···O3v0.932.513.145 (3)126
C31—H31···O410.932.422.737 (3)100
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1, z; (v) x, y1, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC15H19NO4C15H17NO3C15H15NO4C15H15NO4·H2O
Mr277.31259.30273.28291.30
Crystal system, space groupTriclinic, P1Monoclinic, P21/nOrthorhombic, P212121Monoclinic, P21/n
Temperature (K)200200200200
a, b, c (Å)7.3557 (4), 8.3630 (4), 11.7128 (6)11.7119 (5), 6.6705 (3), 17.2898 (8)6.4958 (2), 12.5236 (4), 16.1281 (6)13.077 (2), 6.6713 (7), 16.432 (2)
α, β, γ (°)100.453 (4), 97.232 (4), 104.042 (4)90, 109.482 (5), 9090, 90, 9090, 97.982 (13), 90
V3)676.40 (6)1273.42 (11)1312.03 (8)1419.6 (3)
Z2444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.100.090.100.10
Crystal size (mm)0.45 × 0.30 × 0.180.40 × 0.25 × 0.120.45 × 0.12 × 0.080.30 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Oxford Diffraction Gemini-S CCD-detector
diffractometer
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
Oxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.975, 0.9800.929, 0.9810.980, 0.9900.813, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8079, 2640, 2082 8552, 2498, 1959 4693, 1728, 1395 9649, 2790, 1374
Rint0.0240.0240.0240.055
(sin θ/λ)max1)0.6170.6170.6600.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.03 0.035, 0.088, 1.09 0.038, 0.086, 1.10 0.052, 0.132, 0.85
No. of reflections2640249817282790
No. of parameters189172185194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.200.18, 0.170.18, 0.180.34, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1993), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O21i0.94 (2)1.76 (2)2.6866 (14)173 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O3i0.932.563.2205 (15)128
C51—H51···O1ii0.932.463.2914 (17)149
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O1i0.89 (3)1.84 (3)2.682 (2)156 (3)
Symmetry code: (i) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O41—H41···O1Wi0.901.712.609 (3)179
O1W—H11W···O10.832.082.894 (3)167
O1W—H12W···O42ii0.821.942.754 (3)172
O2W—H21W···O10.902.102.991 (12)179
O2W—H22W···O42iii0.902.333.233 (12)178
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds