Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C17H16N2O3S, the pyran ring adopts a flattened envelope conformation. N—H...O hydrogen bonds generate a centrosymmetric R22(12) dimer. The dimers translated by a unit cell along the c axis are linked via C—H...S hydrogen bonds to form a C(6) chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680504081X/ci6704sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680504081X/ci6704Isup2.hkl
Contains datablock I

CCDC reference: 296532

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.138
  • Data-to-parameter ratio = 18.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.62 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.16 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C15 - C16 .. 6.36 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Chromenes (2H-1-benzopyran derivatives) are frequently found in naturally occurring heterocycles, many of which exhibit biological activity (Bowers et al., 1976). They have been widely employed as important intermediates in the synthesis of natural products and medicinal agents (Wang & Finn, 2000). Chromene derivatives can yield a new family of potassium-channel activating drugs (Atwal et al., 1995; Salamon et al., 2002). In view of the above importance, the structural study of the title compound, (I), was undertaken.

The N—O, C—S and Csp2—N bond lengths (Table 1) deviate slightly from the corresponding mean values of 1.218 (13), 1.819 (19) and 1.353 (7) Å, respectively (Allen et al., 1987). The difference in the C—O bond lengths in the pyran ring is an observation common to the chromene moiety. The C5—C6—C7, C6—C5—C10 and C6—C7—C8 angles deviate from 120°, which may be due to the fusion of the benzene ring (C5—C10) with the non-planar pyran ring. The C4—S1—C18 angle of 101.1 (1)° is comparable with that reported for a diazapentacyclo compound (Bhaskaran et al., 2003).

The pyran ring adopts a flattened envelope conformation, with atom C4 deviating from the O1/C2/C3/C5/C6 plane by 0.229 (2) Å. The asymmetry parameter (Nardelli, 1995) ΔCs(C4) is 0.7 (2)°, and the puckering parameters (Cremer & Pople, 1975) Q, θ and ϕ are 0.175 (1) Å, 80.7 (5)° and 178.8 (5)°, respectively. The small puckering may be attributed to the resonance in the pyran ring. The O—N—C—C torsion angles (Table 1) indicate that the nitro group is twisted slightly away from the chromene moiety (Fig. 1). The dihedral angle between the O1/C2/C3/C5—C10 and C12—C17 planes is 60.63 (6)°.

In the molecular structure, an intramolecular N1—H1···O3 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing is stabilized by N—H··· O and C—H···S intermolecular hydrogen bonds (Table 2). The N1—H1···O3i and N1i—H1i···O3 (symmetry code as in Table 2) hydrogen bonds generate a centrosymmetric R22(12) dimer centred at (1/2,0,1). The dimers translated by a unit cell along the c axis are linked via C7—H7···S1ii hydrogen bonds to form a C(6) chain (Fig. 2).

Experimental top

To a mixture of 2-hydroxybenzaldehyde (27 mmol) and 60% NaH (40 mmol) in dry tetrahydrofuran (THF, 10 ml) N-benzyl-N-[(E)-1-methylsulfanyl)-2-nitro-1-ethenyl]amine (27 mmol) was added under a nitrogen atmosphere. The reaction mixture was stirred thoroughly for about 1 h and then refluxed for 7 h. Unreacted NaH was quenched with a few drops of acetic acid. The reaction mixture was diluted with dichloromethane (35 ml) and washed with water and brine solution. Evaporation of the solvent and column chromatography (Medium?, hexane and ethyl acetate) afforded compound (I) as a pale-yellow solid. Single crystals were grown by slow evaporation of a hexane–ethyl acetate (8:2 v/v) solution.

Refinement top

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) for other H atms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I). For clarity, H atoms not involved in the hydrogen-bonding interactions have been omitted. Hydrogen bonds are shown as dashed lines.
N-Benzyl-N-[4-(methylsulfanyl)-3-nitro-4H-chromen-2-yl]amine top
Crystal data top
C17H16N2O3SF(000) = 688
Mr = 328.38Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9200 reflections
a = 10.6411 (7) Åθ = 2.0–28.0°
b = 19.6795 (12) ŵ = 0.22 mm1
c = 8.2268 (5) ÅT = 293 K
β = 109.795 (1)°Block, pale yellow
V = 1620.99 (18) Å30.21 × 0.20 × 0.20 mm
Z = 4
Data collection top
CCD area detector
diffractometer
3140 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.0°, θmin = 2.0°
ω scansh = 1314
18458 measured reflectionsk = 2525
3844 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0853P)2 + 0.1762P]
where P = (Fo2 + 2Fc2)/3
3844 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C17H16N2O3SV = 1620.99 (18) Å3
Mr = 328.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6411 (7) ŵ = 0.22 mm1
b = 19.6795 (12) ÅT = 293 K
c = 8.2268 (5) Å0.21 × 0.20 × 0.20 mm
β = 109.795 (1)°
Data collection top
CCD area detector
diffractometer
3140 reflections with I > 2σ(I)
18458 measured reflectionsRint = 0.022
3844 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3844 reflectionsΔρmin = 0.14 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.25737 (12)0.02685 (7)0.75730 (15)0.0532 (3)
N10.35686 (12)0.04972 (7)1.12667 (14)0.0535 (3)
H10.41510.04021.07890.064*
C40.04354 (13)0.07722 (7)0.74250 (16)0.0467 (3)
H40.00320.03970.66400.056*
O20.20397 (11)0.01437 (7)0.60086 (13)0.0678 (3)
O30.37783 (11)0.01208 (7)0.83399 (15)0.0728 (4)
S10.03827 (5)0.15310 (2)0.60905 (5)0.06725 (17)
C30.18208 (13)0.05667 (7)0.84587 (16)0.0452 (3)
C20.23497 (13)0.06399 (7)1.02481 (16)0.0458 (3)
O10.15851 (10)0.08751 (6)1.11296 (11)0.0542 (3)
C60.02092 (14)0.09371 (7)1.03243 (17)0.0480 (3)
C50.03877 (14)0.08794 (7)0.85670 (18)0.0474 (3)
C100.17657 (15)0.09545 (9)0.7899 (2)0.0619 (4)
H100.22040.09100.67160.074*
C90.24914 (18)0.10938 (10)0.8961 (3)0.0742 (5)
H90.34120.11490.84920.089*
C80.1857 (2)0.11521 (9)1.0713 (3)0.0735 (5)
H80.23520.12491.14250.088*
C70.04945 (17)0.10682 (8)1.1424 (2)0.0611 (4)
H70.00610.10991.26110.073*
C180.0890 (3)0.21722 (11)0.7697 (3)0.1183 (10)
H18A0.01960.22460.81790.177*
H18B0.10560.25860.71880.177*
H18C0.16910.20310.85930.177*
C110.40077 (15)0.04888 (8)1.31611 (17)0.0565 (4)
H11A0.47180.01581.35940.068*
H11B0.32680.03461.35180.068*
C120.44982 (14)0.11682 (8)1.39505 (16)0.0525 (3)
C130.56909 (17)0.14255 (10)1.3900 (2)0.0665 (4)
H130.61910.11701.33880.080*
C140.6156 (2)0.20484 (12)1.4587 (2)0.0834 (6)
H140.69570.22151.45270.100*
C150.5443 (3)0.24215 (12)1.5355 (3)0.0916 (7)
H150.57500.28471.58060.110*
C160.4275 (3)0.21747 (13)1.5472 (3)0.0942 (7)
H160.38030.24291.60250.113*
C170.37892 (19)0.15447 (11)1.4765 (2)0.0742 (5)
H170.29930.13781.48410.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0525 (7)0.0658 (7)0.0419 (6)0.0078 (5)0.0166 (5)0.0038 (5)
N10.0469 (6)0.0737 (8)0.0361 (5)0.0047 (5)0.0090 (5)0.0003 (5)
C40.0478 (7)0.0531 (7)0.0357 (6)0.0034 (5)0.0096 (5)0.0067 (5)
O20.0720 (7)0.0911 (8)0.0401 (5)0.0100 (6)0.0186 (5)0.0155 (5)
O30.0527 (6)0.1100 (10)0.0556 (6)0.0225 (6)0.0181 (5)0.0040 (6)
S10.0800 (3)0.0783 (3)0.0445 (2)0.0173 (2)0.0224 (2)0.01423 (17)
C30.0463 (7)0.0526 (7)0.0357 (6)0.0036 (5)0.0125 (5)0.0044 (5)
C20.0474 (7)0.0509 (7)0.0383 (6)0.0011 (5)0.0137 (5)0.0024 (5)
O10.0529 (6)0.0727 (7)0.0362 (5)0.0040 (5)0.0141 (4)0.0092 (4)
C60.0521 (7)0.0467 (7)0.0473 (7)0.0026 (5)0.0195 (6)0.0022 (5)
C50.0487 (7)0.0461 (7)0.0474 (7)0.0026 (5)0.0163 (6)0.0017 (5)
C100.0502 (8)0.0662 (9)0.0659 (9)0.0054 (7)0.0150 (7)0.0034 (7)
C90.0534 (9)0.0779 (11)0.0961 (14)0.0118 (8)0.0318 (9)0.0089 (10)
C80.0776 (12)0.0687 (10)0.0941 (14)0.0110 (9)0.0551 (11)0.0030 (9)
C70.0745 (10)0.0607 (9)0.0585 (9)0.0058 (7)0.0361 (8)0.0011 (7)
C180.202 (3)0.0594 (11)0.0967 (17)0.0161 (15)0.0548 (18)0.0027 (11)
C110.0563 (8)0.0718 (9)0.0349 (6)0.0031 (7)0.0070 (6)0.0061 (6)
C120.0498 (7)0.0703 (9)0.0312 (6)0.0041 (6)0.0054 (5)0.0050 (5)
C130.0625 (9)0.0880 (12)0.0486 (8)0.0040 (8)0.0183 (7)0.0017 (8)
C140.0843 (13)0.1019 (15)0.0603 (10)0.0276 (11)0.0197 (9)0.0012 (10)
C150.1118 (18)0.0873 (14)0.0661 (12)0.0217 (13)0.0175 (12)0.0149 (10)
C160.1037 (17)0.1037 (16)0.0743 (13)0.0117 (13)0.0289 (12)0.0271 (12)
C170.0624 (10)0.1006 (14)0.0596 (10)0.0003 (9)0.0207 (8)0.0162 (9)
Geometric parameters (Å, º) top
N2—O21.243 (2)C8—C71.378 (3)
N2—O31.256 (2)C8—H80.93
N2—C31.383 (2)C7—H70.93
N1—C21.314 (2)C18—H18A0.96
N1—C111.468 (2)C18—H18B0.96
N1—H10.86C18—H18C0.96
C4—C31.487 (2)C11—C121.501 (2)
C4—C51.501 (2)C11—H11A0.97
C4—S11.843 (1)C11—H11B0.97
C4—H40.98C12—C131.380 (2)
S1—C181.774 (2)C12—C171.382 (2)
C3—C21.394 (2)C13—C141.370 (3)
C2—O11.342 (2)C13—H130.93
O1—C61.393 (2)C14—C151.356 (3)
C6—C51.3727 (19)C14—H140.93
C6—C71.380 (2)C15—C161.367 (3)
C5—C101.389 (2)C15—H150.93
C10—C91.375 (3)C16—C171.393 (3)
C10—H100.93C16—H160.93
C9—C81.374 (3)C17—H170.93
C9—H90.93
O2—N2—O3120.4 (1)C7—C8—H8119.7
O2—N2—C3119.1 (1)C6—C7—C8118.1 (2)
O3—N2—C3120.6 (1)C6—C7—H7121.0
C2—N1—C11124.75 (12)C8—C7—H7121.0
C2—N1—H1117.6S1—C18—H18A109.5
C11—N1—H1117.6S1—C18—H18B109.5
C3—C4—C5110.9 (1)H18A—C18—H18B109.5
C3—C4—S1112.67 (10)S1—C18—H18C109.5
C5—C4—S1110.65 (9)H18A—C18—H18C109.5
C3—C4—H4107.5H18B—C18—H18C109.5
C5—C4—H4107.5N1—C11—C12112.85 (12)
S1—C4—H4107.5N1—C11—H11A109.0
C18—S1—C4101.1 (1)C12—C11—H11A109.0
N2—C3—C2120.10 (12)N1—C11—H11B109.0
N2—C3—C4116.95 (11)C12—C11—H11B109.0
C2—C3—C4122.9 (1)H11A—C11—H11B107.8
N1—C2—O1112.15 (11)C13—C12—C17118.5 (2)
N1—C2—C3127.56 (12)C13—C12—C11120.17 (14)
O1—C2—C3120.3 (1)C17—C12—C11121.37 (15)
C2—O1—C6120.3 (1)C14—C13—C12121.5 (2)
C5—C6—C7123.1 (1)C14—C13—H13119.2
C5—C6—O1122.1 (1)C12—C13—H13119.2
C7—C6—O1114.88 (13)C15—C14—C13119.7 (2)
C6—C5—C10117.3 (1)C15—C14—H14120.1
C6—C5—C4120.73 (12)C13—C14—H14120.1
C10—C5—C4121.96 (13)C14—C15—C16120.4 (2)
C9—C10—C5121.0 (2)C14—C15—H15119.8
C9—C10—H10119.5C16—C15—H15119.8
C5—C10—H10119.5C15—C16—C17120.3 (2)
C8—C9—C10120.07 (16)C15—C16—H16119.8
C8—C9—H9120.0C17—C16—H16119.8
C10—C9—H9120.0C12—C17—C16119.54 (19)
C9—C8—C7120.52 (15)C12—C17—H17120.2
C9—C8—H8119.7C16—C17—H17120.2
C3—C4—S1—C1870.72 (14)O1—C6—C5—C42.4 (2)
C5—C4—S1—C1854.02 (15)C3—C4—C5—C614.6 (2)
O2—N2—C3—C2172.60 (13)S1—C4—C5—C6111.14 (12)
O3—N2—C3—C26.9 (2)C3—C4—C5—C10168.30 (14)
O2—N2—C3—C45.0 (2)S1—C4—C5—C1065.95 (16)
O3—N2—C3—C4175.48 (13)C6—C5—C10—C91.2 (2)
C5—C4—C3—N2162.24 (12)C4—C5—C10—C9175.96 (15)
S1—C4—C3—N273.14 (14)C5—C10—C9—C80.9 (3)
C5—C4—C3—C215.3 (2)C10—C9—C8—C70.4 (3)
S1—C4—C3—C2109.29 (13)C5—C6—C7—C80.8 (2)
C11—N1—C2—O19.1 (2)O1—C6—C7—C8178.46 (14)
C11—N1—C2—C3170.35 (14)C9—C8—C7—C61.2 (3)
N2—C3—C2—N15.1 (2)C2—N1—C11—C1289.07 (17)
C4—C3—C2—N1177.39 (14)N1—C11—C12—C1370.50 (17)
N2—C3—C2—O1174.28 (12)N1—C11—C12—C17110.61 (16)
C4—C3—C2—O13.2 (2)C17—C12—C13—C142.0 (2)
N1—C2—O1—C6168.35 (12)C11—C12—C13—C14179.05 (15)
C3—C2—O1—C611.1 (2)C12—C13—C14—C150.8 (3)
C2—O1—C6—C511.7 (2)C13—C14—C15—C161.0 (3)
C2—O1—C6—C7169.09 (13)C14—C15—C16—C171.6 (4)
C7—C6—C5—C100.4 (2)C13—C12—C17—C161.5 (3)
O1—C6—C5—C10179.58 (13)C11—C12—C17—C16179.61 (17)
C7—C6—C5—C4176.81 (14)C15—C16—C17—C120.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.002.600 (2)126
N1—H1···O3i0.862.312.989 (2)136
C7—H7···S1ii0.932.873.743 (2)157
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H16N2O3S
Mr328.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.6411 (7), 19.6795 (12), 8.2268 (5)
β (°) 109.795 (1)
V3)1620.99 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.21 × 0.20 × 0.20
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18458, 3844, 3140
Rint0.022
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.138, 1.03
No. of reflections3844
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
N2—O21.243 (2)C4—S11.843 (1)
N2—O31.256 (2)S1—C181.774 (2)
N2—C31.383 (2)C3—C21.394 (2)
N1—C21.314 (2)C2—O11.342 (2)
N1—C111.468 (2)O1—C61.393 (2)
C4—C31.487 (2)C11—C121.501 (2)
C4—C51.501 (2)
O2—N2—O3120.4 (1)C5—C6—C7123.1 (1)
O2—N2—C3119.1 (1)C5—C6—O1122.1 (1)
O3—N2—C3120.6 (1)C6—C5—C10117.3 (1)
C3—C4—C5110.9 (1)C9—C10—C5121.0 (2)
C18—S1—C4101.1 (1)C6—C7—C8118.1 (2)
C2—C3—C4122.9 (1)C13—C12—C17118.5 (2)
O1—C2—C3120.3 (1)C14—C13—C12121.5 (2)
C2—O1—C6120.3 (1)
O2—N2—C3—C2172.60 (13)C4—C3—C2—O13.2 (2)
O3—N2—C3—C26.9 (2)C3—C2—O1—C611.1 (2)
O2—N2—C3—C45.0 (2)C2—O1—C6—C511.7 (2)
O3—N2—C3—C4175.48 (13)O1—C6—C5—C42.4 (2)
C5—C4—C3—C215.3 (2)C3—C4—C5—C614.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.002.600 (2)126
N1—H1···O3i0.862.312.989 (2)136
C7—H7···S1ii0.932.873.743 (2)157
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds