Download citation
Download citation
link to html
The structure of the title complex, [Cu4(C4H10NO2)4(H2O)4](NO3)4·14/3 H2O, consists of tetranuclear [Cu4(Hdea)4(H2O)4]4+ cations (H2dea is diethano­lamine), uncoordinated nitrate anions and water mol­ecules. Each copper centre in the two independent cations (one on a twofold rotation axis and the other with \overline 4 crystallographic symmetry) is similarly coordinated by two alkoxo O atoms, one amine N atom of the monodeprotonated Hdea ligands and one O atom from a water mol­ecule in a square-planar geometry [Cu-O/N bond lengths are in the range 1.939 (6)-2.045 (8) Å]. The two axial positions of the Cu atoms are occupied by a weakly bound ethanol group of the chelating Hdea ligand and an alkoxo O atom from a neighbouring Hdea ligand [average Cu-O = 2.532 (7) Å]. The coordination geometry of the Cu atoms can, therefore, be best described as distorted elongated octahedral. The intermolecular hydrogen bonds that involve OH and NH groups of the ligands, uncoordinated NO3- anions and water mol­ecules reinforce the crystal structure by forming an extended three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803004690/cm6031sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803004690/cm6031Isup2.hkl
Contains datablock I

CCDC reference: 209882

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.014 Å
  • H-atom completeness 84%
  • Disorder in solvent or counterion
  • R factor = 0.064
  • wR factor = 0.087
  • Data-to-parameter ratio = 9.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFNR_01 Alert C Ratio of reflections to parameters is < 10 for a centrosymmetric structure sine(theta)/lambda 0.6249 Proportion of unique data used 0.5698 Ratio reflections to parameters 9.5793 PLAT_302 Alert C Anion/Solvent Disorder ....................... 26.00 Perc. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C16 H57.33329 Cu4 N8 O28.66669 Atom count from the _atom_site data: C16 H48 Cu4 N8 O28.66666 CELLZ_01 From the CIF: _cell_formula_units_Z 6 From the CIF: _chemical_formula_sum C16 H57.3333 Cu4 N8 O28.6667 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 96.00 96.00 0.00 H 344.00 288.00 56.00 Cu 24.00 24.00 0.00 N 48.00 48.00 0.00 O 172.00 172.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

We have recently succeeded in the preparation of a number of new Cu/M (M = Pb, Co, Zn, Ni) mixed-metal complexes by reacting copper powder with a salt of another metal (or metal oxide and ammonium salt) in a non-aqueous solution of an amino alcohol (Kovbasyuk et al., 1998; Vinogradova et al., 2001; Makhankova et al., 2002, 2003; Vinogradova et al., 2002). However, the direct interaction of metallic copper and nickel nitrate in the presence of diethanolamine (H2dea) in CH3OH, in air, did not result in the desired Cu/Ni mixed-metal compound, but afforded the tetranuclear copper complex [Cu4(Hdea)4(H2O)4](NO3)4.14/3H2O, (I).

The structure of (I) has been crystallographically investigated previously (Ivanova et al., 1994). However the insufficient amount of data afforded a structure of low precision, with H atoms on the ligand O and N atoms not being located, and there was also some difficulty in determining the number and location of the nitrate ions. With the availability of a diffractometer with a CCD detector and low-temperature device, a better and significantly different model has been obtained in the present determination with the location of the nitrate ions and ligand H atoms, allowing the number of charges on the cation to be assigned.

In the structure of (I), the three independent sets of metal atoms, Cu1, Cu2 and Cu3, form two crystallographically inequivalent tetranuclear [Cu4(Hdea)4(H2O)4]4+ cations, with largely similar structural data (Fig. 1 and Table 1). The cation containing Cu1 and Cu2 lies on a twofold axis and that formed from Cu3 has 4 symmetry. Each copper centre is similarly coordinated by two alkoxo O atoms, one amine N atom of the monodeprotonated Hdea ligands and one O atom from a water molecule in a square-planar geometry [Cu—O/N bond lengths are in the range 1.939 (6)–2.045 (8) Å]. As shown in the diagram, the two axial positions of the Cu atoms are occupied by a weakly bound ethanol group of the chelating Hdea ligand and an alkoxo O atom from a neighbouring Hdea ligand [average Cu—O = 2.532 (7) Å]. The geometry of the Cu atoms can therefore be best described as distorted elongated octahedra. Each Hdea ligand adopts a chelating-bridging mode forming five-membered rings with the ethanol group weakly coordinated, a coordination mode that is common for dinuclear copper complexes of this ligand (Karadag et al., 2001; Madarasz et al., 2000; Yilmaz et al., 2001). However, in (I), the triply bridging function of the alkoxo O atoms is realised and results in the formation of a Cu4O4 cluster made up of a copper tetrahedron interlocked with an oxygen tetrahedron that is closely related to the cubane-type structure (see the diagram). The bridged Cu···Cu distances lie in the range 3.172 (1)–3.213 (1) Å. All faces of the heterocubane core are remarkably non-planar, their edges are of different length and the least-squares rhombohedral planes of the faces are mutually non-orthogonal. In the structure of another copper tetramer [Cu4(Hdea)4(OAc)4] published recently (Saalfrank et al., 2001) four copper centres are linked in an alternating way by bridging O atoms in an anti-tricyclo[4.2.0.02,5]octane-like fashion.

The X-ray investigation shows possible intra- and intermolecular hydrogen bonds involving the OH and NH groups of the ligands, coordinated and uncoordinated water molecules and uncoordinated NO3- anions, as indicated by the O···O and O···N distances (Table 2). The hydrogen bonding maintains the crystal structure by forming an extended three-dimensional network (Fig. 2).

All bond distances and angles within the monodeprotonated diethanolamine are as expected.

Experimental top

To synthesize (I), copper powder (0.32 g, 5 mmol), Ni(NO3)2·4H2O (2.90 g, 10 mmol), NH4NO3 (0.8 g, 10 mmol), CH3OH (20 ml) and H2dea (2 ml) were heated to 333 K and magnetically stirred until total dissolution of Cu was observed (20 min). Dark-blue crystals of (I) adequate for an X-ray crystallographic study were isolated next day as a first crop (0.49 g).

Refinement top

All non-H atoms were assigned anisotropic displacement parameters, except for the O atoms of half-weighted solvent water molecules, viz. O6aq, O7aq and O8aq. H atoms on O and N atoms were found in difference maps, while those of the remainder of the cation were placed in calculated positions and fixed in the refinement. For water molecules O1aq–O3aq, H atoms were refined with their geometry restrained to ideal values but those for the solvent water molecules O4aq–O8aq were not located. Nitrates N6 and N7 are half-weighted, with water molecules O8aq and O7aq occupying the other half of the sites. The N7/O16/O17/O18 nitrate anion and the O7aq solvent water were modelled to be disordered about a crystallographic inversion centre. All nitrate ions were refined as rigid bodies. Several other peaks in difference map such as that on (1/4, 1/4, 1/4), which was modelled as an Aq(8) in the original structure determination, refined with oxygen population less than 1/4 with an insignificant decrease in the R factor, and hence these sites as possible solvent water molecules were ignored.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: Xtal3.5; program(s) used to refine structure: Xtal3.5 CRYLSQ; molecular graphics: Xtal3.5; software used to prepare material for publication: Xtal3.5 BONDLA CIFIO.

Figures top
[Figure 1] Fig. 1. The molecular structure of one of the two crystallographically independent tetranuclear cations in (I), with 50% displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (I), showing the hydrogen-bonding scheme (H atoms of the CH2 groups, C1–C12, have been omitted for clarity).
Tetraaquatetrakis[2-(2-hydroxyethylamino)ethanolato]tetracopper(II) tetranitrate 14/3-hydrate top
Crystal data top
[Cu4(C4H10NO2)4(H2O)4](NO3)4·14/3H2ODx = 1.641 Mg m3
Mr = 1074.85Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 8192 reflections
Hall symbol: -p 4bcθ = 2.4–23.6°
a = 17.797 (2) ŵ = 2.03 mm1
c = 20.600 (2) ÅT = 150 K
V = 6524.7 (12) Å3Tetragonal prism, dark blue
Z = 60.35 × 0.14 × 0.11 mm
F(000) = 3328
Data collection top
Bruker SMART CCD
diffractometer
6674 independent reflections
Radiation source: sealed tube3803 reflections with F > 4σ(F)
Graphite monochromatorRint = 0.077
ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 022
Tmin = 0.67, Tmax = 0.84k = 022
63965 measured reflectionsl = 250
Refinement top
Refinement on F9 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(F) + 0.003F2]
S = 1.02(Δ/σ)max = 0.011
3803 reflectionsΔρmax = 1.46 e Å3
397 parametersΔρmin = 0.86 e Å3
Crystal data top
[Cu4(C4H10NO2)4(H2O)4](NO3)4·14/3H2OZ = 6
Mr = 1074.85Mo Kα radiation
Tetragonal, P42/nµ = 2.03 mm1
a = 17.797 (2) ÅT = 150 K
c = 20.600 (2) Å0.35 × 0.14 × 0.11 mm
V = 6524.7 (12) Å3
Data collection top
Bruker SMART CCD
diffractometer
6674 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
3803 reflections with F > 4σ(F)
Tmin = 0.67, Tmax = 0.84Rint = 0.077
63965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0649 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.46 e Å3
3803 reflectionsΔρmin = 0.86 e Å3
397 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.33549 (6)0.70430 (6)0.48988 (4)0.0305 (5)
Cu20.20561 (6)0.66346 (6)0.39050 (4)0.0325 (5)
Cu30.65627 (6)0.74570 (6)0.19713 (5)0.0384 (6)
O10.2295 (4)0.5247 (4)0.4157 (3)0.053 (4)
O20.3102 (3)0.6937 (3)0.3976 (2)0.032 (3)
O30.4730 (3)0.7311 (4)0.4653 (3)0.045 (4)
O40.3052 (3)0.8091 (3)0.4829 (2)0.031 (3)
O50.7315 (3)0.6682 (3)0.2095 (3)0.039 (3)
O60.5474 (4)0.6628 (4)0.2184 (4)0.061 (4)
N10.2364 (4)0.6190 (4)0.3036 (3)0.039 (4)
N20.3768 (4)0.7345 (4)0.5775 (3)0.036 (4)
N30.6398 (5)0.6953 (5)0.1090 (4)0.057 (5)
N40.7103 (2)0.40073 (18)0.30881 (14)0.042 (4)
O70.7260 (4)0.4350 (3)0.25878 (17)0.053 (4)
O80.6900 (4)0.3345 (2)0.3057 (2)0.043 (3)
O90.7148 (4)0.4327 (3)0.36188 (16)0.064 (4)
N50.4695 (4)0.0198 (5)0.1967 (5)0.122 (12)
O100.4650 (8)0.0514 (7)0.1438 (5)0.182 (15)
O110.4615 (8)0.0564 (7)0.2472 (5)0.143 (11)
O120.4822 (9)0.0483 (5)0.1992 (7)0.201 (7)*
N60.3191 (8)0.3768 (7)0.4799 (6)0.10 (2).50000
O130.3305 (13)0.4112 (11)0.5307 (7)0.121 (18).50000
O140.3653 (10)0.3805 (14)0.4353 (8)0.109 (7)*.50000
O150.2616 (11)0.3387 (13)0.4736 (9)0.17 (3).50000
N70.0320 (9)0.4898 (7)0.4551 (7)0.088 (17).50000
O160.0042 (18)0.5458 (14)0.4708 (11)0.094 (14).50000
O170.0773 (13)0.494 (2)0.4098 (10)0.075 (12).50000
O180.023 (2)0.4301 (10)0.4845 (11)0.25 (2)*.50000
C10.2545 (7)0.4955 (6)0.3550 (5)0.060 (6)
C20.2220 (6)0.5379 (5)0.2992 (4)0.051 (6)
C30.3140 (5)0.6424 (5)0.2907 (4)0.041 (5)
C40.3567 (5)0.6514 (5)0.3541 (4)0.035 (4)
C50.5016 (5)0.7523 (5)0.5274 (4)0.044 (5)
C60.4587 (5)0.7193 (5)0.5827 (4)0.043 (5)
C70.3550 (5)0.8133 (5)0.5892 (4)0.041 (5)
C80.3463 (5)0.8549 (4)0.5267 (4)0.035 (4)
C90.7181 (5)0.6051 (5)0.1682 (4)0.048 (5)
C100.6965 (6)0.6336 (6)0.1028 (5)0.060 (7)
C110.5624 (7)0.6711 (9)0.0998 (6)0.079 (9)
C120.5345 (7)0.6235 (8)0.1577 (8)0.097 (10)
O1aq0.3489 (4)0.5935 (4)0.5046 (3)0.057 (4)
O2aq0.0958 (4)0.6526 (4)0.3744 (4)0.061 (5)
O3aq0.5960 (5)0.8374 (5)0.1788 (4)0.069 (5)
O4aq0.1134 (10)0.0341 (10)0.1819 (8)0.194 (16)
O5aq0.0211 (8)0.0884 (7)0.5537 (5)0.158 (11)
O6aq0.6433 (18)0.784 (2)0.7069 (16)0.176 (12)*.50000
O7aq0.083 (2)0.4648 (19)0.4225 (17)0.136 (14)*.50000
O8aq0.4014 (12)0.4315 (12)0.4407 (10)0.102 (6)*.50000
H30.647040.730530.075410.07300*
H1a0.240910.442140.351280.07500*
H1b0.308310.497410.352000.07500*
H2a0.241650.518120.258570.06400*
H2b0.168030.528240.297940.06400*
H3a0.315080.689460.267480.05300*
H3b0.339180.605740.264780.05300*
H4a0.368070.604580.372510.04800*
H4b0.402770.679020.347290.04800*
H5a0.501700.805990.530950.05400*
H5b0.554120.736360.530730.05400*
H6a0.467020.666330.584370.05500*
H6b0.476640.740320.623290.05500*
H7a0.391630.837740.616810.05000*
H7b0.307520.815180.613260.05000*
H8a0.395240.865080.509060.04800*
H8b0.321150.901700.533040.04800*
H9a0.677430.576310.186060.06100*
H9b0.761890.574330.167460.06100*
H10a0.679230.595230.075220.07300*
H10b0.742660.654640.081200.07300*
H11a0.529450.712430.096750.09900*
H11b0.557030.639620.062870.09900*
H12a0.480950.614330.153620.10400*
H12b0.559360.576820.159180.10400*
H10.204760.638050.270810.05200*
H20.356550.702970.609810.04400*
H1O0.194010.485820.424440.06900*
H3O0.487690.679570.462730.05600*
H6O0.515830.705930.229630.07700*
H1aqA0.3140.5600.4910.08600*
H1aqB0.3960.5710.5000.08600*
H2aqA0.0770.6070.3820.09400*
H2aqB0.0710.6880.4010.09400*
H3aqA0.5480.8270.1860.10300*
H3aqB0.6050.8840.1890.10300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0362 (6)0.0334 (6)0.0220 (4)0.0083 (4)0.0014 (4)0.0020 (4)
Cu20.0371 (6)0.0368 (6)0.0235 (4)0.0078 (5)0.0004 (4)0.0015 (4)
Cu30.0366 (6)0.0446 (6)0.0341 (5)0.0090 (4)0.0038 (5)0.0049 (5)
O10.069 (5)0.052 (4)0.039 (3)0.005 (3)0.003 (3)0.001 (3)
O20.033 (3)0.038 (3)0.026 (3)0.009 (2)0.002 (2)0.003 (2)
O30.042 (3)0.058 (4)0.036 (3)0.009 (3)0.004 (3)0.008 (3)
O40.039 (3)0.032 (3)0.023 (2)0.005 (2)0.002 (2)0.001 (2)
O50.041 (3)0.040 (3)0.036 (3)0.005 (2)0.007 (3)0.003 (3)
O60.047 (4)0.058 (4)0.079 (5)0.004 (3)0.016 (4)0.013 (4)
N10.045 (4)0.045 (4)0.028 (3)0.009 (3)0.001 (3)0.003 (3)
N20.043 (4)0.043 (4)0.023 (3)0.002 (3)0.004 (3)0.008 (3)
N30.059 (5)0.069 (6)0.045 (4)0.026 (4)0.016 (4)0.013 (4)
N40.064 (5)0.039 (4)0.023 (3)0.001 (3)0.000 (3)0.007 (3)
O70.091 (5)0.044 (4)0.024 (3)0.010 (3)0.000 (3)0.005 (3)
O80.060 (4)0.038 (3)0.031 (3)0.015 (3)0.002 (3)0.003 (3)
O90.123 (7)0.048 (4)0.021 (3)0.005 (4)0.003 (3)0.004 (3)
N50.123 (12)0.067 (8)0.175 (16)0.017 (8)0.011 (12)0.000 (10)
O100.136 (12)0.198 (16)0.212 (16)0.034 (11)0.065 (12)0.083 (14)
O110.129 (10)0.156 (12)0.144 (10)0.002 (9)0.050 (9)0.070 (10)
N60.12 (2)0.084 (18)0.093 (18)0.055 (16)0.040 (17)0.047 (15)
O130.121 (17)0.16 (2)0.080 (13)0.079 (16)0.041 (13)0.049 (14)
O150.23 (3)0.19 (3)0.102 (18)0.05 (2)0.11 (2)0.053 (18)
N70.067 (15)0.067 (15)0.13 (2)0.030 (13)0.002 (14)0.006 (15)
O160.141 (19)0.049 (10)0.094 (14)0.037 (11)0.036 (13)0.040 (10)
O170.082 (13)0.043 (10)0.101 (14)0.021 (9)0.000 (11)0.016 (10)
C10.084 (8)0.044 (6)0.051 (6)0.008 (5)0.000 (5)0.008 (5)
C20.069 (7)0.051 (6)0.033 (4)0.003 (5)0.002 (4)0.015 (4)
C30.049 (5)0.052 (5)0.023 (4)0.012 (4)0.009 (3)0.004 (4)
C40.037 (5)0.039 (5)0.029 (4)0.006 (4)0.003 (3)0.005 (3)
C50.034 (5)0.049 (5)0.048 (5)0.006 (4)0.000 (4)0.006 (4)
C60.034 (5)0.056 (6)0.038 (4)0.011 (4)0.004 (4)0.001 (4)
C70.040 (5)0.051 (5)0.032 (4)0.004 (4)0.000 (4)0.003 (4)
C80.045 (5)0.033 (4)0.025 (4)0.003 (4)0.001 (3)0.004 (3)
C90.049 (6)0.053 (6)0.041 (5)0.013 (5)0.008 (4)0.011 (4)
C100.062 (7)0.070 (7)0.048 (6)0.026 (6)0.018 (5)0.026 (5)
C110.065 (8)0.115 (11)0.056 (7)0.022 (7)0.024 (6)0.026 (7)
C120.065 (8)0.099 (10)0.126 (12)0.021 (7)0.041 (8)0.074 (10)
O1aq0.064 (5)0.052 (4)0.054 (4)0.016 (4)0.002 (4)0.008 (3)
O2aq0.061 (5)0.064 (5)0.058 (4)0.006 (4)0.004 (4)0.005 (4)
O3aq0.058 (5)0.066 (5)0.083 (6)0.008 (4)0.005 (4)0.001 (4)
O4aq0.206 (17)0.209 (16)0.167 (14)0.127 (14)0.001 (11)0.003 (11)
O5aq0.260 (15)0.141 (10)0.073 (6)0.142 (10)0.027 (8)0.025 (6)
Geometric parameters (Å, º) top
Cu1—O21.964 (5)N6—O131.23
Cu1—O32.544 (6)N6—O141.23
Cu1—O41.946 (5)N6—O151.23
Cu1—N22.022 (6)N7—O161.23
Cu1—O1aq2.010 (7)N7—O171.23
Cu1—O42.520 (5)N7—O181.23
Cu2—O12.558 (7)C1—C21.491 (14)
Cu2—O21.942 (5)C1—H1a0.983
Cu2—N12.032 (7)C1—H1b0.960
Cu2—O2aq1.992 (8)C2—H2a0.974
Cu2—O22.562 (5)C2—H2b0.976
Cu2—O41.974 (5)C3—C41.518 (11)
Cu3—O51.939 (6)C3—H3a0.965
Cu3—O62.475 (7)C3—H3b0.955
Cu3—N32.045 (8)C4—H4a0.939
Cu3—O3aq1.989 (8)C4—H4b0.966
Cu3—O52.531 (6)C5—C61.492 (12)
Cu3—O51.977 (6)C5—H5a0.958
O1—C11.425 (12)C5—H5b0.979
O1—H1O0.955C6—H6a0.954
O2—C41.432 (9)C6—H6b0.970
O3—C51.429 (11)C7—C81.495 (11)
O3—H3O0.955C7—H7a0.968
O4—C81.419 (9)C7—H7b0.980
O5—C91.430 (11)C8—H8a0.961
O6—C121.452 (18)C8—H8b0.954
O6—H6O0.979C9—C101.490 (14)
N1—C21.469 (12)C9—H9a0.959
N1—C31.466 (12)C9—H9b0.953
N1—H10.943C10—H10a0.941
N2—C61.487 (11)C10—H10b1.006
N2—C71.475 (12)C11—C121.54 (2)
N2—H20.941C11—H11a0.943
N3—C101.496 (14)C11—H11b0.950
N3—C111.456 (16)C12—H12a0.970
N3—H30.944C12—H12b0.941
N4—O71.230O1aq—H1aqA0.90
N4—O81.234O1aq—H1aqB0.93
N4—O91.235O2aq—H2aqA0.89
N5—O101.230O2aq—H2aqB0.94
N5—O111.235O3aq—H3aqA0.89
N5—O121.234O3aq—H3aqB0.87
O2—Cu1—O392.6 (2)O8—N4—O9120.3
O2—Cu1—O487.5 (2)O10—N5—O11119.9
O2—Cu1—N2166.9 (3)O10—N5—O12119.8
O2—Cu1—O1aq94.5 (3)O11—N5—O12120.3
O2—Cu1—O473.0 (2)O13—N6—O14119.9
O3—Cu1—O494.1 (2)O13—N6—O15119.9
O3—Cu1—N277.2 (2)O14—N6—O15120.3
O3—Cu1—O1aq95.7 (3)O16—N7—O17120
O3—Cu1—O4164.23 (17)O16—N7—O18120
O4—Cu1—N285.0 (2)O17—N7—O18120
O4—Cu1—O1aq169.8 (3)O1—C1—C2111.7 (8)
O4—Cu1—O479.1 (2)O1—C1—H1a110.1
N2—Cu1—O1aq94.7 (3)O1—C1—H1b110.8
N2—Cu1—O4115.9 (2)C2—C1—H1a109.5
O1aq—Cu1—O492.0 (3)C2—C1—H1b108.6
O1—Cu2—O295.3 (2)H1a—C1—H1b106.0
O1—Cu2—N176.0 (2)N1—C2—C1112.5 (8)
O1—Cu2—O2aq95.9 (3)N1—C2—H2a110.2
O1—Cu2—O2164.66 (18)N1—C2—H2b110.3
O1—Cu2—O493.4 (2)C1—C2—H2a109.9
O2—Cu2—N185.1 (2)C1—C2—H2b108.3
O2—Cu2—O2aq168.3 (3)H2a—C2—H2b105.4
O2—Cu2—O280.0 (2)N1—C3—C4110.2 (6)
O2—Cu2—O487.3 (2)N1—C3—H3a110.8
N1—Cu2—O2aq94.6 (3)N1—C3—H3b110.4
N1—Cu2—O2117.8 (2)C4—C3—H3a109.0
N1—Cu2—O4166.3 (3)C4—C3—H3b108.6
O2aq—Cu2—O289.9 (3)H3a—C3—H3b107.8
O2aq—Cu2—O495.1 (3)O2—C4—C3107.7 (6)
O2—Cu2—O471.86 (19)O2—C4—H4a109.8
O5—Cu3—O695.3 (2)O2—C4—H4b108.3
O5—Cu3—N384.5 (3)C3—C4—H4a111.2
O5—Cu3—O3aq168.8 (3)C3—C4—H4b110.7
O5—Cu3—O582.7 (2)H4a—C4—H4b109.0
O5—Cu3—O586.8 (2)O3—C5—C6113.4 (7)
O6—Cu3—N377.5 (3)O3—C5—H5a109.4
O6—Cu3—O3aq95.8 (3)O3—C5—H5b109.0
O6—Cu3—O5164.0 (2)C6—C5—H5a109.6
O6—Cu3—O592.0 (2)C6—C5—H5b108.7
N3—Cu3—O3aq96.6 (4)H5a—C5—H5b106.5
N3—Cu3—O5117.9 (3)N2—C6—C5112.1 (7)
N3—Cu3—O5165.6 (3)N2—C6—H6a109.5
O3aq—Cu3—O587.0 (3)N2—C6—H6b108.3
O3aq—Cu3—O594.2 (3)C5—C6—H6a109.8
O5—Cu3—O572.1 (2)C5—C6—H6b109.7
Cu2—O1—C1103.1 (5)H6a—C6—H6b107.4
Cu2—O1—H1O128.9N2—C7—C8111.0 (7)
C1—O1—H1O96.2N2—C7—H7a110.3
Cu1—O2—Cu2108.6 (2)N2—C7—H7b110.0
Cu1—O2—C4121.6 (4)C8—C7—H7a110.6
Cu1—O2—Cu289.1 (2)C8—C7—H7b109.2
Cu2—O2—C4111.2 (4)H7a—C7—H7b105.6
Cu2—O2—Cu299.5 (2)O4—C8—C7108.4 (6)
C4—O2—Cu2123.3 (4)O4—C8—H8a109.6
Cu1—O3—C5102.4 (5)O4—C8—H8b110.3
Cu1—O3—H3O95.5C7—C8—H8a109.0
C5—O3—H3O101.9C7—C8—H8b111.3
Cu1—O4—C8111.2 (4)H8a—C8—H8b108.2
Cu1—O4—Cu1100.4 (2)O5—C9—C10108.2 (8)
Cu1—O4—Cu2109.6 (2)O5—C9—H9a108.5
C8—O4—Cu1122.0 (4)O5—C9—H9b108.9
C8—O4—Cu2121.4 (4)C10—C9—H9a109.6
Cu1—O4—Cu288.9 (2)C10—C9—H9b113.1
Cu3—O5—C9111.4 (5)H9a—C9—H9b108.5
Cu3—O5—Cu395.8 (2)N3—C10—C9110.3 (8)
Cu3—O5—Cu3110.3 (3)N3—C10—H10a111.3
C9—O5—Cu3123.2 (5)N3—C10—H10b108.4
C9—O5—Cu3122.0 (5)C9—C10—H10a112.5
Cu3—O5—Cu390.0 (2)C9—C10—H10b108.5
Cu3—O6—C12105.0 (7)H10a—C10—H10b105.6
Cu3—O6—H6O91.3N3—C11—C12111.5 (10)
C12—O6—H6O119.4N3—C11—H11a111.5
Cu2—N1—C2112.9 (5)N3—C11—H11b112.0
Cu2—N1—C3107.7 (5)C12—C11—H11a106.3
Cu2—N1—H1109.3C12—C11—H11b105.3
C2—N1—C3115.6 (7)H11a—C11—H11b110.1
C2—N1—H1101.8O6—C12—C11110.5 (11)
C3—N1—H1109.4O6—C12—H12a108.1
Cu1—N2—C6111.8 (5)O6—C12—H12b108.8
Cu1—N2—C7107.6 (5)C11—C12—H12a110.0
Cu1—N2—H2109.5C11—C12—H12b111.0
C6—N2—C7114.8 (7)H12a—C12—H12b108.5
C6—N2—H2102.5Cu1—O1aq—H1aqA121
C7—N2—H2110.5Cu1—O1aq—H1aqB121
Cu3—N3—C10107.5 (6)H1aqA—O1aq—H1aqB108
Cu3—N3—C11112.4 (7)Cu2—O2aq—H2aqA116
Cu3—N3—H3109.9Cu2—O2aq—H2aqB107
C10—N3—C11114.2 (9)H2aqA—O2aq—H2aqB109
C10—N3—H3109.4Cu3—O3aq—H3aqA109
C11—N3—H3103.3Cu3—O3aq—H3aqB129
O7—N4—O8119.8H3aqA—O3aq—H3aqB109
O7—N4—O9119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O170.962.102.77 (2)125
O1—H1O···O7aq0.962.022.83 (4)141
O3—H3O···O5aqi0.961.762.71 (1)171
O6—H6O···O7ii0.981.892.852 (9)165
N1—H1···O8iii0.941.962.875 (8)164
N2—H2···O8iv0.942.042.950 (8)162
O1aq—H1aqA···O10.902.253.06 (1)149
O2aq—H2aqB···O3v0.942.103.05 (1)174
O2aq—H2aqA···O170.892.102.94 (3)157
O5aq—-···O10vi--2.92 (2)-
O17—-···O4aqvii--2.79 (4)-
O4aq—-···O12vii--2.72 (2)-
O4aq—-···O6aqviii--2.71 (4)-
O4aq—-···O7aqiii--2.70 (4)-
O5aq—-···O13ix--2.68 (3)-
O5aq—-···O8aqix--2.73 (2)-
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) y, x+3/2, z+1/2; (iii) y+1/2, x, z+1/2; (iv) x+1, y+1, z+1; (v) x+1/2, y+3/2, z; (vi) y, x1/2, z+1/2; (vii) y, x+1/2, z+1/2; (viii) y+1, x1/2, z1/2; (ix) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu4(C4H10NO2)4(H2O)4](NO3)4·14/3H2O
Mr1074.85
Crystal system, space groupTetragonal, P42/n
Temperature (K)150
a, c (Å)17.797 (2), 20.600 (2)
V3)6524.7 (12)
Z6
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.35 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS; Sheldrick, 1996
Tmin, Tmax0.67, 0.84
No. of measured, independent and
observed [F > 4σ(F)] reflections
63965, 6674, 3803
Rint0.077
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.087, 1.02
No. of reflections3803
No. of parameters397
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.46, 0.86

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), Xtal3.5 (Hall et al., 1995), Xtal3.5 CRYLSQ, Xtal3.5 BONDLA CIFIO.

Selected geometric parameters (Å, º) top
Cu1—O21.964 (5)Cu2—O2aq1.992 (8)
Cu1—O32.544 (6)Cu2—O22.562 (5)
Cu1—O41.946 (5)Cu2—O41.974 (5)
Cu1—N22.022 (6)Cu3—O51.939 (6)
Cu1—O1aq2.010 (7)Cu3—O62.475 (7)
Cu1—O42.520 (5)Cu3—N32.045 (8)
Cu2—O12.558 (7)Cu3—O3aq1.989 (8)
Cu2—O21.942 (5)Cu3—O52.531 (6)
Cu2—N12.032 (7)Cu3—O51.977 (6)
O2—Cu1—O392.6 (2)O2—Cu2—O487.3 (2)
O2—Cu1—O487.5 (2)N1—Cu2—O2aq94.6 (3)
O2—Cu1—N2166.9 (3)N1—Cu2—O2117.8 (2)
O2—Cu1—O1aq94.5 (3)N1—Cu2—O4166.3 (3)
O2—Cu1—O473.0 (2)O2aq—Cu2—O289.9 (3)
O3—Cu1—O494.1 (2)O2aq—Cu2—O495.1 (3)
O3—Cu1—N277.2 (2)O2—Cu2—O471.86 (19)
O3—Cu1—O1aq95.7 (3)O5—Cu3—O695.3 (2)
O3—Cu1—O4164.23 (17)O5—Cu3—N384.5 (3)
O4—Cu1—N285.0 (2)O5—Cu3—O3aq168.8 (3)
O4—Cu1—O1aq169.8 (3)O5—Cu3—O582.7 (2)
O4—Cu1—O479.1 (2)O5—Cu3—O586.8 (2)
N2—Cu1—O1aq94.7 (3)O6—Cu3—N377.5 (3)
N2—Cu1—O4115.9 (2)O6—Cu3—O3aq95.8 (3)
O1aq—Cu1—O492.0 (3)O6—Cu3—O5164.0 (2)
O1—Cu2—O295.3 (2)O6—Cu3—O592.0 (2)
O1—Cu2—N176.0 (2)N3—Cu3—O3aq96.6 (4)
O1—Cu2—O2aq95.9 (3)N3—Cu3—O5117.9 (3)
O1—Cu2—O2164.66 (18)N3—Cu3—O5165.6 (3)
O1—Cu2—O493.4 (2)O3aq—Cu3—O587.0 (3)
O2—Cu2—N185.1 (2)O3aq—Cu3—O594.2 (3)
O2—Cu2—O2aq168.3 (3)O5—Cu3—O572.1 (2)
O2—Cu2—O280.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O170.962.102.77 (2)125
O1—H1O···O7aq0.962.022.83 (4)141
O3—H3O···O5aqi0.961.762.71 (1)171
O6—H6O···O7ii0.981.892.852 (9)165
N1—H1···O8iii0.941.962.875 (8)164
N2—H2···O8iv0.942.042.950 (8)162
O1aq—H1aqA···O10.902.253.06 (1)149
O2aq—H2aqB···O3v0.942.103.05 (1)174
O2aq—H2aqA···O170.892.102.94 (3)157
O5aq—-···O10vi--2.92 (2)-
O17—-···O4aqvii--2.79 (4)-
O4aq—-···O12vii--2.72 (2)-
O4aq—-···O6aqviii--2.71 (4)-
O4aq—-···O7aqiii--2.70 (4)-
O5aq—-···O13ix--2.68 (3)-
O5aq—-···O8aqix--2.73 (2)-
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) y, x+3/2, z+1/2; (iii) y+1/2, x, z+1/2; (iv) x+1, y+1, z+1; (v) x+1/2, y+3/2, z; (vi) y, x1/2, z+1/2; (vii) y, x+1/2, z+1/2; (viii) y+1, x1/2, z1/2; (ix) x+1/2, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds