Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
An improved cube method was developed for the computation of X-ray scattering curves of macromolecules in solution. For double-helical DNA and RNA molecules the efficiency of this method is shown. The results are compared with curves calculated by effective atomic scattering factor methods. In the small-angle and in the wide-angle regions the improved cube method is superior to the effective atomic scattering factor methods. This was proved by the calculation of structure parameters and by a comparison with experimental scattering data. On the basis of the improved cube method, models with a reduced structure resolution are deduced for DNA and RNA molecules. The models consisting of the three scattering centres phosphate, sugar and base per nucleotide are equivalent in scattering to the real structure up to a scattering angle of about 0.15 rad for copper radiation.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds