Download citation
Download citation
link to html
The structure of LiTaOGeO4 has been refined using X-ray diffraction data collected at 293 K and at 173 K. The low-temperature structure is isostructural with LiTaOSiO4 and closely related to the low-temperature structure of titanite, CaTiOSiO4. Li occurs in a distorted tetrahedral coordination. The transition to the disordered structure, with space group symmetry C2/c, occurs at Tc = 231 (1) K. Li is disordered across two symmetry-equivalent positions and Ta is located at the centre of its coordination octahedron in this paraphase. The transition is continuous, and the thermal evolution of the order parameter is well approximated using a tricritical mean-field model. Anharmonic thermal displacement of the Li cation has been analyzed and its one-particle potential has been determined. The height of the potential barrier separating the two Li positions across a curved trajectory is close to RTc, where R is the universal gas constant.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010876810200825X/ck0010sup1.cif
Contains datablocks ltgo_2, ltgo_amb, ltgo_amb_split

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810200825X/ck0010ltgo_2sup2.hkl
Contains datablock ltgo_2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810200825X/ck0010ltgo_ambsup3.hkl
Contains datablock ltgo_amb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810200825X/ck0010ltgo_amb_splitsup4.hkl
Contains datablock ltgo_amb_split

Computing details top

For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(ltgo_2) top
Crystal data top
GeLiO5TaF(000) = 592
Mr = 340.48Dx = 5.655 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.584 (4) ÅCell parameters from 25 reflections
b = 8.0849 (14) Åθ = 16.3–32.0°
c = 7.508 (2) ŵ = 34.75 mm1
β = 119.69 (3)°T = 173 K
V = 399.9 (2) Å30.16 × 0.06 × 0.04 mm
Z = 4
Data collection top
Radiation source: fine-focus sealed tube1476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω–2θ scanθmax = 35.0°, θmin = 4.0°
Absorption correction: numerical
?
h = 1210
Tmin = 0.123, Tmax = 0.28k = 1313
3561 measured reflectionsl = 012
1732 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.001
S = 1.04Δρmax = 2.45 e Å3
1732 reflectionsΔρmin = 2.70 e Å3
74 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0318 (7)
Crystal data top
GeLiO5TaV = 399.9 (2) Å3
Mr = 340.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.584 (4) ŵ = 34.75 mm1
b = 8.0849 (14) ÅT = 173 K
c = 7.508 (2) Å0.16 × 0.06 × 0.04 mm
β = 119.69 (3)°
Data collection top
Absorption correction: numerical
?
1732 independent reflections
Tmin = 0.123, Tmax = 0.281476 reflections with I > 2σ(I)
3561 measured reflectionsRint = 0.032
Refinement top
R[F2 > 2σ(F2)] = 0.02174 parameters
wR(F2) = 0.0470 restraints
S = 1.04Δρmax = 2.45 e Å3
1732 reflectionsΔρmin = 2.70 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li0.7492 (14)0.0605 (10)0.7880 (16)0.0151 (15)
Ta0.74938 (2)0.757943 (16)0.50822 (2)0.00332 (6)
Ge0.25022 (6)0.61127 (5)0.25627 (6)0.00363 (8)
O10.2492 (4)0.1815 (3)0.2479 (4)0.0066 (5)
O210.5515 (5)0.2543 (3)0.1517 (5)0.0066 (5)
O310.7476 (5)0.0124 (3)0.0532 (5)0.0071 (5)
O220.9495 (5)0.2469 (3)0.8501 (5)0.0062 (5)
O320.7491 (5)0.0128 (3)0.4327 (5)0.0070 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li0.020 (4)0.005 (3)0.024 (4)0.004 (3)0.014 (3)0.006 (3)
Ta0.00271 (7)0.00405 (8)0.00334 (8)0.00026 (4)0.00160 (5)0.00009 (4)
Ge0.00319 (14)0.00327 (14)0.00455 (16)0.00010 (11)0.00202 (12)0.00007 (11)
O10.0081 (12)0.0046 (11)0.0072 (12)0.0010 (8)0.0039 (10)0.0015 (8)
O210.0038 (11)0.0067 (12)0.0079 (11)0.0022 (7)0.0018 (9)0.0004 (8)
O310.0103 (12)0.0048 (10)0.0068 (11)0.0004 (9)0.0047 (10)0.0020 (9)
O220.0047 (11)0.0054 (12)0.0089 (11)0.0008 (7)0.0037 (9)0.0009 (8)
O320.0091 (12)0.0054 (10)0.0082 (12)0.0003 (9)0.0056 (10)0.0020 (9)
Geometric parameters (Å, º) top
Li—O1i1.976 (8)Ge—O21vii1.745 (3)
Li—O21ii2.004 (9)Ge—O22iv1.746 (3)
Li—O222.024 (9)Ge—Liiv2.675 (8)
Li—O31iii2.082 (10)O1—Taiv1.890 (3)
Li—Geiv2.675 (8)O1—Lii1.976 (8)
Li—Taii3.059 (8)O1—Tax2.025 (3)
Li—Tav3.225 (9)O21—Gex1.745 (3)
Ta—O1iv1.890 (3)O21—Tax1.984 (3)
Ta—O32vi1.938 (3)O21—Liix2.004 (9)
Ta—O21vii1.984 (3)O31—Gex1.739 (3)
Ta—O22viii1.987 (3)O31—Taix2.015 (3)
Ta—O31ii2.015 (3)O31—Lixi2.082 (10)
Ta—O1vii2.025 (3)O22—Geiv1.746 (3)
Ta—Liix3.059 (8)O22—Taxii1.987 (3)
Ta—Livi3.225 (9)O32—Gex1.739 (3)
Ge—O31vii1.739 (3)O32—Tav1.938 (3)
Ge—O32vii1.739 (3)
O1i—Li—O21ii136.4 (5)O1iv—Ta—Liix137.7 (2)
O1i—Li—O22135.6 (5)O32vi—Ta—Liix130.3 (2)
O21ii—Li—O2281.2 (3)O21vii—Ta—Liix88.2 (2)
O1i—Li—O31iii81.6 (3)O22viii—Ta—Liix86.80 (19)
O21ii—Li—O31iii110.0 (4)O31ii—Ta—Liix42.5 (2)
O22—Li—O31iii110.5 (5)O1vii—Ta—Liix39.54 (19)
O1i—Li—Geiv164.8 (5)O1iv—Ta—Livi34.33 (19)
O21ii—Li—Geiv40.73 (17)O32vi—Ta—Livi57.64 (19)
O22—Li—Geiv40.74 (16)O21vii—Ta—Livi91.95 (19)
O31iii—Li—Geiv113.6 (4)O22viii—Ta—Livi93.25 (19)
O1i—Li—Taii40.72 (19)O31ii—Ta—Livi129.49 (19)
O21ii—Li—Taii134.8 (4)O1vii—Ta—Livi148.43 (19)
O22—Li—Taii134.7 (4)Liix—Ta—Livi172.0 (3)
O31iii—Li—Taii40.86 (17)O31vii—Ge—O32vii109.67 (15)
Geiv—Li—Taii154.5 (4)O31vii—Ge—O21vii113.59 (14)
O1i—Li—Tav32.64 (18)O32vii—Ge—O21vii110.78 (14)
O21ii—Li—Tav118.4 (4)O31vii—Ge—O22iv114.01 (14)
O22—Li—Tav118.2 (4)O32vii—Ge—O22iv110.96 (14)
O31iii—Li—Tav114.2 (3)O21vii—Ge—O22iv97.35 (14)
Geiv—Li—Tav132.1 (4)O31vii—Ge—Liiv132.3 (2)
Taii—Li—Tav73.36 (17)O32vii—Ge—Liiv118.0 (2)
O1iv—Ta—O32vi91.97 (13)O21vii—Ge—Liiv48.5 (2)
O1iv—Ta—O21vii92.48 (13)O22iv—Ge—Liiv49.2 (2)
O32vi—Ta—O21vii90.16 (12)Taiv—O1—Lii113.0 (3)
O1iv—Ta—O22viii92.26 (13)Taiv—O1—Tax147.23 (16)
O32vi—Ta—O22viii91.94 (11)Lii—O1—Tax99.7 (3)
O21vii—Ta—O22viii174.74 (10)Gex—O21—Tax139.16 (15)
O1iv—Ta—O31ii95.16 (13)Gex—O21—Liix90.7 (3)
O32vi—Ta—O31ii172.86 (11)Tax—O21—Liix130.0 (3)
O21vii—Ta—O31ii89.17 (11)Gex—O31—Taix134.95 (17)
O22viii—Ta—O31ii88.14 (11)Gex—O31—Lixi128.4 (3)
O1iv—Ta—O1vii177.18 (6)Taix—O31—Lixi96.6 (2)
O32vi—Ta—O1vii90.79 (12)Geiv—O22—Taxii136.22 (14)
O21vii—Ta—O1vii88.07 (12)Geiv—O22—Li90.1 (3)
O22viii—Ta—O1vii87.08 (12)Taxii—O22—Li133.6 (3)
O31ii—Ta—O1vii82.08 (12)Gex—O32—Tav142.18 (17)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x, y+1, z; (vii) x+1, y+1/2, z+1/2; (viii) x+2, y+1/2, z+3/2; (ix) x, y+1/2, z1/2; (x) x+1, y1/2, z+1/2; (xi) x, y, z1; (xii) x+2, y1/2, z+3/2.
(ltgo_amb) top
Crystal data top
GeLiO5TaF(000) = 592
Mr = 340.48Dx = 5.641 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.5773 (1) ÅCell parameters from 164 reflections
b = 8.1188 (1) Åθ = 8.7–44.7°
c = 7.4910 (1) ŵ = 34.67 mm1
β = 119.545 (1)°T = 293 K
V = 400.91 (1) Å30.16 × 0.06 × 0.04 mm
Z = 4
Data collection top
Radiation source: fine-focus sealed tube776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω–2θ scanθmax = 34.9°, θmin = 4.0°
Absorption correction: numerical
?
h = 1210
Tmin = 0.071, Tmax = 0.345k = 1313
1809 measured reflectionsl = 012
877 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0217P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max < 0.001
S = 1.04Δρmax = 1.94 e Å3
877 reflectionsΔρmin = 2.45 e Å3
41 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0364 (10)
Crystal data top
GeLiO5TaV = 400.91 (1) Å3
Mr = 340.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.5773 (1) ŵ = 34.67 mm1
b = 8.1188 (1) ÅT = 293 K
c = 7.4910 (1) Å0.16 × 0.06 × 0.04 mm
β = 119.545 (1)°
Data collection top
Absorption correction: numerical
?
877 independent reflections
Tmin = 0.071, Tmax = 0.345776 reflections with I > 2σ(I)
1809 measured reflectionsRint = 0.023
Refinement top
R[F2 > 2σ(F2)] = 0.01641 parameters
wR(F2) = 0.0370 restraints
S = 1.04Δρmax = 1.94 e Å3
877 reflectionsΔρmin = 2.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li0.00000.3128 (17)0.75000.039 (4)
Ta0.00000.00000.00000.00571 (8)
Ge0.00000.36046 (6)0.25000.00576 (10)
O10.00000.0673 (4)0.75000.0090 (5)
O20.1991 (4)0.4985 (2)0.8505 (4)0.0098 (4)
O30.0008 (3)0.2369 (3)0.0600 (4)0.0104 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li0.026 (6)0.015 (5)0.064 (10)0.0000.014 (6)0.000
Ta0.00389 (9)0.00752 (10)0.00527 (10)0.00053 (4)0.00192 (6)0.00117 (5)
Ge0.00458 (16)0.00481 (16)0.00725 (19)0.0000.00244 (13)0.000
O10.0141 (14)0.0100 (13)0.0056 (13)0.0000.0068 (11)0.000
O20.0039 (7)0.0099 (9)0.0127 (10)0.0012 (6)0.0019 (7)0.0011 (7)
O30.0151 (9)0.0072 (8)0.0099 (9)0.0005 (7)0.0069 (8)0.0020 (7)
Geometric parameters (Å, º) top
Li—O11.994 (15)Ta—O2ix1.984 (2)
Li—O21.998 (11)Ta—Liv3.156 (11)
Li—O2i1.998 (11)Ta—Livi3.156 (11)
Li—O3ii2.400 (4)Ge—O3iii1.744 (2)
Li—O3iii2.400 (4)Ge—O31.744 (2)
Li—Geiv2.653 (14)Ge—O2iv1.742 (2)
Li—Taii3.156 (11)Ge—O2x1.742 (2)
Li—Taiii3.156 (11)Ge—Liiv2.653 (14)
Ta—O1v1.9507 (9)O1—Taii1.9507 (9)
Ta—O1vi1.9507 (9)O1—Taiii1.9507 (9)
Ta—O31.974 (2)O2—Geiv1.742 (2)
Ta—O3vii1.974 (2)O2—Taxi1.984 (2)
Ta—O2viii1.984 (2)O3—Livi2.400 (4)
O1—Li—O2139.0 (3)O1v—Ta—O2ix90.21 (8)
O1—Li—O2i139.0 (3)O1vi—Ta—O2ix89.79 (8)
O2—Li—O2i82.1 (5)O3—Ta—O2ix89.52 (9)
O1—Li—O3ii75.1 (3)O3vii—Ta—O2ix90.48 (9)
O2—Li—O3ii100.8 (2)O2viii—Ta—O2ix180.00 (11)
O2i—Li—O3ii101.5 (2)O1v—Ta—Liv37.34 (18)
O1—Li—O3iii75.1 (3)O1vi—Ta—Liv142.66 (18)
O2—Li—O3iii101.5 (2)O3—Ta—Liv130.53 (17)
O2i—Li—O3iii100.8 (2)O3vii—Ta—Liv49.47 (17)
O3ii—Li—O3iii150.2 (7)O2viii—Ta—Liv89.64 (7)
O1—Li—Geiv180.0O2ix—Ta—Liv90.36 (7)
O2—Li—Geiv41.0 (3)O1v—Ta—Livi142.66 (18)
O2i—Li—Geiv41.0 (3)O1vi—Ta—Livi37.34 (18)
O3ii—Li—Geiv104.9 (3)O3—Ta—Livi49.47 (17)
O3iii—Li—Geiv104.9 (3)O3vii—Ta—Livi130.53 (17)
O1—Li—Taii36.40 (15)O2viii—Ta—Livi90.36 (7)
O2—Li—Taii127.19 (12)O2ix—Ta—Livi89.64 (7)
O2i—Li—Taii127.56 (12)Liv—Ta—Livi180.0
O3ii—Li—Taii38.71 (18)O3iii—Ge—O3109.75 (15)
O3iii—Li—Taii111.5 (5)O3iii—Ge—O2iv112.34 (12)
Geiv—Li—Taii143.60 (15)O3—Ge—O2iv112.12 (12)
O1—Li—Taiii36.40 (15)O3iii—Ge—O2x112.12 (12)
O2—Li—Taiii127.56 (12)O3—Ge—O2x112.34 (12)
O2i—Li—Taiii127.19 (12)O2iv—Ge—O2x97.77 (15)
O3ii—Li—Taiii111.5 (5)O3iii—Ge—Liiv125.12 (8)
O3iii—Li—Taiii38.71 (18)O3—Ge—Liiv125.12 (8)
Geiv—Li—Taiii143.60 (15)O2iv—Ge—Liiv48.89 (7)
Taii—Li—Taiii72.8 (3)O2x—Ge—Liiv48.89 (7)
O1v—Ta—O1vi180.00 (18)Taii—O1—Taiii147.49 (18)
O1v—Ta—O393.19 (12)Taii—O1—Li106.26 (9)
O1vi—Ta—O386.81 (12)Taiii—O1—Li106.26 (9)
O1v—Ta—O3vii86.81 (12)Geiv—O2—Taxi138.53 (12)
O1vi—Ta—O3vii93.19 (12)Geiv—O2—Li90.1 (3)
O3—Ta—O3vii180.0Taxi—O2—Li131.4 (3)
O1v—Ta—O2viii89.79 (8)Ge—O3—Ta138.19 (14)
O1vi—Ta—O2viii90.21 (8)Ge—O3—Livi130.0 (3)
O3—Ta—O2viii90.48 (9)Ta—O3—Livi91.8 (3)
O3vii—Ta—O2viii89.52 (9)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z+1; (iii) x, y, z+1/2; (iv) x, y+1, z+1; (v) x, y, z+1; (vi) x, y, z1; (vii) x, y, z; (viii) x1/2, y1/2, z1; (ix) x+1/2, y+1/2, z+1; (x) x, y+1, z1/2; (xi) x+1/2, y+1/2, z+1.
(ltgo_amb_split) top
Crystal data top
GeLiO5TaF(000) = 592
Mr = 340.48Dx = 5.641 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.5773 (1) ÅCell parameters from 164 reflections
b = 8.1188 (1) Åθ = 8.7–44.7°
c = 7.4910 (1) ŵ = 34.67 mm1
β = 119.545 (1)°T = 293 K
V = 400.91 (1) Å30.16 × 0.06 × 0.04 mm
Z = 4
Data collection top
Radiation source: fine-focus sealed tube776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω–2θ scanθmax = 34.9°, θmin = 4.0°
Absorption correction: numerical
?
h = 1210
Tmin = 0.071, Tmax = 0.345k = 1313
1809 measured reflectionsl = 012
877 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0213P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max < 0.001
S = 1.04Δρmax = 1.94 e Å3
877 reflectionsΔρmin = 2.43 e Å3
40 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0367 (9)
Crystal data top
GeLiO5TaV = 400.91 (1) Å3
Mr = 340.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.5773 (1) ŵ = 34.67 mm1
b = 8.1188 (1) ÅT = 293 K
c = 7.4910 (1) Å0.16 × 0.06 × 0.04 mm
β = 119.545 (1)°
Data collection top
Absorption correction: numerical
?
877 independent reflections
Tmin = 0.071, Tmax = 0.345776 reflections with I > 2σ(I)
1809 measured reflectionsRint = 0.023
Refinement top
R[F2 > 2σ(F2)] = 0.01640 parameters
wR(F2) = 0.0370 restraints
S = 1.04Δρmax = 1.94 e Å3
877 reflectionsΔρmin = 2.43 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li0.001 (3)0.3133 (17)0.781 (2)0.018 (3)*0.50
Ta0.00000.00000.00000.00573 (8)
Ge0.00000.36046 (6)0.25000.00578 (10)
O10.00000.0673 (4)0.75000.0091 (5)
O20.1990 (4)0.4985 (2)0.8504 (4)0.0098 (4)
O30.0008 (3)0.2369 (3)0.0600 (4)0.0104 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta0.00390 (9)0.00754 (9)0.00531 (10)0.00053 (4)0.00192 (6)0.00117 (5)
Ge0.00458 (16)0.00482 (16)0.00730 (18)0.0000.00243 (13)0.000
O10.0140 (13)0.0099 (13)0.0057 (13)0.0000.0068 (11)0.000
O20.0039 (7)0.0099 (8)0.0127 (10)0.0013 (6)0.0019 (7)0.0011 (7)
O30.0151 (9)0.0073 (8)0.0099 (9)0.0005 (7)0.0069 (8)0.0022 (7)
Geometric parameters (Å, º) top
Li—Lii0.45 (3)Ta—Liiii3.298 (12)
Li—O22.002 (16)Ta—Lix3.298 (12)
Li—O12.010 (14)Ge—O2xi1.742 (2)
Li—O2i2.014 (16)Ge—O2iv1.742 (2)
Li—O3ii2.183 (15)Ge—O31.744 (2)
Li—O3iii2.619 (14)Ge—O3iii1.744 (2)
Li—Geiv2.658 (14)Ge—Lixi2.658 (14)
Li—Taii3.030 (15)Ge—Liiv2.658 (14)
Li—Taiii3.298 (12)O1—Taiii1.9508 (9)
Ta—O1v1.9508 (9)O1—Taii1.9508 (9)
Ta—O1vi1.9508 (9)O1—Lii2.010 (14)
Ta—O31.974 (2)O2—Geiv1.742 (2)
Ta—O3vii1.974 (2)O2—Taxii1.984 (2)
Ta—O2viii1.984 (2)O2—Lii2.014 (16)
Ta—O2ix1.984 (2)O3—Livi2.183 (15)
Ta—Livi3.030 (15)O3—Liiii2.619 (14)
Ta—Liv3.030 (15)
Lii—Li—O285 (3)O1v—Ta—Liv40.8 (3)
Lii—Li—O183.5 (4)O1vi—Ta—Liv139.2 (3)
O2—Li—O1137.4 (9)O3—Ta—Liv134.0 (2)
Lii—Li—O2i82 (3)O3vii—Ta—Liv46.0 (2)
O2—Li—O2i81.6 (5)O2viii—Ta—Liv90.5 (3)
O1—Li—O2i136.6 (9)O2ix—Ta—Liv89.5 (3)
Lii—Li—O3ii163.4 (6)Livi—Ta—Liv180.0 (3)
O2—Li—O3ii108.5 (7)O1v—Ta—Liiii145.8 (3)
O1—Li—O3ii79.9 (5)O1vi—Ta—Liiii34.2 (3)
O2i—Li—O3ii108.9 (6)O3—Ta—Liiii52.6 (3)
Lii—Li—O3iii13.8 (6)O3vii—Ta—Liiii127.4 (3)
O2—Li—O3iii94.3 (6)O2viii—Ta—Liiii89.8 (3)
O1—Li—O3iii69.8 (4)O2ix—Ta—Liiii90.2 (3)
O2i—Li—O3iii93.5 (6)Livi—Ta—Liiii6.6 (4)
O3ii—Li—O3iii149.8 (6)Liv—Ta—Liiii173.4 (4)
Lii—Li—Geiv85.1 (3)O1v—Ta—Lix34.2 (3)
O2—Li—Geiv40.9 (3)O1vi—Ta—Lix145.8 (3)
O1—Li—Geiv168.7 (7)O3—Ta—Lix127.4 (3)
O2i—Li—Geiv40.9 (3)O3vii—Ta—Lix52.6 (3)
O3ii—Li—Geiv111.4 (5)O2viii—Ta—Lix90.2 (3)
O3iii—Li—Geiv98.8 (5)O2ix—Ta—Lix89.8 (3)
Lii—Li—Taii122.9 (3)Livi—Ta—Lix173.4 (4)
O2—Li—Taii133.7 (7)Liv—Ta—Lix6.6 (4)
O1—Li—Taii39.4 (3)Liiii—Ta—Lix180.0 (3)
O2i—Li—Taii133.5 (7)O2xi—Ge—O2iv97.76 (15)
O3ii—Li—Taii40.6 (3)O2xi—Ge—O3112.34 (12)
O3iii—Li—Taii109.2 (4)O2iv—Ge—O3112.12 (12)
Geiv—Li—Taii152.0 (5)O2xi—Ge—O3iii112.12 (12)
Lii—Li—Taiii50.5 (3)O2iv—Ge—O3iii112.34 (12)
O2—Li—Taiii120.8 (6)O3—Ge—O3iii109.76 (15)
O1—Li—Taiii33.1 (2)O2xi—Ge—Lixi48.9 (4)
O2i—Li—Taiii120.0 (6)O2iv—Ge—Lixi49.2 (4)
O3ii—Li—Taiii113.0 (5)O3—Ge—Lixi130.0 (3)
O3iii—Li—Taiii36.77 (17)O3iii—Ge—Lixi120.2 (3)
Geiv—Li—Taiii135.6 (5)O2xi—Ge—Liiv49.2 (4)
Taii—Li—Taiii72.4 (3)O2iv—Ge—Liiv48.9 (4)
O1v—Ta—O1vi180.00 (18)O3—Ge—Liiv120.2 (3)
O1v—Ta—O393.20 (12)O3iii—Ge—Liiv130.0 (3)
O1vi—Ta—O386.80 (12)Lixi—Ge—Liiv9.8 (6)
O1v—Ta—O3vii86.80 (12)Taiii—O1—Taii147.48 (18)
O1vi—Ta—O3vii93.20 (12)Taiii—O1—Li112.7 (4)
O3—Ta—O3vii180.0Taii—O1—Li99.8 (4)
O1v—Ta—O2viii90.22 (8)Taiii—O1—Lii99.8 (4)
O1vi—Ta—O2viii89.78 (8)Taii—O1—Lii112.7 (4)
O3—Ta—O2viii89.52 (9)Li—O1—Lii12.9 (8)
O3vii—Ta—O2viii90.48 (9)Geiv—O2—Taxii138.52 (12)
O1v—Ta—O2ix89.78 (8)Geiv—O2—Li90.2 (5)
O1vi—Ta—O2ix90.22 (8)Taxii—O2—Li131.0 (5)
O3—Ta—O2ix90.48 (9)Geiv—O2—Lii89.8 (5)
O3vii—Ta—O2ix89.52 (9)Taxii—O2—Lii131.3 (5)
O2viii—Ta—O2ix180.0Li—O2—Lii12.9 (8)
O1v—Ta—Livi139.2 (3)Ge—O3—Ta138.18 (14)
O1vi—Ta—Livi40.8 (3)Ge—O3—Livi128.4 (4)
O3—Ta—Livi46.0 (2)Ta—O3—Livi93.5 (3)
O3vii—Ta—Livi134.0 (2)Ge—O3—Liiii131.2 (3)
O2viii—Ta—Livi89.5 (3)Ta—O3—Liiii90.6 (3)
O2ix—Ta—Livi90.5 (3)Livi—O3—Liiii2.8 (2)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z+1; (iii) x, y, z+1/2; (iv) x, y+1, z+1; (v) x, y, z+1; (vi) x, y, z1; (vii) x, y, z; (viii) x+1/2, y+1/2, z+1; (ix) x1/2, y1/2, z1; (x) x, y, z1/2; (xi) x, y+1, z1/2; (xii) x+1/2, y+1/2, z+1.

Experimental details

(ltgo_2)(ltgo_amb)(ltgo_amb_split)
Crystal data
Chemical formulaGeLiO5TaGeLiO5TaGeLiO5Ta
Mr340.48340.48340.48
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)173293293
a, b, c (Å)7.584 (4), 8.0849 (14), 7.508 (2)7.5773 (1), 8.1188 (1), 7.4910 (1)7.5773 (1), 8.1188 (1), 7.4910 (1)
β (°) 119.69 (3) 119.545 (1) 119.545 (1)
V3)399.9 (2)400.91 (1)400.91 (1)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)34.7534.6734.67
Crystal size (mm)0.16 × 0.06 × 0.040.16 × 0.06 × 0.040.16 × 0.06 × 0.04
Data collection
Diffractometer???
Absorption correctionNumericalNumericalNumerical
Tmin, Tmax0.123, 0.280.071, 0.3450.071, 0.345
No. of measured, independent and
observed [I > 2σ(I)] reflections
3561, 1732, 1476 1809, 877, 776 1809, 877, 776
Rint0.0320.0230.023
(sin θ/λ)max1)0.8080.8040.804
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.047, 1.04 0.016, 0.037, 1.04 0.016, 0.037, 1.04
No. of reflections1732877877
No. of parameters744140
Δρmax, Δρmin (e Å3)2.45, 2.701.94, 2.451.94, 2.43

Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds