Download citation
Download citation
link to html
The pattern of charge modulations and local anisotropies below the Verwey transition has been determined and quantified in high-quality Fe3O4 single crystals and thin films grown on MgO by using resonant X-ray scattering at the Fe K-edge. The energy, polarization and azimuthal angle dependencies of an extensive set of reflections with potential sensitivity to charge or local anisotropy orderings have been analyzed to explore their origins. A charge disproportion on octahedral B sites of 0.20 ± 0.05 e- with [0 0 1] and [1\,\bar1\,0] cubic periodicities has been confirmed, while no significant charge disproportion has been obtained with [0 0 1/2] cubic periodicity. Additional charge modulations in the monoclinic a-b plane are also present. In addition, the occurrence of new forbidden (1, 1, 0) and (0, 0, 2n + 1/2) cubic reflections that arise from the anisotropy of the local structure around different tetrahedral and octahedral Fe atoms is shown. This complex pattern of weak charge modulations and local anisotropies is fully compatible with the low-temperature crystal structure refined in the non-polar C2/c space group and disproves any bimodal charge disproportion of the octahedral Fe atoms.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds