Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the anion of the title compound, (C2H10N2)[VO(H2O)(C3H2O4)2] or H2en­[VO(mal)2H2O], vanadium(IV) is distorted-octahedrally coordinated by six donor O atoms. The two malonate ligands are situated in the equatorial plane, whereas the oxo and the water ligand occupy axial positions. The apical V=O bond exhibits a strong trans influence. The anion possesses crystallographically imposed C2 symmetry, with the central V atom, the oxo and the water ligand lying on the twofold axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301417X/cm6048sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301417X/cm6048Isup2.hkl
Contains datablock I

CCDC reference: 217428

Key indicators

  • Single-crystal X-ray study
  • T = 210 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.025
  • wR factor = 0.066
  • Data-to-parameter ratio = 13.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_213 Alert C Atom O6 has ADP max/min Ratio ............. 3.40 prolat
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

There are only few crystal structures of bis(dicarboxylato)oxovanadate(IV) complexes described in the literature, namely sodium bis(oxalato)fluorooxovanadate(IV) hexahydrate (Rieskamp & Mattes, 1976),diammonium aquabis(oxalato)oxovanadate(IV) monohydrate (Hazell, 1968; Oughtred et al., 1976), diammonium aquabis(malonato)oxovanadate(IV) monohydrate (Piro & Baran, 1997) and N,N,N',N'-tetramethylethylenediammonium aquabis(malonato)oxovanadate(IV) dihydrate (Pajunen & Pajunen, 1980).

For this type of complex, two different coordination modes are observed regarding the dicarboxylate ligand, which can either be arranged cis or trans to each other. It was noted that the oxovanadate(IV) complexes containing oxalate ligands prefer a cis configuration while the corresponding malonate complexes prefer a trans configuration. This suggests, that the size of the chelation ring has a profound effect on the distribution of geometric isomers. The conformation of the chelation ring is boat. As we expected in the ethylenediammonium aquabis(malonato)oxovanadate(IV) complex, (I), arrangement of malonate ligands are trans (Fig. 1), as in the described structure of N,N,N',N'-tetramethylethylenediammonium aquabis(malonato)oxovanadate(IV) dihydrate, (II) (Pajunen & Pajunen, 1980). Comparing apical V—O bond distances of these two complexes we can see that they are equivalent. Hence, for complex (I) in the equatorial plane, V—O bond distances [V—O1 = 2.012 (1) Å and V—O3 = 2.000 (1) Å] are longer than in complex (II) [V—O1 = 1.981 (2) Å and V—O3 = 1.995 (2) Å]. Atoms V1, O5 and O6 lie on twofold axis of symmetry.

Ethylenediammonium ion participates in five strong intermolecular bonds with five O atoms (Table 1). Moreover, water atom O6 also participates as a hydrogen-bond donor with atom O2. Structural units are exclusively connected over hydrogen bonds, which extend in three dimensions. Between atoms N4 and O4 cyclic hydrogen bonds are formed (Table 1) around the inversion centre at (1/2, 1/2, 1/2). Comparing differences in the same intermolecular hydrogen-bond distance in (I) (Table 1) and complex 2 [N(H)···O = 1.89 (1) Å], we found an unexpected result.

The more bulky cation of (II) has shorter hydrogen-bond distance. Conformation of cation in (I) is closer to eclipsed with torsion angle (N4—C4—C4b—N4b) of −54.8°. Probably the intermolecular interactions stabilize the conformation of the cation.

Experimental top

The title complex was obtained by the reaction of aqeous solution of ammonium monovanadate(V), malonate acid and ethylenediamine-N-acetic acid in a 1:1:1 molar ratio at pH 4.5. Reaction solution was filtered off, in order to remove yellow solid, which precipitated during the reaction. After a few days, from mother liquor crystallized a blue complex. Some reduction occurs and the obtained complex was of vanadium(IV).

Refinement top

The positions of all H atom were located in difference Fourier syntheses. All H atoms have been refined with individual isotropic displacement parameters.

Computing details top

Data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure showing H2en[VO(mal)2H2O] cation with the atom labels. Displacement ellipsoids are shown at the 50% probability level.
(I) top
Crystal data top
(C2H10N2)[VO(C3H2O4)2(H2O)]F(000) = 724
Mr = 351.17Dx = 1.838 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 48 reflections
a = 14.579 (2) Åθ = 4.4–13.6°
b = 11.866 (1) ŵ = 0.84 mm1
c = 8.758 (2) ÅT = 210 K
β = 123.13 (1)°Prism, blue
V = 1268.8 (4) Å30.52 × 0.34 × 0.26 mm
Z = 4
Data collection top
Siemens P4
diffractometer
1568 reflections with I > 2σ(I)'
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 29.0°, θmin = 2.4°
profile data from ω scansh = 1919
Absorption correction: ψ scan
(North et al., 1968)
k = 1616
Tmin = 0.717, Tmax = 0.804l = 1111
3486 measured reflections3 standard reflections every 100 reflections
1689 independent reflections intensity decay: 5.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.066All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0338P)2 + 1.3358P]
where P = (Fo2 + 2Fc2)/3
1689 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
(C2H10N2)[VO(C3H2O4)2(H2O)]V = 1268.8 (4) Å3
Mr = 351.17Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.579 (2) ŵ = 0.84 mm1
b = 11.866 (1) ÅT = 210 K
c = 8.758 (2) Å0.52 × 0.34 × 0.26 mm
β = 123.13 (1)°
Data collection top
Siemens P4
diffractometer
1568 reflections with I > 2σ(I)'
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.717, Tmax = 0.8043 standard reflections every 100 reflections
3486 measured reflections intensity decay: 5.4%
1689 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066All H-atom parameters refined
S = 1.06Δρmax = 0.53 e Å3
1689 reflectionsΔρmin = 0.47 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.50000.10767 (2)0.25000.01114 (9)
C10.25952 (10)0.10589 (10)0.06517 (16)0.0137 (2)
C20.25885 (10)0.06216 (11)0.09858 (16)0.0165 (2)
C30.33219 (9)0.12403 (10)0.14319 (16)0.0130 (2)
O10.35173 (7)0.13205 (8)0.20988 (12)0.01808 (19)
O20.17143 (8)0.11267 (9)0.05393 (13)0.0203 (2)
O30.43277 (7)0.13849 (8)0.01520 (12)0.01585 (18)
O40.29336 (7)0.15626 (8)0.30166 (12)0.01790 (19)
O50.50000.02680 (11)0.25000.0182 (3)
O60.50000.29590 (13)0.25000.0420 (5)
C40.02449 (12)0.15068 (12)0.3512 (2)0.0244 (3)
N40.09058 (9)0.25406 (10)0.44152 (15)0.0175 (2)
H2A0.2872 (17)0.0146 (17)0.070 (3)0.031 (5)*
H2B0.1851 (16)0.0612 (16)0.199 (3)0.024 (4)*
H4A0.1215 (18)0.280 (2)0.386 (3)0.045 (6)*
H4B0.1403 (18)0.2405 (18)0.545 (3)0.033 (5)*
H4C0.0481 (19)0.3031 (19)0.439 (3)0.037 (6)*
H4D0.0347 (17)0.1498 (17)0.379 (3)0.032 (5)*
H4E0.0728 (17)0.0823 (19)0.407 (3)0.034 (5)*
H60.4538 (18)0.3316 (19)0.167 (3)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.00901 (13)0.01337 (14)0.00899 (14)0.0000.00359 (11)0.000
C10.0126 (5)0.0158 (5)0.0118 (5)0.0024 (4)0.0060 (4)0.0025 (4)
C20.0137 (5)0.0236 (6)0.0120 (5)0.0058 (4)0.0070 (5)0.0039 (4)
C30.0116 (5)0.0154 (5)0.0116 (5)0.0010 (4)0.0062 (4)0.0003 (4)
O10.0115 (4)0.0285 (5)0.0122 (4)0.0018 (3)0.0052 (3)0.0040 (3)
O20.0122 (4)0.0312 (5)0.0179 (5)0.0044 (3)0.0086 (4)0.0035 (4)
O30.0112 (4)0.0234 (4)0.0111 (4)0.0018 (3)0.0049 (3)0.0018 (3)
O40.0146 (4)0.0262 (5)0.0112 (4)0.0026 (3)0.0060 (3)0.0038 (3)
O50.0189 (6)0.0162 (6)0.0191 (6)0.0000.0101 (5)0.000
O60.0294 (8)0.0153 (7)0.0302 (9)0.0000.0164 (7)0.000
C40.0267 (7)0.0211 (6)0.0265 (7)0.0019 (5)0.0153 (6)0.0043 (5)
N40.0129 (5)0.0254 (6)0.0126 (5)0.0025 (4)0.0060 (4)0.0024 (4)
Geometric parameters (Å, º) top
V1—O51.5957 (13)C2—H2B0.948 (19)
V1—O32.0002 (10)C3—O41.2386 (15)
V1—O3i2.0002 (10)C3—O31.2804 (14)
V1—O1i2.0123 (9)O6—H60.79 (2)
V1—O12.0123 (9)C4—N41.4920 (19)
V1—O62.2335 (16)C4—C4ii1.505 (3)
C1—O21.2358 (15)C4—H4D1.01 (2)
C1—O11.2835 (15)C4—H4E1.01 (2)
C1—C21.5201 (17)N4—H4A0.88 (3)
C2—C31.5138 (16)N4—H4B0.81 (2)
C2—H2A0.97 (2)N4—H4C0.84 (2)
O5—V1—O3100.53 (3)C3—C2—H2B111.6 (11)
O5—V1—O3i100.53 (3)C1—C2—H2B107.5 (11)
O3—V1—O3i158.93 (6)H2A—C2—H2B109.6 (17)
O5—V1—O1i98.26 (3)O4—C3—O3122.88 (11)
O3—V1—O1i88.53 (4)O4—C3—C2118.96 (11)
O3i—V1—O1i88.46 (4)O3—C3—C2118.14 (10)
O5—V1—O198.26 (3)C1—O1—V1125.66 (8)
O3—V1—O188.46 (4)C3—O3—V1126.29 (8)
O3i—V1—O188.53 (4)V1—O6—H6122.3 (16)
O1i—V1—O1163.47 (6)N4—C4—C4ii112.19 (9)
O5—V1—O6180.0N4—C4—H4D105.6 (12)
O3—V1—O679.47 (3)C4ii—C4—H4D111.2 (12)
O3i—V1—O679.47 (3)N4—C4—H4E109.1 (13)
O1i—V1—O681.74 (3)C4ii—C4—H4E109.0 (12)
O1—V1—O681.74 (3)H4D—C4—H4E109.7 (16)
O2—C1—O1123.02 (12)C4—N4—H4A111.8 (15)
O2—C1—C2118.45 (11)C4—N4—H4B110.7 (15)
O1—C1—C2118.52 (10)H4A—N4—H4B106 (2)
C3—C2—C1115.89 (10)C4—N4—H4C107.5 (15)
C3—C2—H2A105.1 (12)H4A—N4—H4C110 (2)
C1—C2—H2A106.9 (12)H4B—N4—H4C111 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O4iii0.88 (3)1.91 (3)2.7859 (15)171 (2)
N4—H4B···O4iv0.81 (2)2.12 (2)2.8067 (15)142.3 (19)
N4—H4B···O1v0.81 (2)2.58 (2)3.0080 (16)114.9 (17)
N4—H4C···O3vi0.84 (2)2.05 (2)2.8312 (15)154 (2)
N4—H4C···O5vii0.84 (2)2.46 (2)2.9829 (17)121.5 (18)
O6—H6···O2iii0.79 (2)1.91 (2)2.6902 (12)168 (2)
Symmetry codes: (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C2H10N2)[VO(C3H2O4)2(H2O)]
Mr351.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)210
a, b, c (Å)14.579 (2), 11.866 (1), 8.758 (2)
β (°) 123.13 (1)
V3)1268.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.52 × 0.34 × 0.26
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.717, 0.804
No. of measured, independent and
observed [I > 2σ(I)'] reflections
3486, 1689, 1568
Rint0.019
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.06
No. of reflections1689
No. of parameters129
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.53, 0.47

Computer programs: XSCANS (Bruker, 1999), XSCANS, SHELXTL (Bruker, 1998), SHELXTL, ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O4i0.88 (3)1.91 (3)2.7859 (15)171 (2)
N4—H4B···O4ii0.81 (2)2.12 (2)2.8067 (15)142.3 (19)
N4—H4B···O1iii0.81 (2)2.58 (2)3.0080 (16)114.9 (17)
N4—H4C···O3iv0.84 (2)2.05 (2)2.8312 (15)154 (2)
N4—H4C···O5v0.84 (2)2.46 (2)2.9829 (17)121.5 (18)
O6—H6···O2i0.79 (2)1.91 (2)2.6902 (12)168 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds