Download citation
Download citation
link to html
Crystals of m-carboxyphenylammonium monohydrogenphos­phite, C7H8NO_{2}^+·H2PO_3^{-} (m-CPAMP), space group P2_{1}/c, grown from aqueous solution undergo a reversible first-order single-crystal phase transition at Tc = 246 (2) K with a hysteresis of 3.6 K. The thermal behaviour of the sample was characterized by differential scanning calorimetry (DSC) experiments. Variations of the unit-cell parameters versus temperature between 100 and 320 K are reported. The transition from the higher-temperature phase (HTP) to the lower-temperature phase (LTP) is characterized by a unit-cell volume contraction of 1.77%. The average structure and unit-cell packing of m-CPAMP at lower temperature (100 K) are reported from accurate X-ray data sets and compared with those of the higher-temperature phase (293 K) in order to investigate the mechanism of the phase transition. The reciprocal lattice reconstruction showed a few very weak satellite reflections which will be discussed in a forthcoming paper.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768105026686/ck5008sup1.cif
Contains datablocks m-CPAMP_100K, m-CPAMP_293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768105026686/ck5008m-CPAMP_100Ksup2.hkl
Contains datablock sorfin

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768105026686/ck5008m-CPAMP_293Ksup3.hkl
Contains datablock 293

CCDC references: 292332; 292333

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
(m-CPAMP_100K) top
Crystal data top
(C7H8NO2)+·(H2PO3)F(000) = 456
Mr = 219.13Dx = 1.535 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9599 reflections
a = 12.1405 (7) Åθ = 3.4–30.0°
b = 12.4273 (9) ŵ = 0.29 mm1
c = 6.3851 (4) ÅT = 100 K
β = 100.122 (5)°Plate, brown
V = 948.35 (11) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Xcalibur-Saphire2
diffractometer
2751 independent reflections
Radiation source: fine-focus sealed tube2731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: integration
Absorb, (DeTitta, 1985)
h = 1716
Tmin = 0.908, Tmax = 0.938k = 017
78938 measured reflectionsl = 08
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3946P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.026
S = 1.08Δρmax = 0.56 e Å3
2751 reflectionsΔρmin = 0.32 e Å3
165 parameters
Crystal data top
(C7H8NO2)+·(H2PO3)V = 948.35 (11) Å3
Mr = 219.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1405 (7) ŵ = 0.29 mm1
b = 12.4273 (9) ÅT = 100 K
c = 6.3851 (4) Å0.40 × 0.40 × 0.20 mm
β = 100.122 (5)°
Data collection top
Xcalibur-Saphire2
diffractometer
2751 independent reflections
Absorption correction: integration
Absorb, (DeTitta, 1985)
2731 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.938Rint = 0.032
78938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.56 e Å3
2751 reflectionsΔρmin = 0.32 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H30.4481 (14)0.4954 (14)0.200 (3)0.020 (4)*
H50.1146 (13)0.5682 (13)0.089 (3)0.017 (4)*
H60.1563 (14)0.7448 (14)0.207 (3)0.020 (4)*
H70.3429 (13)0.8000 (13)0.313 (2)0.013 (3)*
H80.1995 (15)0.4057 (15)0.048 (3)0.025 (4)*
H90.3077 (16)0.3710 (15)0.058 (3)0.026 (4)*
H100.2214 (14)0.3736 (14)0.171 (3)0.022 (4)*
H120.0350 (14)0.2349 (13)0.045 (3)0.019 (4)*
P10.08903 (2)0.148552 (19)0.00442 (4)0.01075 (9)
O30.19991 (6)0.18298 (6)0.05227 (12)0.01362 (15)
O40.09552 (7)0.07376 (6)0.19388 (12)0.01685 (16)
O50.01562 (7)0.09953 (6)0.20055 (12)0.01754 (17)
H110.0263 (15)0.0333 (15)0.187 (3)0.026*
N10.25015 (7)0.40729 (7)0.07221 (14)0.01168 (16)
O10.60643 (6)0.61538 (6)0.35793 (13)0.01649 (16)
O20.55142 (6)0.78693 (6)0.38997 (13)0.01573 (16)
C10.52995 (8)0.69219 (8)0.34391 (15)0.01197 (18)
C20.41256 (8)0.65463 (7)0.27064 (16)0.01128 (18)
C30.38907 (8)0.54785 (8)0.20498 (15)0.01163 (18)
C40.27782 (8)0.51850 (8)0.13834 (15)0.01088 (17)
C50.19020 (8)0.59120 (8)0.13855 (16)0.01305 (18)
C60.21458 (8)0.69674 (8)0.20500 (16)0.01388 (19)
C70.32573 (8)0.72896 (8)0.26893 (15)0.01301 (18)
H10.6753 (14)0.6396 (13)0.414 (3)0.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.00984 (14)0.01082 (14)0.01095 (14)0.00121 (7)0.00005 (9)0.00014 (7)
O30.0100 (3)0.0148 (3)0.0156 (3)0.0015 (2)0.0010 (2)0.0000 (3)
O40.0198 (4)0.0174 (3)0.0116 (3)0.0077 (3)0.0020 (3)0.0022 (3)
O50.0194 (4)0.0180 (4)0.0129 (3)0.0080 (3)0.0036 (3)0.0022 (3)
N10.0111 (4)0.0104 (3)0.0128 (4)0.0008 (3)0.0001 (3)0.0006 (3)
O10.0108 (3)0.0142 (3)0.0226 (4)0.0007 (3)0.0021 (3)0.0009 (3)
O20.0133 (3)0.0136 (3)0.0200 (4)0.0024 (3)0.0021 (3)0.0029 (3)
C10.0116 (4)0.0131 (4)0.0110 (4)0.0008 (3)0.0011 (3)0.0002 (3)
C20.0104 (4)0.0115 (4)0.0115 (4)0.0012 (3)0.0005 (3)0.0001 (3)
C30.0105 (4)0.0115 (4)0.0124 (4)0.0004 (3)0.0007 (3)0.0003 (3)
C40.0112 (4)0.0103 (4)0.0107 (4)0.0010 (3)0.0007 (3)0.0002 (3)
C50.0109 (4)0.0134 (4)0.0144 (4)0.0005 (3)0.0008 (3)0.0006 (3)
C60.0111 (4)0.0142 (4)0.0158 (4)0.0021 (3)0.0008 (3)0.0017 (3)
C70.0130 (4)0.0124 (4)0.0131 (4)0.0002 (3)0.0009 (3)0.0014 (3)
Geometric parameters (Å, º) top
P1—O31.5157 (7)C1—C21.4945 (13)
P1—O41.5165 (8)C2—C71.4002 (13)
P1—O51.5711 (8)C2—C31.4057 (13)
P1—H121.307 (16)C3—C41.3914 (13)
O5—H110.979 (18)C3—H30.973 (17)
N1—C41.4668 (12)C4—C51.3959 (13)
N1—H80.894 (18)C5—C61.3941 (14)
N1—H90.849 (19)C5—H50.960 (16)
N1—H100.880 (18)C6—C71.3980 (13)
O1—C11.3236 (12)C6—H60.928 (17)
O1—H10.902 (17)C7—H70.939 (16)
O2—C11.2303 (12)
O3—P1—O4116.08 (4)C7—C2—C1118.14 (8)
O3—P1—O5107.94 (4)C3—C2—C1121.36 (8)
O4—P1—O5111.67 (4)C4—C3—C2118.28 (9)
O3—P1—H12108.3 (7)C4—C3—H3119.7 (10)
O4—P1—H12107.6 (7)C2—C3—H3122.0 (10)
O5—P1—H12104.6 (7)C3—C4—C5121.94 (9)
P1—O5—H11118.7 (11)C3—C4—N1119.73 (8)
C4—N1—H8110.8 (12)C5—C4—N1118.30 (8)
C4—N1—H9112.3 (12)C6—C5—C4119.22 (9)
H8—N1—H9110.6 (16)C6—C5—H5121.3 (10)
C4—N1—H10110.0 (11)C4—C5—H5119.4 (10)
H8—N1—H10107.8 (15)C5—C6—C7120.05 (9)
H9—N1—H10105.2 (16)C5—C6—H6119.2 (10)
C1—O1—H1112.1 (11)C7—C6—H6120.7 (10)
O2—C1—O1123.87 (9)C6—C7—C2120.00 (9)
O2—C1—C2121.60 (9)C6—C7—H7120.6 (9)
O1—C1—C2114.52 (8)C2—C7—H7119.4 (9)
C7—C2—C3120.49 (9)
O2—C1—C2—C74.22 (14)C2—C3—C4—N1178.96 (8)
O1—C1—C2—C7174.61 (9)C3—C4—C5—C60.77 (15)
O2—C1—C2—C3175.79 (9)N1—C4—C5—C6178.70 (9)
O1—C1—C2—C35.38 (14)C4—C5—C6—C70.47 (15)
C7—C2—C3—C40.13 (14)C5—C6—C7—C21.38 (15)
C1—C2—C3—C4179.88 (9)C3—C2—C7—C61.08 (15)
C2—C3—C4—C51.06 (14)C1—C2—C7—C6178.91 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O(5)—H(11)···O(4)i0.98 (2)1.57 (2)2.5456 (11)173 (2)
O(1)—H(1)···O(3)ii0.90 (2)1.70 (2)2.5977 (11)172 (2)
N(1)—H(8)···O(4)iii0.90 (2)1.91 (2)2.7966 (12)171 (2)
N(1)—H(9)···O(2)iv0.85 (2)1.98 (2)2.8097 (12)165 (2)
N(1)—H(10)···O(3)v0.88 (2)1.96 (2)2.8096 (12)162 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
(m-CPAMP_293K) top
Crystal data top
(C7H8NO2)+·(H2PO3)F(000) = 456
Mr = 219.13Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9599 reflections
a = 13.036 (3) Åθ = 4.8–30.0°
b = 11.538 (2) ŵ = 0.28 mm1
c = 6.6366 (13) ÅT = 293 K
β = 104.73 (3)°Plate, brown
V = 965.4 (4) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Xcalibur-Saphire2
diffractometer
2807 independent reflections
Radiation source: fine-focus sealed tube2063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 30.0°, θmin = 4.8°
Absorption correction: integration
Absorb, (DeTitta, 1985)
h = 1718
Tmin = 0.896, Tmax = 0.946k = 160
26411 measured reflectionsl = 90
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.27 e Å3
2807 reflectionsΔρmin = 0.34 e Å3
165 parameters
Crystal data top
(C7H8NO2)+·(H2PO3)V = 965.4 (4) Å3
Mr = 219.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.036 (3) ŵ = 0.28 mm1
b = 11.538 (2) ÅT = 293 K
c = 6.6366 (13) Å0.40 × 0.40 × 0.20 mm
β = 104.73 (3)°
Data collection top
Xcalibur-Saphire2
diffractometer
2807 independent reflections
Absorption correction: integration
Absorb, (DeTitta, 1985)
2063 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.946Rint = 0.041
26411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.27 e Å3
2807 reflectionsΔρmin = 0.34 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H50.1278 (14)0.6071 (16)0.008 (2)0.050 (5)*
H60.1955 (12)0.8086 (13)0.104 (2)0.035 (4)*
H30.4417 (12)0.5040 (14)0.225 (2)0.044 (4)*
H120.0527 (12)0.2268 (14)0.017 (2)0.048 (4)*
H70.3723 (14)0.8526 (16)0.211 (3)0.058 (5)*
H80.1949 (14)0.4182 (14)0.060 (3)0.049 (4)*
H100.2138 (19)0.3977 (18)0.181 (3)0.082 (6)*
H90.3012 (19)0.3710 (18)0.079 (3)0.080 (7)*
P10.10445 (3)0.13531 (3)0.01752 (6)0.03572 (13)
O30.20964 (7)0.16772 (9)0.05157 (17)0.0454 (3)
O40.10345 (9)0.06901 (10)0.17558 (15)0.0533 (3)
O50.04365 (10)0.06885 (13)0.21676 (16)0.0639 (4)
H110.001 (2)0.016 (2)0.196 (4)0.096*
N10.24297 (9)0.42377 (10)0.0673 (2)0.0358 (3)
O10.59823 (8)0.61087 (9)0.35419 (18)0.0478 (3)
O20.56758 (8)0.80059 (8)0.36805 (19)0.0511 (3)
C10.53616 (10)0.70225 (11)0.3236 (2)0.0345 (3)
C20.42153 (10)0.67703 (11)0.2333 (2)0.0320 (3)
C30.38699 (10)0.56395 (11)0.1909 (2)0.0331 (3)
C40.27981 (10)0.54327 (11)0.11227 (19)0.0324 (3)
C50.20668 (11)0.63335 (12)0.0767 (2)0.0387 (3)
C60.24259 (11)0.74588 (13)0.1175 (2)0.0408 (3)
C70.34918 (11)0.76837 (12)0.1949 (2)0.0373 (3)
H10.6608 (16)0.6387 (15)0.395 (3)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02716 (18)0.0416 (2)0.0360 (2)0.00476 (13)0.00350 (13)0.00284 (14)
O30.0274 (5)0.0541 (6)0.0519 (7)0.0065 (4)0.0049 (4)0.0041 (5)
O40.0521 (6)0.0694 (8)0.0317 (5)0.0281 (5)0.0018 (4)0.0040 (5)
O50.0619 (8)0.0905 (10)0.0334 (6)0.0415 (7)0.0016 (5)0.0026 (5)
N10.0299 (6)0.0391 (6)0.0349 (7)0.0036 (5)0.0019 (5)0.0003 (5)
O10.0315 (5)0.0376 (6)0.0656 (7)0.0022 (4)0.0039 (5)0.0003 (5)
O20.0367 (6)0.0365 (6)0.0750 (8)0.0043 (4)0.0046 (5)0.0064 (5)
C10.0333 (7)0.0346 (7)0.0347 (7)0.0018 (5)0.0067 (5)0.0000 (5)
C20.0304 (6)0.0349 (6)0.0295 (6)0.0015 (5)0.0054 (5)0.0012 (5)
C30.0296 (6)0.0334 (7)0.0335 (7)0.0021 (5)0.0031 (5)0.0020 (5)
C40.0296 (6)0.0368 (7)0.0288 (6)0.0004 (5)0.0040 (5)0.0010 (5)
C50.0288 (6)0.0469 (8)0.0382 (7)0.0039 (5)0.0045 (5)0.0015 (6)
C60.0383 (7)0.0423 (7)0.0394 (7)0.0123 (6)0.0057 (6)0.0025 (6)
C70.0416 (7)0.0352 (7)0.0334 (7)0.0047 (6)0.0067 (5)0.0034 (5)
Geometric parameters (Å, º) top
P1—O31.4931 (11)C1—C21.4905 (18)
P1—O41.4954 (11)C2—C31.3855 (18)
P1—O51.5593 (12)C2—C71.3938 (18)
P1—H121.253 (16)C3—C41.3823 (18)
O5—H110.85 (3)C3—H30.978 (16)
N1—C41.4657 (17)C4—C51.3894 (18)
N1—H80.917 (18)C5—C61.384 (2)
N1—H100.97 (2)C5—H51.058 (18)
N1—H90.96 (2)C6—C71.378 (2)
O1—C11.3130 (16)C6—H60.938 (15)
O1—H10.85 (2)C7—H71.016 (18)
O2—C11.2169 (16)
O3—P1—O4117.80 (6)C3—C2—C1120.41 (11)
O3—P1—O5106.45 (7)C7—C2—C1119.24 (12)
O4—P1—O5111.21 (6)C4—C3—C2118.96 (12)
O3—P1—H12107.8 (7)C4—C3—H3124.9 (9)
O4—P1—H12107.8 (7)C2—C3—H3116.1 (9)
O5—P1—H12105.1 (7)C3—C4—C5121.27 (12)
P1—O5—H11114.9 (17)C3—C4—N1119.12 (11)
C4—N1—H8111.4 (11)C5—C4—N1119.60 (12)
C4—N1—H10107.8 (12)C6—C5—C4119.04 (13)
H8—N1—H10112.3 (18)C6—C5—H5126.6 (10)
C4—N1—H9111.6 (12)C4—C5—H5114.2 (10)
H8—N1—H9111.9 (16)C7—C6—C5120.57 (13)
H10—N1—H9101.3 (17)C7—C6—H6117.6 (9)
C1—O1—H1104.4 (12)C5—C6—H6121.6 (9)
O2—C1—O1123.71 (13)C6—C7—C2119.80 (13)
O2—C1—C2121.38 (12)C6—C7—H7117.6 (10)
O1—C1—C2114.89 (11)C2—C7—H7122.4 (10)
C3—C2—C7120.34 (12)
O2—C1—C2—C3177.61 (14)C2—C3—C4—N1180.00 (12)
O1—C1—C2—C31.0 (2)C3—C4—C5—C61.2 (2)
O2—C1—C2—C71.4 (2)N1—C4—C5—C6179.27 (12)
O1—C1—C2—C7179.99 (12)C4—C5—C6—C70.8 (2)
C7—C2—C3—C40.6 (2)C5—C6—C7—C20.3 (2)
C1—C2—C3—C4178.32 (12)C3—C2—C7—C61.0 (2)
C2—C3—C4—C50.5 (2)C1—C2—C7—C6177.97 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O(5)—H(11)···O(4)i0.86 (3)1.71 (3)2.5590 (19)168 (3)
O(1)—H(1)···O(3)ii0.85 (2)1.78 (3)2.5982 (16)161 (2)
N(1)—H(8)···O(4)iii0.92 (2)1.86 (2)2.7693 (17)171 (2)
N(1)—H(9)···O(2)iv0.96 (2)1.84 (3)2.7865 (17)166 (2)
N(1)—H(10)···O(3)v0.97 (3)1.94 (3)2.8740 (18)159 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.

Experimental details

(m-CPAMP_100K)(m-CPAMP_293K)
Crystal data
Chemical formula(C7H8NO2)+·(H2PO3)(C7H8NO2)+·(H2PO3)
Mr219.13219.13
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100293
a, b, c (Å)12.1405 (7), 12.4273 (9), 6.3851 (4)13.036 (3), 11.538 (2), 6.6366 (13)
β (°) 100.122 (5) 104.73 (3)
V3)948.35 (11)965.4 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.290.28
Crystal size (mm)0.40 × 0.40 × 0.200.40 × 0.40 × 0.20
Data collection
DiffractometerXcalibur-Saphire2
diffractometer
Xcalibur-Saphire2
diffractometer
Absorption correctionIntegration
Absorb, (DeTitta, 1985)
Integration
Absorb, (DeTitta, 1985)
Tmin, Tmax0.908, 0.9380.896, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
78938, 2751, 2731 26411, 2807, 2063
Rint0.0320.041
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.08 0.037, 0.103, 0.99
No. of reflections27512807
No. of parameters165165
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.320.27, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Selected torsion angles (º) for (m-CPAMP_100K) top
O2—C1—C2—C74.22 (14)O2—C1—C2—C3175.79 (9)
O1—C1—C2—C7174.61 (9)O1—C1—C2—C35.38 (14)
Hydrogen-bond geometry (Å, º) for (m-CPAMP_100K) top
D—H···AD—HH···AD···AD—H···A
O(5)—H(11)···O(4)i0.979 (19)1.570 (19)2.5456 (11)173.4 (18)
O(1)—H(1)···O(3)ii0.901 (17)1.702 (18)2.5977 (11)172.3 (18)
N(1)—H(8)···O(4)iii0.895 (19)1.909 (19)2.7966 (12)170.9 (18)
N(1)—H(9)···O(2)iv0.850 (19)1.982 (19)2.8097 (12)164.5 (18)
N(1)—H(10)···O(3)v0.879 (18)1.961 (19)2.8096 (12)161.8 (17)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
Selected torsion angles (º) for (m-CPAMP_293K) top
O2—C1—C2—C3177.61 (14)O2—C1—C2—C71.4 (2)
O1—C1—C2—C31.0 (2)O1—C1—C2—C7179.99 (12)
Hydrogen-bond geometry (Å, º) for (m-CPAMP_293K) top
D—H···AD—HH···AD···AD—H···A
O(5)—H(11)···O(4)i0.86 (3)1.71 (3)2.5590 (19)168 (3)
O(1)—H(1)···O(3)ii0.85 (2)1.78 (3)2.5982 (16)161.1 (19)
N(1)—H(8)···O(4)iii0.917 (19)1.860 (19)2.7693 (17)170.9 (16)
N(1)—H(9)···O(2)iv0.96 (2)1.84 (3)2.7865 (17)166 (2)
N(1)—H(10)···O(3)v0.97 (3)1.94 (3)2.8740 (18)159 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds