Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new numerical method is presented for simultaneous smoothing, desmearing and Fourier transformation of X-ray and neutron small-angle scattering data. The method can only be applied to scattering curves from dilute particle systems, i.e. for scattering media whose distance distributions are zero beyond a certain value. The distance distribution of the scattering medium is approximated by a linear combination of about 20 to 30 cubic B-splines. These spline functions have a restricted extension in real space. Their coefficients are adjusted by a weighted least-squares operation so that the series, after being Fourier transformed and smeared according to the geometry and wavelength distribution, represents an optimum smoothed approximation of the experimental data. Tendencies towards oscillations in the least-squares operation are suppressed by a new stabilization routine. The method offers a new possibility for the estimation of the radius of gyration, which is generally superior to the Guinier approximation.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds