Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
All the information relating to the quantitative composition of a mixture is coded and stored in its X-ray diffraction pattern. It has been the goal of X-ray diffraction analysts since the discovery of X-rays to retrieve and decode this information directly from the X-ray diffraction pattern rather than resort to calibration curves or internal standards. This goal appears to be attained by the application of the `matrix-flushing theory' and the now-proposed `adiabatic principle' in applied X-ray diffraction analysis. The matrix-flushing theory offers a simple intensity-concentration equation free from matrix effects which degenerates to `auto-flushing' for binary systems. The adiabatic principle establishes that the intensity-concentration relationship between each and every pair of components in a multi component system is not perturbed by the presence or absence of other components. A key equation is derived which conducts the decoding process. Both the matrix-flushing theory and the adiabatic principle are experimentally verified.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds