Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C29H23NO2S, the bond angles around the S atom indicate a distorted tetra­hedral configuration. The crystal structure is stabilized by weak C—H...O and C—H...π hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041607/ci6719sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041607/ci6719Isup2.hkl
Contains datablock I

CCDC reference: 296540

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.052
  • wR factor = 0.137
  • Data-to-parameter ratio = 9.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT034_ALERT_1_C No Flack Parameter Given. Z .GT. Si, NonCentro . ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.67 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C14 PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 6
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 27.97 From the CIF: _reflns_number_total 2905 Count of symmetry unique reflns 2923 Completeness (_total/calc) 99.38% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The indole unit is observed in many plants (Nigovic et al., 2000). Indole- 3-acetic acid is a naturally occurring plant growth hormone that controls a number of plant-growth activities (Fargasova, 1994). Many indole- containing natural products are found to exhibit psychotropic (Grinev et al., 1978) and hypertensive (Merk, 1971) properties. A large number of biologically active compounds, mostly those affecting the central nervous system (Zhang & Liebeskind, 1996), contain indolines and their oxidized counterparts as important pharmacophores. Some of the indole derivatives possess antitumour (Schollmeyer et al., 1995) and antibacterial (Okabe & Adachi, 1998) activities. In view of this importance, the crystal structure of the title compound, (I), has been determined and the results are presented here.

A ZORTEP (Zsolnai, 1997) plot of the molecule is shown in Fig.1. The S—O, S—C and S—N bond distances are comparable with the reported values of 1.435 (5), 1.767 (7) and 1.685 (5) Å, respectively (Govindasamy et al., 1998). As observed in other phenylsulfonylindoles (Rodriguez et al., 1995; Govindasamy et al., 1997, 1998), the C—N distances in the indole ring system are longer due to the electron- withdrawing character of the phenylsulfonyl group. The widening of the O1—S1—O2 angle to 119.4 (2)°, and the resultant narrowing of the N1—S1—C10 angle to 104.5 (1)°, from the ideal tetrahedral value, are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The C10–C15, C18–C23 and C25–C30 phenyl rings are oriented at angles of 75.1 (1), 81.3 (1), 59.9 (1)°, respectively, with respect to the indole ring system.

C—H···O-type hydrogen bonds are observed in the molecular structure. The crystal structure is stabilized by intermolecular C—H···O and C—H···π hydrogen bonds (Table 2 and Fig. 2). Cg denotes the centroid of C4–C9 benzene ring.

Experimental top

A solution of 2-methyl-3-diaryl vinylindole (5 mmol) in dry tetrahydrofuran (THF, 10 ml) was added slowly to a stirred suspension of 50% sodium hydride (0.24 g, 10 mmol) in dry THF (4 ml) under nitrogen atmosphere at room temperature. The reaction mixture was refluxed for 3 h and cooled to 268 K. A solution of phenylsulfonyl chloride (1.15 ml, 8 mmol) in dry THF (10 ml) was then added slowly. The solution was then treated with saturated ammonium chloride solution (50 ml) and the organic layer was separated. The aqueous layer was extracted with chloroform (4 x 15 ml), and the combined organic layers were dried over anhydrous Na2SO4 and concentrated under reduced pressure to give a white oil. This was crystallized from ethyl acetate and hexane (2:8) to give a crystalline solid (yield 1.59 g (71%), m.p. 427 K). 1H NMR (400 MHz, CDCl3): d = 2.24 (s, 3H, CH3), 6.93–7.58 (m, 18H, Ar—H & 1H vinylic), 8.23–8.25 (d, 1H, J = 8.0 Hz, indole-7H). Mass (m/z %): 449(M+, 75.6), 308 (77.2), 293 (39.1), 230 (100), 217 (10.8), 77 (34.2), 57(10.3).

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2–1.5Ueq(C). Flack parameter was not determined as Friedel opposites were not measured.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-labelling scheme. Dashed lines indicate C—H···O hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. Dashed lines indicate C—H···π interactions.
3-(1,2-Diphenylvinyl)-2-methyl-1-phenylsulfonyl-1H-indole top
Crystal data top
C29H23NO2SF(000) = 472
Mr = 449.54Dx = 1.272 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 9.029 (3) Åθ = 2.3–28.0°
b = 14.891 (7) ŵ = 0.16 mm1
c = 9.8459 (17) ÅT = 293 K
β = 117.588 (18)°Block, yellow
V = 1173.3 (7) Å30.36 × 0.28 × 0.18 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.036
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.3°
Graphite monochromatorh = 011
ω scansk = 019
3078 measured reflectionsl = 1211
2905 independent reflections3 standard reflections every 60 min
2520 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1042P)2 + 0.0294P]
where P = (Fo2 + 2Fc2)/3
2905 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.57 e Å3
1 restraintΔρmin = 0.43 e Å3
Crystal data top
C29H23NO2SV = 1173.3 (7) Å3
Mr = 449.54Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.029 (3) ŵ = 0.16 mm1
b = 14.891 (7) ÅT = 293 K
c = 9.8459 (17) Å0.36 × 0.28 × 0.18 mm
β = 117.588 (18)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.036
3078 measured reflections3 standard reflections every 60 min
2905 independent reflections intensity decay: none
2520 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.57 e Å3
2905 reflectionsΔρmin = 0.43 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01053 (7)0.07534 (5)0.39551 (8)0.03998 (19)
O10.1116 (3)0.1142 (2)0.2493 (3)0.0547 (6)
O20.0602 (3)0.0833 (2)0.5127 (3)0.0553 (6)
N10.1761 (3)0.1241 (2)0.4600 (3)0.0381 (5)
C20.3054 (3)0.1152 (2)0.6152 (3)0.0390 (6)
C30.4550 (3)0.1171 (2)0.6152 (3)0.0368 (6)
C40.4279 (3)0.1246 (2)0.4598 (3)0.0344 (5)
C50.2559 (3)0.1279 (2)0.3656 (3)0.0346 (5)
C60.1891 (4)0.1386 (3)0.2081 (3)0.0473 (7)
H60.07430.14270.14580.057*
C70.2992 (5)0.1427 (3)0.1475 (4)0.0570 (9)
H70.25770.14820.04200.068*
C80.4702 (5)0.1390 (3)0.2402 (4)0.0560 (9)
H80.54140.14290.19600.067*
C90.5366 (4)0.1296 (3)0.3964 (4)0.0476 (7)
H90.65160.12670.45810.057*
C100.0266 (4)0.0384 (2)0.3737 (4)0.0429 (6)
C110.0085 (6)0.0695 (3)0.2352 (5)0.0624 (10)
H110.02710.03120.15130.075*
C120.0441 (8)0.1588 (3)0.2225 (6)0.0775 (13)
H120.03270.18030.12950.093*
C130.0954 (7)0.2155 (3)0.3442 (6)0.0812 (13)
H130.11720.27550.33410.097*
C140.1146 (9)0.1836 (3)0.4808 (6)0.0920 (19)
H140.15350.22190.56490.110*
C150.0775 (7)0.0953 (3)0.4973 (5)0.0692 (12)
H150.08680.07480.59020.083*
C160.2723 (4)0.1129 (3)0.7500 (4)0.0559 (9)
H16A0.37590.10580.84200.084*
H16B0.19980.06330.73980.084*
H16C0.21980.16800.75500.084*
C170.6222 (4)0.1124 (2)0.7518 (3)0.0407 (6)
C180.7218 (4)0.0304 (2)0.7618 (3)0.0410 (6)
C190.6437 (5)0.0501 (3)0.6958 (4)0.0541 (8)
H190.52760.05220.64210.065*
C200.7352 (6)0.1272 (3)0.7087 (5)0.0698 (11)
H200.68040.18050.66410.084*
C210.9077 (6)0.1253 (3)0.7873 (5)0.0667 (11)
H210.96960.17700.79680.080*
C220.9863 (5)0.0457 (3)0.8514 (4)0.0583 (9)
H221.10240.04380.90440.070*
C230.8956 (4)0.0314 (3)0.8383 (4)0.0474 (7)
H230.95140.08460.88130.057*
C240.6775 (4)0.1740 (2)0.8629 (3)0.0453 (7)
H240.77960.16140.94720.054*
C250.5992 (4)0.2591 (2)0.8700 (4)0.0458 (7)
C260.5074 (5)0.3138 (3)0.7428 (5)0.0627 (10)
H260.49490.29730.64700.075*
C270.4348 (7)0.3927 (3)0.7585 (7)0.0829 (15)
H270.37180.42780.67270.099*
C280.4555 (7)0.4192 (4)0.8998 (8)0.0843 (15)
H280.40610.47190.90950.101*
C290.5480 (6)0.3682 (4)1.0254 (6)0.0744 (12)
H290.56220.38651.12100.089*
C300.6216 (5)0.2891 (3)1.0121 (5)0.0567 (9)
H300.68670.25561.09940.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0222 (3)0.0509 (4)0.0441 (3)0.0026 (3)0.0130 (2)0.0020 (3)
O10.0289 (10)0.0639 (15)0.0556 (13)0.0077 (10)0.0063 (9)0.0103 (12)
O20.0366 (10)0.0700 (16)0.0692 (15)0.0010 (12)0.0329 (11)0.0041 (14)
N10.0251 (10)0.0524 (14)0.0335 (10)0.0003 (10)0.0107 (9)0.0011 (10)
C20.0294 (12)0.0513 (16)0.0326 (12)0.0024 (12)0.0112 (10)0.0006 (12)
C30.0272 (12)0.0487 (15)0.0301 (12)0.0011 (11)0.0094 (10)0.0002 (11)
C40.0271 (11)0.0419 (15)0.0306 (11)0.0005 (11)0.0103 (9)0.0007 (11)
C50.0271 (11)0.0430 (14)0.0292 (11)0.0016 (11)0.0092 (9)0.0009 (11)
C60.0354 (14)0.070 (2)0.0280 (12)0.0043 (14)0.0076 (11)0.0039 (13)
C70.0569 (19)0.079 (3)0.0339 (14)0.0103 (18)0.0203 (14)0.0027 (15)
C80.0504 (18)0.081 (3)0.0493 (17)0.0104 (18)0.0339 (15)0.0052 (17)
C90.0326 (13)0.064 (2)0.0478 (16)0.0033 (14)0.0199 (12)0.0031 (15)
C100.0337 (13)0.0457 (16)0.0486 (16)0.0006 (12)0.0185 (12)0.0009 (13)
C110.078 (3)0.061 (2)0.0531 (19)0.001 (2)0.0350 (19)0.0048 (17)
C120.107 (4)0.065 (3)0.077 (3)0.000 (3)0.056 (3)0.007 (2)
C130.104 (4)0.053 (2)0.088 (3)0.004 (2)0.045 (3)0.004 (2)
C140.142 (5)0.053 (2)0.068 (3)0.014 (3)0.038 (3)0.014 (2)
C150.098 (3)0.060 (2)0.050 (2)0.001 (2)0.034 (2)0.0065 (17)
C160.0464 (17)0.086 (3)0.0395 (15)0.0076 (17)0.0230 (13)0.0011 (17)
C170.0302 (12)0.0508 (16)0.0343 (13)0.0020 (12)0.0092 (11)0.0050 (12)
C180.0356 (14)0.0512 (17)0.0318 (12)0.0039 (13)0.0119 (11)0.0060 (12)
C190.0427 (16)0.0535 (19)0.0521 (17)0.0039 (14)0.0099 (14)0.0010 (15)
C200.066 (2)0.054 (2)0.071 (2)0.005 (2)0.015 (2)0.002 (2)
C210.067 (2)0.066 (2)0.069 (2)0.026 (2)0.033 (2)0.013 (2)
C220.0431 (17)0.079 (3)0.0535 (18)0.0178 (18)0.0233 (15)0.0149 (19)
C230.0347 (13)0.065 (2)0.0391 (14)0.0035 (14)0.0138 (11)0.0036 (14)
C240.0330 (13)0.0542 (17)0.0352 (13)0.0034 (13)0.0044 (11)0.0017 (13)
C250.0376 (14)0.0486 (16)0.0448 (15)0.0025 (13)0.0138 (12)0.0016 (13)
C260.064 (2)0.052 (2)0.054 (2)0.0035 (18)0.0123 (18)0.0045 (16)
C270.075 (3)0.054 (2)0.086 (3)0.018 (2)0.010 (2)0.008 (2)
C280.078 (3)0.059 (3)0.117 (4)0.010 (2)0.045 (3)0.013 (3)
C290.084 (3)0.069 (3)0.080 (3)0.005 (3)0.046 (3)0.018 (2)
C300.056 (2)0.060 (2)0.0528 (19)0.0028 (17)0.0235 (16)0.0046 (16)
Geometric parameters (Å, º) top
S1—O11.423 (2)C15—H150.93
S1—O21.423 (2)C16—H16A0.96
S1—N11.667 (2)C16—H16B0.96
S1—C101.759 (4)C16—H16C0.96
N1—C51.417 (3)C17—C241.335 (5)
N1—C21.436 (3)C17—C181.492 (5)
C2—C31.351 (4)C18—C191.390 (5)
C2—C161.490 (4)C18—C231.391 (4)
C3—C41.438 (4)C19—C201.387 (6)
C3—C171.487 (4)C19—H190.93
C4—C91.388 (4)C20—C211.381 (7)
C4—C51.393 (3)C20—H200.93
C5—C61.389 (4)C21—C221.375 (7)
C6—C71.377 (5)C21—H210.93
C6—H60.93C22—C231.381 (6)
C7—C81.383 (5)C22—H220.93
C7—H70.93C23—H230.93
C8—C91.375 (5)C24—C251.468 (5)
C8—H80.93C24—H240.93
C9—H90.93C25—C301.391 (5)
C10—C151.375 (5)C25—C261.400 (5)
C10—C111.376 (5)C26—C271.387 (7)
C11—C121.387 (7)C26—H260.93
C11—H110.93C27—C281.373 (9)
C12—C131.359 (7)C27—H270.93
C12—H120.93C28—C291.359 (8)
C13—C141.359 (8)C28—H280.93
C13—H130.93C29—C301.388 (7)
C14—C151.386 (7)C29—H290.93
C14—H140.93C30—H300.93
O1—S1—O2119.43 (15)C14—C15—H15120.6
O1—S1—N1105.63 (14)C2—C16—H16A109.5
O2—S1—N1107.29 (14)C2—C16—H16B109.5
O1—S1—C10109.71 (17)H16A—C16—H16B109.5
O2—S1—C10109.22 (17)C2—C16—H16C109.5
N1—S1—C10104.47 (14)H16A—C16—H16C109.5
C5—N1—C2106.9 (2)H16B—C16—H16C109.5
C5—N1—S1119.93 (19)C24—C17—C3123.1 (3)
C2—N1—S1123.1 (2)C24—C17—C18121.5 (3)
C3—C2—N1108.6 (2)C3—C17—C18115.3 (3)
C3—C2—C16127.8 (3)C19—C18—C23117.6 (3)
N1—C2—C16123.4 (2)C19—C18—C17121.0 (3)
C2—C3—C4108.9 (2)C23—C18—C17121.4 (3)
C2—C3—C17126.5 (3)C20—C19—C18121.3 (3)
C4—C3—C17124.5 (2)C20—C19—H19119.3
C9—C4—C5120.1 (3)C18—C19—H19119.3
C9—C4—C3132.5 (3)C21—C20—C19120.2 (4)
C5—C4—C3107.4 (2)C21—C20—H20119.9
C6—C5—C4121.4 (3)C19—C20—H20119.9
C6—C5—N1130.3 (2)C22—C21—C20118.9 (4)
C4—C5—N1108.1 (2)C22—C21—H21120.5
C7—C6—C5117.5 (3)C20—C21—H21120.5
C7—C6—H6121.3C21—C22—C23121.0 (4)
C5—C6—H6121.3C21—C22—H22119.5
C6—C7—C8121.4 (3)C23—C22—H22119.5
C6—C7—H7119.3C22—C23—C18120.9 (4)
C8—C7—H7119.3C22—C23—H23119.6
C9—C8—C7121.2 (3)C18—C23—H23119.6
C9—C8—H8119.4C17—C24—C25128.8 (3)
C7—C8—H8119.4C17—C24—H24115.6
C8—C9—C4118.4 (3)C25—C24—H24115.6
C8—C9—H9120.8C30—C25—C26117.6 (4)
C4—C9—H9120.8C30—C25—C24118.5 (3)
C15—C10—C11120.5 (4)C26—C25—C24123.9 (3)
C15—C10—S1119.3 (3)C27—C26—C25120.5 (4)
C11—C10—S1120.2 (3)C27—C26—H26119.7
C10—C11—C12119.1 (4)C25—C26—H26119.7
C10—C11—H11120.5C28—C27—C26120.4 (5)
C12—C11—H11120.5C28—C27—H27119.8
C13—C12—C11121.0 (5)C26—C27—H27119.8
C13—C12—H12119.5C29—C28—C27120.0 (4)
C11—C12—H12119.5C29—C28—H28120.0
C12—C13—C14119.4 (5)C27—C28—H28120.0
C12—C13—H13120.3C28—C29—C30120.5 (5)
C14—C13—H13120.3C28—C29—H29119.8
C13—C14—C15121.4 (4)C30—C29—H29119.8
C13—C14—H14119.3C29—C30—C25121.0 (4)
C15—C14—H14119.3C29—C30—H30119.5
C10—C15—C14118.7 (4)C25—C30—H30119.5
C10—C15—H15120.6
O1—S1—N1—C550.4 (3)N1—S1—C10—C1192.3 (3)
O2—S1—N1—C5178.8 (2)C15—C10—C11—C120.7 (7)
C10—S1—N1—C565.3 (3)S1—C10—C11—C12177.8 (4)
O1—S1—N1—C2168.7 (3)C10—C11—C12—C130.3 (8)
O2—S1—N1—C240.3 (3)C11—C12—C13—C141.1 (9)
C10—S1—N1—C275.6 (3)C12—C13—C14—C152.2 (10)
C5—N1—C2—C32.3 (4)C11—C10—C15—C141.8 (8)
S1—N1—C2—C3147.4 (2)S1—C10—C15—C14176.7 (5)
C5—N1—C2—C16177.4 (3)C13—C14—C15—C102.6 (10)
S1—N1—C2—C1637.5 (4)C2—C3—C17—C2462.0 (5)
N1—C2—C3—C41.7 (4)C4—C3—C17—C24118.0 (4)
C16—C2—C3—C4176.5 (3)C2—C3—C17—C18114.4 (4)
N1—C2—C3—C17178.3 (3)C4—C3—C17—C1865.5 (4)
C16—C2—C3—C173.5 (6)C24—C17—C18—C19148.5 (3)
C2—C3—C4—C9179.6 (4)C3—C17—C18—C1928.1 (4)
C17—C3—C4—C90.4 (6)C24—C17—C18—C2330.9 (4)
C2—C3—C4—C50.5 (4)C3—C17—C18—C23152.6 (3)
C17—C3—C4—C5179.5 (3)C23—C18—C19—C201.4 (6)
C9—C4—C5—C61.7 (5)C17—C18—C19—C20178.0 (4)
C3—C4—C5—C6177.5 (3)C18—C19—C20—C210.4 (7)
C9—C4—C5—N1178.3 (3)C19—C20—C21—C220.4 (7)
C3—C4—C5—N11.0 (3)C20—C21—C22—C230.1 (7)
C2—N1—C5—C6178.2 (3)C21—C22—C23—C180.9 (6)
S1—N1—C5—C635.4 (5)C19—C18—C23—C221.7 (5)
C2—N1—C5—C42.0 (3)C17—C18—C23—C22177.7 (3)
S1—N1—C5—C4148.4 (2)C3—C17—C24—C255.7 (6)
C4—C5—C6—C72.1 (5)C18—C17—C24—C25178.1 (3)
N1—C5—C6—C7177.9 (4)C17—C24—C25—C30146.4 (4)
C5—C6—C7—C81.8 (6)C17—C24—C25—C2635.8 (6)
C6—C7—C8—C91.0 (7)C30—C25—C26—C273.3 (6)
C7—C8—C9—C40.5 (6)C24—C25—C26—C27179.0 (4)
C5—C4—C9—C80.8 (5)C25—C26—C27—C281.6 (8)
C3—C4—C9—C8178.2 (4)C26—C27—C28—C290.3 (9)
O1—S1—C10—C15160.9 (3)C27—C28—C29—C300.3 (8)
O2—S1—C10—C1528.3 (4)C28—C29—C30—C251.5 (7)
N1—S1—C10—C1586.2 (3)C26—C25—C30—C293.2 (6)
O1—S1—C10—C1120.5 (4)C24—C25—C30—C29178.9 (4)
O2—S1—C10—C11153.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.372.948 (5)120
C9—H9···O2i0.932.493.344 (5)153
C16—H16B···O20.962.402.858 (5)109
C20—H20···Cgii0.932.833.658 (5)148
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC29H23NO2S
Mr449.54
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.029 (3), 14.891 (7), 9.8459 (17)
β (°) 117.588 (18)
V3)1173.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.36 × 0.28 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3078, 2905, 2520
Rint0.036
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.06
No. of reflections2905
No. of parameters299
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.43

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—O11.423 (2)S1—C101.759 (4)
S1—O21.423 (2)N1—C51.417 (3)
S1—N11.667 (2)N1—C21.436 (3)
O1—S1—N1—C550.4 (3)C10—S1—N1—C565.3 (3)
O2—S1—N1—C5178.8 (2)O1—S1—N1—C2168.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.372.948 (5)120
C9—H9···O2i0.932.493.344 (5)153
C16—H16B···O20.962.402.858 (5)109
C20—H20···Cgii0.932.833.658 (5)148
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds