Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The skeleton, without hydrogen atoms, of the title mol­ecule, C10H9BrN2O3, is planar, and intramolecular N—H...O and O—H...O hydrogen bonds contribute to this planarity. The mol­ecules exist in the stereoisomeric Z form.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680202189X/cm6024sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680202189X/cm6024Isup2.hkl
Contains datablock I

CCDC reference: 202360

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.071
  • wR factor = 0.186
  • Data-to-parameter ratio = 13.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
CHEMS_01 Alert B The sum formula contains elements in the wrong order. Br precedes C Sequence must be C, H, then alphabetical. PLAT_031 Alert B Refined Extinction Parameter within Range .... 1.64 Sigma
Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.756 0.989 Tmin and Tmax expected: 0.355 0.526 RR = 1.133 Please check that your absorption correction is appropriate. REFLT_03 From the CIF: _diffrn_reflns_theta_max 69.88 From the CIF: _reflns_number_total 1912 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2064 Completeness (_total/calc) 92.64% Alert C: < 95% complete General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.532 Tmax scaled 0.526 Tmin scaled 0.402 REFLT_03 From the CIF: _diffrn_reflns_theta_max 69.88 From the CIF: _reflns_number_total 1912 From the CIF: _diffrn_reflns_limit_ max hkl 8. 8. 11. From the CIF: _diffrn_reflns_limit_ min hkl 0. -8. -11. TEST1: Expected hkl limits for theta max Calculated maximum hkl 8. 8. 13. Calculated minimum hkl -8. -8. -13. ALERT: Expected hkl max differ from CIF values
0 Alert Level A = Potentially serious problem
2 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

As a part of our project to study the crystal structures of a series of phenylhydrazones and their stereochemistry, the crystal structure of the title compound, (I), has been determined. Earlier, this laboratory has reported two related structures, viz. 2-(2-methoxyphenylhydrazono)-3-oxobutanoic acid (Rani et al., 2002a) and 3-oxo-2-(phenylhydrazono)butanoic acid (Rani et al., 2002b), compound (I) being a Br derivative of the latter. The replacement of a H atom by a Br atom has effectively increased the volume of the cell by 24.92 Å3 per Br atom. The bond lengths and angles in (I) show normal values and are comparable with those observed in the two reported structures. The molecule is nearly planar, with atoms O1 and C10 displaced from the mean least-squares plane by −0.108 (5) and 0.127 (10) Å, respectively (on opposite sides). The planarity of the molecule is facilitated by the intramolecular hydrogen bonds. The N1—H1N bond is involved in the formation of a bifurcated hydrogen bond, the shorter interaction, called the major component (Steiner, 2002), is an intramolecular N1—H1N···O2 hydrogen bond with the carbonyl O atom of the carboxyl group, whereas the longer one, the minor component, is an intermolecular N1—H1N···O2(-x, 1 − y, 1 − z) hydrogen bond, which links two molecules via hydrogen-bond dimers across a centre of symmetry (Table 3). The carbonyl O atom of the carbomethoxy group is also involved in an intramolecular O1—H1O···O3 hydrogen bond with the carboxyl group (Fig. 1). Along the b-cell direction, the molecules related by inversion are stacked alternatively 3.419 (5) and 3.490 (5) Å apart, optimum distances for ππ stacking interactions. The short contacts observed in the structure are listed in Table 2. The distance O2···O2(-x, 1 − y, 1 − z) of 2.888 (8) Å is less than the sum of the van der Waals radii, but since the C8—O2 bond length is 1.217 (9) Å, O2 is the double-bonded carbonyl O atom, hence the O2···O2 contact must be regarded as a strong van der Waals interaction.

Experimental top

The title compound, (I), was prepared by the partial hydrolysis of ethyl 2-(2-bromophenylhydrazono)-3-oxobutyrate by the action of strong acids (Prasad et al., 1994) and was recrystallized from methanol at room temperature.

Refinement top

After checking their presence in the difference map, all the H atoms were placed at calculated positions and were allowed to ride on their respective parent atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. An ORTEP-3 plot (Farrugia, 1997) of the title molecule, with 50% probability displacement ellipsoids for non-H atoms.
2-(p-Bromophenylhydrazono)-3-oxobutanoic acid top
Crystal data top
C10H9BrN2O3Z = 2
Mr = 285.10F(000) = 284
Triclinic, P1Dx = 1.743 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 7.058 (4) ÅCell parameters from 25 reflections
b = 7.126 (3) Åθ = 17.7–39.9°
c = 11.311 (6) ŵ = 5.14 mm1
α = 77.05 (3)°T = 293 K
β = 86.35 (4)°Elongated plate, light yellow
γ = 78.47 (5)°0.25 × 0.19 × 0.13 mm
V = 543.1 (5) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
1171 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 69.9°, θmin = 4.0°
ω–2θ scansh = 08
Absorption correction: ψ scan
(North at el., 1968)
k = 88
Tmin = 0.756, Tmax = 0.989l = 1111
2079 measured reflections3 standard reflections every 1 hr min
1912 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.1211P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max = 0.001
1912 reflectionsΔρmax = 1.11 e Å3
147 parametersΔρmin = 0.91 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (11)
Crystal data top
C10H9BrN2O3γ = 78.47 (5)°
Mr = 285.10V = 543.1 (5) Å3
Triclinic, P1Z = 2
a = 7.058 (4) ÅCu Kα radiation
b = 7.126 (3) ŵ = 5.14 mm1
c = 11.311 (6) ÅT = 293 K
α = 77.05 (3)°0.25 × 0.19 × 0.13 mm
β = 86.35 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1171 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North at el., 1968)
Rint = 0.026
Tmin = 0.756, Tmax = 0.9893 standard reflections every 1 hr min
2079 measured reflections intensity decay: 0.0%
1912 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 0.90Δρmax = 1.11 e Å3
1912 reflectionsΔρmin = 0.91 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.92940 (15)0.12344 (13)0.13951 (8)0.0729 (5)
O10.0291 (8)0.4290 (8)0.8160 (5)0.0663 (14)
H1O0.04300.41310.87290.080*
O20.0050 (8)0.3976 (8)0.6254 (5)0.0690 (15)
O30.2778 (9)0.3219 (9)0.9413 (5)0.0757 (16)
N10.3493 (10)0.3007 (8)0.5359 (5)0.0552 (15)
H1N0.22910.34180.51890.083*
N20.4070 (10)0.2778 (8)0.6462 (5)0.0566 (16)
C10.4867 (12)0.2573 (9)0.4446 (6)0.0512 (18)
C20.4237 (13)0.2738 (10)0.3306 (6)0.061 (2)
H20.29250.31190.31430.073*
C30.5549 (12)0.2340 (10)0.2396 (7)0.060 (2)
H30.51250.24470.16170.072*
C40.7473 (12)0.1788 (9)0.2643 (6)0.0529 (18)
C50.8127 (13)0.1655 (11)0.3788 (6)0.062 (2)
H50.94420.12920.39470.074*
C60.6808 (13)0.2066 (10)0.4696 (6)0.058 (2)
H60.72290.19990.54700.069*
C70.2884 (12)0.3141 (9)0.7348 (6)0.0521 (18)
C80.0739 (13)0.3820 (10)0.7206 (7)0.060 (2)
C90.3764 (13)0.2826 (11)0.8530 (7)0.062 (2)
C100.5880 (13)0.2057 (14)0.8624 (8)0.081 (3)
H10A0.63630.24230.92970.122*
H10B0.65210.25970.78900.122*
H10C0.61240.06530.87480.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0948 (8)0.0673 (6)0.0556 (6)0.0121 (4)0.0116 (4)0.0181 (4)
O10.070 (4)0.084 (4)0.046 (3)0.014 (3)0.001 (3)0.014 (3)
O20.079 (4)0.087 (4)0.041 (3)0.017 (3)0.010 (3)0.010 (2)
O30.099 (5)0.092 (4)0.040 (3)0.026 (3)0.001 (3)0.016 (3)
N10.077 (4)0.052 (3)0.041 (4)0.018 (3)0.002 (3)0.013 (2)
N20.088 (5)0.047 (3)0.036 (4)0.019 (3)0.003 (3)0.006 (2)
C10.075 (5)0.034 (3)0.046 (4)0.016 (3)0.004 (4)0.008 (3)
C20.087 (6)0.059 (4)0.040 (4)0.017 (4)0.007 (4)0.014 (3)
C30.084 (6)0.056 (4)0.041 (4)0.008 (4)0.004 (4)0.016 (3)
C40.074 (5)0.037 (3)0.046 (4)0.002 (3)0.008 (3)0.014 (3)
C50.083 (6)0.060 (4)0.040 (4)0.004 (4)0.012 (4)0.010 (3)
C60.088 (6)0.059 (4)0.027 (4)0.021 (4)0.012 (4)0.005 (3)
C70.086 (6)0.043 (3)0.030 (4)0.022 (4)0.005 (3)0.004 (3)
C80.081 (6)0.051 (4)0.047 (4)0.019 (4)0.004 (4)0.004 (3)
C90.087 (6)0.062 (4)0.039 (4)0.024 (4)0.005 (4)0.004 (3)
C100.079 (7)0.099 (7)0.060 (6)0.016 (5)0.017 (5)0.002 (5)
Geometric parameters (Å, º) top
Br—C41.901 (7)C3—C41.365 (11)
O1—C81.330 (9)C3—H30.9300
O1—H1O0.8200C4—C51.379 (10)
O2—C81.217 (9)C5—C61.383 (11)
O3—C91.233 (9)C5—H50.9300
N1—N21.302 (8)C6—H60.9300
N1—C11.414 (9)C7—C91.462 (10)
N1—H1N0.8600C7—C81.502 (12)
N2—C71.302 (9)C9—C101.487 (12)
C1—C21.362 (10)C10—H10A0.9600
C1—C61.376 (11)C10—H10B0.9600
C2—C31.380 (10)C10—H10C0.9600
C2—H20.9300
Br···O1i3.547 (6)N1···C6i3.461 (9)
Br···O3ii3.513 (7)N2···C1i3.459 (9)
O1···C2iii3.413 (10)N2···C4v3.550 (9)
O1···C10iv3.358 (11)C3···C9i3.491 (11)
O2···O2iii2.888 (8)C4···C7v3.569 (10)
O2···C2iii3.469 (10)C5···C8i3.406 (11)
O2···C6iv3.558 (10)
C8—O1—H1O109.5C6—C5—H5120.3
N2—N1—C1119.2 (7)C1—C6—C5119.4 (7)
N2—N1—H1N120.4C1—C6—H6120.3
C1—N1—H1N120.4C5—C6—H6120.3
C7—N2—N1122.5 (7)N2—C7—C9115.8 (8)
C2—C1—C6120.8 (7)N2—C7—C8123.6 (6)
C2—C1—N1118.8 (8)C9—C7—C8120.6 (7)
C6—C1—N1120.4 (7)O2—C8—O1120.3 (8)
C1—C2—C3119.9 (8)O2—C8—C7122.1 (7)
C1—C2—H2120.0O1—C8—C7117.6 (7)
C3—C2—H2120.0O3—C9—C7120.7 (8)
C4—C3—C2119.7 (7)O3—C9—C10121.3 (7)
C4—C3—H3120.2C7—C9—C10118.0 (8)
C2—C3—H3120.2C9—C10—H10A109.5
C3—C4—C5120.8 (7)C9—C10—H10B109.5
C3—C4—Br120.0 (5)H10A—C10—H10B109.5
C5—C4—Br119.2 (6)C9—C10—H10C109.5
C4—C5—C6119.3 (8)H10A—C10—H10C109.5
C4—C5—H5120.3H10B—C10—H10C109.5
C1—N1—N2—C7179.7 (6)C4—C5—C6—C10.9 (11)
N2—N1—C1—C2177.3 (6)N1—N2—C7—C9179.5 (6)
N2—N1—C1—C65.2 (9)N1—N2—C7—C81.2 (10)
C6—C1—C2—C31.9 (11)N2—C7—C8—O24.0 (11)
N1—C1—C2—C3179.4 (6)C9—C7—C8—O2175.3 (7)
C1—C2—C3—C40.2 (11)N2—C7—C8—O1174.7 (6)
C2—C3—C4—C51.1 (11)C9—C7—C8—O16.0 (10)
C2—C3—C4—Br180.0 (5)N2—C7—C9—O3176.4 (6)
C3—C4—C5—C60.7 (11)C8—C7—C9—O34.2 (11)
Br—C4—C5—C6179.7 (5)N2—C7—C9—C102.4 (10)
C2—C1—C6—C52.2 (10)C8—C7—C9—C10176.9 (7)
N1—C1—C6—C5179.7 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z1; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.862.012.656 (9)131
N1—H1N···O2iii0.862.533.252 (9)142
O1—H1O···O30.821.812.555 (8)150
Symmetry code: (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H9BrN2O3
Mr285.10
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.058 (4), 7.126 (3), 11.311 (6)
α, β, γ (°)77.05 (3), 86.35 (4), 78.47 (5)
V3)543.1 (5)
Z2
Radiation typeCu Kα
µ (mm1)5.14
Crystal size (mm)0.25 × 0.19 × 0.13
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North at el., 1968)
Tmin, Tmax0.756, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
2079, 1912, 1171
Rint0.026
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.186, 0.90
No. of reflections1912
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.91

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Br—C41.901 (7)N1—C11.414 (9)
O1—C81.330 (9)N2—C71.302 (9)
O2—C81.217 (9)C7—C91.462 (10)
O3—C91.233 (9)C7—C81.502 (12)
N1—N21.302 (8)C9—C101.487 (12)
Br···O1i3.547 (6)N1···C6i3.461 (9)
Br···O3ii3.513 (7)N2···C1i3.459 (9)
O1···C2iii3.413 (10)N2···C4v3.550 (9)
O1···C10iv3.358 (11)C3···C9i3.491 (11)
O2···O2iii2.888 (8)C4···C7v3.569 (10)
O2···C2iii3.469 (10)C5···C8i3.406 (11)
O2···C6iv3.558 (10)
N2—N1—C1119.2 (7)C9—C7—C8120.6 (7)
C7—N2—N1122.5 (7)O2—C8—O1120.3 (8)
C2—C1—N1118.8 (8)O2—C8—C7122.1 (7)
C6—C1—N1120.4 (7)O1—C8—C7117.6 (7)
C3—C4—Br120.0 (5)O3—C9—C7120.7 (8)
C5—C4—Br119.2 (6)O3—C9—C10121.3 (7)
N2—C7—C9115.8 (8)C7—C9—C10118.0 (8)
N2—C7—C8123.6 (6)
C1—N1—N2—C7179.7 (6)N2—C7—C8—O24.0 (11)
N2—N1—C1—C2177.3 (6)C9—C7—C8—O2175.3 (7)
N2—N1—C1—C65.2 (9)N2—C7—C8—O1174.7 (6)
N1—C1—C2—C3179.4 (6)N2—C7—C9—O3176.4 (6)
N1—C1—C6—C5179.7 (6)N2—C7—C9—C102.4 (10)
N1—N2—C7—C9179.5 (6)C8—C7—C9—C10176.9 (7)
N1—N2—C7—C81.2 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z1; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.862.012.656 (9)131.2
N1—H1N···O2iii0.862.533.252 (9)141.9
O1—H1O···O30.821.812.555 (8)150.4
Symmetry code: (iii) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds