Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C16H15NO2S, the indole group is planar and approximately perpendicular to the sulfonyl-bound phenyl ring; the dihedral angle between the planes is 86.80 (6)°. The mol­ecules form centrosymmetric dimers via C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039899/ci6720sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039899/ci6720Isup2.hkl
Contains datablock I

CCDC reference: 296541

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.145
  • Data-to-parameter ratio = 17.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). Indoles have also been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). In view of this biological importance, an X-ray study of the title compound, (I), was carrried out.

A ZORTEP (Zsolnai, 1997) plot of the molecule is shown in Fig. 1. The longer C—N distances in the indole moiety are due to the electron-withdrawing character of the phenylsulfonyl group (Govindasamy et al., 1997, 1998). The endocyclic bond angles at atoms C4 and C5 deviate from the normal value as a result of the fusion of smaller pyrrole and benzene rings (Sethusankar et al., 2002). The widening of the O—S—O and the resultant narrowing of the N—S—C angles (Table 1) from the ideal tetrahedral value are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The dihedral angle between the C10–C15 phenyl ring and the indole ring system is 86.80 (6)°.

In the crystal structure, the molecules form centrosymmetric dimers via C—H···O hydrogen bonds (Table 2 and Fig. 2). In addition, a ππ stacking interaction involving the pyrrole ring (centroid Cg1) with a Cg1···Cg1(1 − x, 1 − y, −z) distance of 3.594 (2) Å is observed.

Experimental top

A solution of 2-methyl-3-methylindole (4 mmol) in dry tetrahydrofuran (THF, 10 ml) was added slowly to a stirred suspension of 50% sodium hydride (0.24 g, 10 mmol) in dry THF (4 ml) under nitrogen atmosphere at room temperature. The reaction mixture was refluxed for 3 h and cooled to 268 K. A solution of phenylsulfonyl chloride (0.86 ml, 6 mmol) in dry THF (8.0 ml) was then added slowly. The reaction mixture was stirred at 268 K for 6 h. The solution was then treated with saturated ammonium chloride solution (20 ml) and the organic layer was separated. The aqueous layer was extracted with chloroform (4 × 15 ml), and the combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure to give a white oil. It was crystallized from ethyl acetate and hexane (2:8) to give a white crystalline colourless solid (yield 81%, m.p. 413 K). IR (KBr): 1380, 1140 cm−1.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-labelling scheme. Dashed lines indicate C—H···O hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of (I), showing C—H···O hydrogen-bonded (dashed lines) dimers.
1-Benzenesulfonyl-2,3-dimethyl-1H-indole top
Crystal data top
C16H15NO2SZ = 2
Mr = 285.35F(000) = 300
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8800 (13) ÅCell parameters from 2540 reflections
b = 9.6020 (16) Åθ = 2.1–28.0°
c = 9.9864 (17) ŵ = 0.23 mm1
α = 82.210 (3)°T = 293 K
β = 81.487 (3)°Block, yellow
γ = 71.087 (3)°0.23 × 0.21 × 0.19 mm
V = 703.8 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3284 independent reflections
Radiation source: fine-focus sealed tube2540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.948, Tmax = 0.957k = 1212
8276 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.1221P]
where P = (Fo2 + 2Fc2)/3
3284 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H15NO2Sγ = 71.087 (3)°
Mr = 285.35V = 703.8 (2) Å3
Triclinic, P1Z = 2
a = 7.8800 (13) ÅMo Kα radiation
b = 9.6020 (16) ŵ = 0.23 mm1
c = 9.9864 (17) ÅT = 293 K
α = 82.210 (3)°0.23 × 0.21 × 0.19 mm
β = 81.487 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3284 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2540 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.957Rint = 0.017
8276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
3284 reflectionsΔρmin = 0.19 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64895 (7)0.26735 (6)0.29715 (5)0.04878 (19)
O10.5211 (2)0.3495 (2)0.39625 (15)0.0666 (4)
O20.6228 (2)0.14126 (18)0.25539 (18)0.0693 (5)
N10.6570 (2)0.38450 (16)0.16001 (15)0.0423 (4)
C20.7372 (3)0.3440 (2)0.02641 (19)0.0466 (4)
C30.7743 (3)0.4608 (2)0.0462 (2)0.0522 (5)
C40.7265 (3)0.5795 (2)0.0400 (2)0.0519 (5)
C50.6564 (2)0.5308 (2)0.1672 (2)0.0445 (4)
C60.5997 (3)0.6209 (2)0.2737 (2)0.0592 (6)
H60.55240.58810.35850.071*
C70.6165 (4)0.7602 (3)0.2483 (4)0.0809 (9)
H70.58130.82210.31810.097*
C80.6837 (4)0.8110 (3)0.1230 (4)0.0924 (10)
H80.69150.90650.10960.111*
C90.7390 (4)0.7233 (3)0.0180 (3)0.0797 (8)
H90.78430.75840.06650.096*
C100.8644 (3)0.2158 (2)0.3528 (2)0.0507 (5)
C110.8989 (3)0.2984 (3)0.4425 (2)0.0650 (6)
H110.80890.37980.47570.078*
C121.0709 (4)0.2564 (4)0.4814 (3)0.0819 (8)
H121.09670.31030.54210.098*
C131.2032 (4)0.1377 (4)0.4327 (3)0.0894 (10)
H131.31880.11230.45870.107*
C141.1660 (4)0.0558 (4)0.3453 (3)0.0920 (10)
H141.25610.02610.31320.110*
C150.9958 (3)0.0943 (3)0.3047 (3)0.0726 (7)
H150.97020.03860.24560.087*
C160.7607 (4)0.1980 (3)0.0208 (3)0.0699 (7)
H16A0.80070.19970.11640.105*
H16B0.64760.17740.00430.105*
H16C0.84880.12250.02780.105*
C170.8497 (4)0.4709 (4)0.1925 (2)0.0827 (8)
H17A0.86840.37900.22930.124*
H17B0.96270.49070.19970.124*
H17C0.76640.54930.24250.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0484 (3)0.0565 (3)0.0449 (3)0.0246 (2)0.0030 (2)0.0018 (2)
O10.0532 (9)0.0957 (12)0.0495 (8)0.0267 (8)0.0076 (7)0.0071 (8)
O20.0780 (11)0.0621 (10)0.0818 (11)0.0429 (8)0.0145 (9)0.0038 (8)
N10.0478 (8)0.0411 (8)0.0381 (8)0.0139 (7)0.0035 (6)0.0054 (6)
C20.0427 (10)0.0533 (11)0.0411 (10)0.0085 (8)0.0058 (8)0.0103 (8)
C30.0421 (10)0.0690 (13)0.0425 (10)0.0157 (9)0.0048 (8)0.0014 (9)
C40.0448 (10)0.0527 (11)0.0593 (12)0.0180 (9)0.0123 (9)0.0057 (9)
C50.0398 (9)0.0420 (10)0.0523 (11)0.0108 (8)0.0104 (8)0.0051 (8)
C60.0562 (12)0.0529 (12)0.0675 (14)0.0052 (10)0.0175 (10)0.0202 (10)
C70.0755 (17)0.0538 (14)0.117 (2)0.0026 (12)0.0394 (17)0.0326 (16)
C80.098 (2)0.0469 (14)0.146 (3)0.0280 (14)0.050 (2)0.0009 (17)
C90.0770 (17)0.0654 (16)0.103 (2)0.0361 (13)0.0269 (15)0.0228 (15)
C100.0496 (11)0.0592 (12)0.0429 (10)0.0220 (9)0.0049 (8)0.0091 (9)
C110.0687 (14)0.0699 (15)0.0617 (14)0.0288 (12)0.0182 (11)0.0062 (11)
C120.0818 (18)0.100 (2)0.0783 (18)0.0450 (17)0.0346 (15)0.0151 (15)
C130.0552 (15)0.135 (3)0.0742 (18)0.0334 (17)0.0195 (14)0.0274 (18)
C140.0607 (16)0.116 (2)0.0743 (18)0.0030 (15)0.0081 (14)0.0019 (17)
C150.0664 (15)0.0834 (17)0.0585 (14)0.0105 (13)0.0098 (11)0.0034 (13)
C160.0851 (17)0.0620 (14)0.0601 (14)0.0097 (12)0.0133 (12)0.0239 (11)
C170.0644 (15)0.124 (2)0.0481 (13)0.0241 (15)0.0029 (11)0.0073 (14)
Geometric parameters (Å, º) top
S1—O21.4166 (16)C9—H90.93
S1—O11.4203 (16)C10—C151.373 (3)
S1—N11.6577 (16)C10—C111.382 (3)
S1—C101.760 (2)C11—C121.382 (4)
N1—C51.415 (2)C11—H110.93
N1—C21.436 (2)C12—C131.361 (4)
C2—C31.341 (3)C12—H120.93
C2—C161.486 (3)C13—C141.370 (4)
C3—C41.440 (3)C13—H130.93
C3—C171.497 (3)C14—C151.378 (4)
C4—C51.392 (3)C14—H140.93
C4—C91.401 (3)C15—H150.93
C5—C61.391 (3)C16—H16A0.96
C6—C71.373 (4)C16—H16B0.96
C6—H60.93C16—H16C0.96
C7—C81.375 (5)C17—H17A0.96
C7—H70.93C17—H17B0.96
C8—C91.365 (4)C17—H17C0.96
C8—H80.93
O2—S1—O1119.53 (10)C4—C9—H9120.6
O2—S1—N1107.47 (9)C15—C10—C11121.3 (2)
O1—S1—N1106.42 (9)C15—C10—S1118.94 (18)
O2—S1—C10108.74 (10)C11—C10—S1119.72 (18)
O1—S1—C10108.58 (10)C10—C11—C12118.0 (3)
N1—S1—C10105.17 (8)C10—C11—H11121.0
C5—N1—C2107.40 (15)C12—C11—H11121.0
C5—N1—S1122.51 (13)C13—C12—C11121.2 (3)
C2—N1—S1125.43 (13)C13—C12—H12119.4
C3—C2—N1108.72 (17)C11—C12—H12119.4
C3—C2—C16127.63 (19)C12—C13—C14120.0 (3)
N1—C2—C16123.54 (18)C12—C13—H13120.0
C2—C3—C4108.48 (18)C14—C13—H13120.0
C2—C3—C17127.0 (2)C13—C14—C15120.3 (3)
C4—C3—C17124.5 (2)C13—C14—H14119.8
C5—C4—C9119.3 (2)C15—C14—H14119.8
C5—C4—C3108.07 (18)C10—C15—C14119.1 (3)
C9—C4—C3132.7 (2)C10—C15—H15120.4
C6—C5—C4121.7 (2)C14—C15—H15120.4
C6—C5—N1131.1 (2)C2—C16—H16A109.5
C4—C5—N1107.23 (17)C2—C16—H16B109.5
C7—C6—C5117.1 (3)H16A—C16—H16B109.5
C7—C6—H6121.4C2—C16—H16C109.5
C5—C6—H6121.4H16A—C16—H16C109.5
C6—C7—C8122.1 (3)H16B—C16—H16C109.5
C6—C7—H7119.0C3—C17—H17A109.5
C8—C7—H7119.0C3—C17—H17B109.5
C9—C8—C7121.0 (3)H17A—C17—H17B109.5
C9—C8—H8119.5C3—C17—H17C109.5
C7—C8—H8119.5H17A—C17—H17C109.5
C8—C9—C4118.8 (3)H17B—C17—H17C109.5
C8—C9—H9120.6
O2—S1—N1—C5170.86 (15)C2—N1—C5—C42.6 (2)
O1—S1—N1—C541.69 (17)S1—N1—C5—C4159.52 (14)
C10—S1—N1—C573.40 (16)C4—C5—C6—C70.3 (3)
O2—S1—N1—C236.42 (18)N1—C5—C6—C7179.86 (19)
O1—S1—N1—C2165.58 (15)C5—C6—C7—C81.0 (4)
C10—S1—N1—C279.32 (17)C6—C7—C8—C90.8 (4)
C5—N1—C2—C33.2 (2)C7—C8—C9—C40.1 (4)
S1—N1—C2—C3159.27 (14)C5—C4—C9—C80.7 (3)
C5—N1—C2—C16179.53 (18)C3—C4—C9—C8179.0 (2)
S1—N1—C2—C1624.4 (3)O2—S1—C10—C1524.3 (2)
N1—C2—C3—C42.5 (2)O1—S1—C10—C15155.85 (18)
C16—C2—C3—C4178.6 (2)N1—S1—C10—C1590.57 (19)
N1—C2—C3—C17176.6 (2)O2—S1—C10—C11156.27 (17)
C16—C2—C3—C170.4 (4)O1—S1—C10—C1124.72 (19)
C2—C3—C4—C50.9 (2)N1—S1—C10—C1188.87 (18)
C17—C3—C4—C5178.2 (2)C15—C10—C11—C120.9 (3)
C2—C3—C4—C9178.8 (2)S1—C10—C11—C12178.54 (18)
C17—C3—C4—C92.0 (4)C10—C11—C12—C130.3 (4)
C9—C4—C5—C60.5 (3)C11—C12—C13—C141.2 (4)
C3—C4—C5—C6179.25 (18)C12—C13—C14—C151.0 (5)
C9—C4—C5—N1179.13 (18)C11—C10—C15—C141.1 (4)
C3—C4—C5—N11.1 (2)S1—C10—C15—C14178.3 (2)
C2—N1—C5—C6177.85 (19)C13—C14—C15—C100.2 (4)
S1—N1—C5—C620.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.362.938 (3)120
C6—H6···O1i0.932.543.317 (3)141
C15—H15···O20.932.582.932 (3)103
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H15NO2S
Mr285.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8800 (13), 9.6020 (16), 9.9864 (17)
α, β, γ (°)82.210 (3), 81.487 (3), 71.087 (3)
V3)703.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.948, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
8276, 3284, 2540
Rint0.017
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.04
No. of reflections3284
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—O21.4166 (16)S1—C101.760 (2)
S1—O11.4203 (16)N1—C51.415 (2)
S1—N11.6577 (16)N1—C21.436 (2)
O2—S1—O1119.53 (10)C5—C4—C9119.3 (2)
N1—S1—C10105.17 (8)C6—C5—C4121.7 (2)
C16—C2—C3—C4178.6 (2)C17—C3—C4—C5178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.362.938 (3)120
C6—H6···O1i0.932.543.317 (3)141
C15—H15···O20.932.582.932 (3)103
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds