Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu(C7H3N2O6)(C6H7NO)2](C7H3N2O6), the CuII atom is coordinated by two chelating 2-pyridylmethanol ligands and a monodentate 3,5-dinitro­benzoate anion, forming a square-pyramidal coordination polyhedron. The cation and neighbouring anion are connected by two very strong O—H...O hydrogen bonds to form an ion pair.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041310/ci6702sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041310/ci6702Isup2.hkl
Contains datablock I

CCDC reference: 296531

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.042
  • wR factor = 0.111
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.18 PLAT301_ALERT_3_C Main Residue Disorder ......................... 2.00 Perc. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C7 H3 N2 O6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

As a part of our systematic study of copper(II) carboxylate complexes with biologically interesting molecular ligands, we report here the crystal structure of the title compound, (I).

The asymmetric unit of (I) is made up of a [Cu(C6H7NO)2(C7H3N2O6)]+ cation and a C7H3N2O6 anion. The (2-pyridyl)methanol (also known as 2-pyridylcarbinol and abbreviated as 2-pycarb) ligand prefers a chelating bonding mode, in contrast with the bridging bonding mode found for (3-pyridyl)methanol (known as ronicol) in copper(II) complexes (Stachová et al., 2005). The 3,5-dinitrobenzoate ligand is monodentate, coordinating through a carboxylate O atom to give a complex cation with distorted square-pyramidal geometry and a CuO2N2O' coordination polyhedron. The basal plane is formed by carboxylate atom O1 from the coordinating 3,5-dinitrobenzoate ligand, atom O31 from one 2-pycarb ligand and two mutually trans pyridine atoms, N5 and N6, from two 2-pycarb ligands. The axial position of the coordination polyhedron is occupied by atom O41 of a 2-pycarb ligand, with a Cu—O distance longer than those in the basal plane (Table 1). The Cu1—O2 distance of 2.735 (2) Å is longer than the Cu1—O1 distance. Also, the C11—O2 distance is significantly shorter than the C11—O1 distance. These confirm that atom O2 is not involved in coordination and the ligand is monodentate. Atom Cu1 is displaced out of the basal plane by 0.120 (1) Å in the direction of the apical O41 atom. The 3,5-dinitrobenzoate anion is uncoordinated. With the exception of the C—O distances in the carboxylate groups, there are no significant differences in bond lengths or angles between the coordinated and uncoordinated anions and the values are comparable with those observed for bis(1,3-diaminopropane)-3,5-dinitrobenzoatocopper(II) 3,5-dinitrobenzoate (Sundberg et al., 1994).

Two very strong hydrogen bonds link atoms O7 and O8 of the uncoordinated 3,5-dinitrobenzoate anion to hydroxyl atoms H41 and H31 of the coordinated 2-pycarb ligands (Table 2), giving rise to ion-pair formation. Similar hydrogen bonding is reported for bis(triethanolamine)copper(II) diacetate (Krabbes et al., 1999). In the closely related benzoatobis(dimethylaminoetanol)copper(II) benzoate (Turpeinen et al., 1985), the carboxylate anions form hydrogen bonds with hydroxyl H atoms of the coordinated ligands. Similar but weaker hydrogen bonds are found in copper(II) complexes containing coordinated NH groups (Sen et al., 2000, Sundberg & Klinga, 1994).

Experimental top

(2-Pyridyl)methanol (2 mmol) was added to copper(II) acetate (1 mmol) in aqueous solution (Volume?). 3,5-Dinitrobenzoic acid (2 mmol) was then added. The powdery blue product was filtered off and dried at room temperature. Blue prismatic crystals of (I) suitable for X-ray analysis were obtained from the mother liquor after slow room-temperature crystallization for a few weeks.

Refinement top

Atoms H31 and H41 were located in a difference Fourier map and their positions were not refined. The remaining H atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms, with C—H distances of 0.93 (aromatic) or 0.97 Å (methylene). The Uiso value for all H atoms was fixed at 0.05 Å2. Atom O11 of an NO2 group is disordered over two positions, O11A and O11B. The occupancy factors were initially refined to 0.502 (2) and 0.498 (2), but later fixed at 0.5 each.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 40% probability level. Dotted lines represent O—H···O hydrogen bonds.
(3,5-Dinitrobenzoato-κ2O,O')bis[(2-pyridyl)methanol-κ2N,O]copper(II) 3,5-dinitrobenzoate top
Crystal data top
[Cu(C7H3N2O6)(C6H7NO)2](C7H3N2O6)Z = 2
Mr = 704.02F(000) = 718
Triclinic, P1Dx = 1.623 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.870 (1) ÅCell parameters from 25 reflections
b = 12.181 (1) Åθ = 4.2–12.0°
c = 12.732 (1) ŵ = 0.84 mm1
α = 95.29 (1)°T = 293 K
β = 108.68 (1)°Prism, blue
γ = 91.80 (1)°0.55 × 0.45 × 0.30 mm
V = 1440.9 (2) Å3
Data collection top
Siemens P4
diffractometer
5266 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
ϕ scansh = 112
Absorption correction: ψ scan
(XEMP; Siemens, 1990)
k = 1515
Tmin = 0.641, Tmax = 0.777l = 1616
7697 measured reflections2 standard reflections every 100 reflections
6556 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.292P]
where P = (Fo2 + 2Fc2)/3
6556 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cu(C7H3N2O6)(C6H7NO)2](C7H3N2O6)γ = 91.80 (1)°
Mr = 704.02V = 1440.9 (2) Å3
Triclinic, P1Z = 2
a = 9.870 (1) ÅMo Kα radiation
b = 12.181 (1) ŵ = 0.84 mm1
c = 12.732 (1) ÅT = 293 K
α = 95.29 (1)°0.55 × 0.45 × 0.30 mm
β = 108.68 (1)°
Data collection top
Siemens P4
diffractometer
5266 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1990)
Rint = 0.029
Tmin = 0.641, Tmax = 0.7772 standard reflections every 100 reflections
7697 measured reflections intensity decay: none
6556 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
6556 reflectionsΔρmin = 0.63 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.24345 (3)0.20701 (2)0.07794 (2)0.03324 (9)
O10.35754 (18)0.19589 (14)0.23424 (12)0.0414 (4)
O20.1409 (2)0.1750 (2)0.24923 (16)0.0662 (6)
O30.2916 (3)0.0366 (3)0.7348 (2)0.0919 (9)
O40.1022 (2)0.0602 (2)0.60108 (18)0.0700 (6)
O50.7777 (2)0.1572 (2)0.5571 (2)0.0748 (7)
O60.7535 (2)0.1458 (2)0.71725 (17)0.0717 (6)
O70.3371 (3)0.3479 (2)0.17568 (17)0.0740 (7)
O80.1061 (2)0.28979 (18)0.22585 (15)0.0577 (5)
O90.3235 (3)0.5979 (2)0.5875 (2)0.0910 (9)
O100.4646 (3)0.59000 (19)0.4202 (2)0.0742 (7)
O11A0.1383 (10)0.2283 (8)0.6324 (9)0.079 (3)0.5
O11B0.1840 (10)0.2716 (8)0.6236 (9)0.079 (3)0.5
O120.1152 (2)0.3650 (2)0.7290 (2)0.0682 (6)
O310.08534 (17)0.18756 (13)0.06853 (12)0.0380 (3)
O410.42129 (19)0.29544 (14)0.03027 (13)0.0438 (4)
N10.2311 (2)0.0616 (2)0.64227 (18)0.0496 (5)
N20.7052 (2)0.14946 (18)0.61728 (17)0.0457 (5)
N30.3560 (3)0.5606 (2)0.4977 (2)0.0599 (6)
N40.0882 (3)0.3228 (2)0.6427 (2)0.0580 (6)
N50.2700 (2)0.05234 (15)0.03196 (14)0.0331 (4)
N60.2107 (2)0.36586 (16)0.10705 (15)0.0399 (4)
C110.2717 (3)0.17695 (19)0.28778 (17)0.0385 (5)
C120.3406 (2)0.15251 (17)0.40698 (17)0.0332 (4)
C130.2550 (2)0.11972 (18)0.46765 (18)0.0352 (5)
H130.15580.11190.43550.05*
C140.3197 (2)0.09860 (19)0.57692 (18)0.0362 (5)
C150.4665 (3)0.10997 (18)0.62806 (18)0.0372 (5)
H150.50830.09720.70210.05*
C160.5475 (2)0.14104 (18)0.56520 (18)0.0348 (5)
C170.4891 (2)0.16214 (17)0.45530 (17)0.0337 (4)
H170.54750.18250.41480.05*
C210.2137 (3)0.3307 (2)0.2428 (2)0.0435 (6)
C220.1871 (3)0.36606 (19)0.3591 (2)0.0403 (5)
C230.2849 (3)0.4393 (2)0.3773 (2)0.0437 (5)
H230.36890.4640.32000.05*
C240.2565 (3)0.4758 (2)0.4816 (2)0.0445 (6)
C250.1353 (3)0.4388 (2)0.5702 (2)0.0450 (6)
H250.11730.46380.63990.05*
C260.0430 (3)0.3635 (2)0.5497 (2)0.0418 (5)
C270.0637 (3)0.3273 (2)0.4458 (2)0.0416 (5)
H270.00310.27820.43440.05*
C310.0528 (2)0.07582 (19)0.11763 (18)0.0383 (5)
H3110.04120.0720.19650.05*
H3120.03670.04870.11010.05*
C320.1708 (2)0.00433 (19)0.06115 (17)0.0336 (4)
C330.1782 (3)0.1036 (2)0.1014 (2)0.0469 (6)
H330.10760.13650.16520.05*
C340.2923 (3)0.1623 (2)0.0454 (2)0.0522 (6)
H340.29990.23490.07170.05*
C350.3950 (3)0.1123 (2)0.0503 (2)0.0485 (6)
H350.47220.15040.08920.05*
C360.3804 (3)0.0050 (2)0.08645 (19)0.0413 (5)
H360.44870.0290.15090.05*
C410.4531 (3)0.3936 (2)0.1051 (2)0.0520 (6)
H4110.50450.4480.07850.05*
H4120.51450.37760.17770.05*
C420.0882 (3)0.4004 (2)0.1186 (2)0.0511 (6)
H420.01390.34840.11170.05*
C430.0686 (4)0.5103 (3)0.1400 (2)0.0648 (9)
H430.0170.53220.14850.05*
C440.1769 (4)0.5870 (3)0.1492 (3)0.0708 (10)
H440.1650.66180.16280.05*
C450.3034 (4)0.5526 (2)0.1374 (2)0.0639 (8)
H450.37820.60390.14390.05*
C460.3182 (3)0.4400 (2)0.11589 (19)0.0471 (6)
H310.09510.22760.1190.05*
H410.3880.31750.04070.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03677 (16)0.03858 (15)0.02142 (13)0.00363 (11)0.00477 (10)0.00492 (9)
O10.0457 (9)0.0521 (9)0.0224 (7)0.0046 (8)0.0050 (7)0.0053 (6)
O20.0363 (10)0.1082 (17)0.0447 (10)0.0038 (10)0.0063 (8)0.0349 (11)
O30.0616 (14)0.167 (3)0.0590 (14)0.0121 (16)0.0228 (12)0.0614 (17)
O40.0438 (12)0.1122 (19)0.0593 (13)0.0013 (12)0.0224 (10)0.0164 (12)
O50.0358 (11)0.118 (2)0.0686 (14)0.0087 (12)0.0116 (10)0.0214 (13)
O60.0440 (11)0.1083 (18)0.0452 (11)0.0042 (11)0.0118 (9)0.0186 (11)
O70.0654 (14)0.1102 (18)0.0374 (10)0.0176 (13)0.0025 (10)0.0223 (11)
O80.0624 (12)0.0718 (13)0.0392 (10)0.0053 (10)0.0141 (9)0.0194 (9)
O90.122 (2)0.0874 (17)0.0582 (14)0.0327 (16)0.0198 (14)0.0310 (13)
O100.0823 (17)0.0710 (14)0.0611 (13)0.0314 (13)0.0167 (12)0.0014 (11)
O11A0.077 (6)0.099 (6)0.049 (3)0.040 (4)0.011 (4)0.004 (4)
O11B0.060 (5)0.111 (7)0.054 (4)0.031 (4)0.003 (3)0.019 (5)
O120.0659 (14)0.0899 (16)0.0382 (10)0.0011 (12)0.0019 (9)0.0087 (10)
O310.0407 (9)0.0445 (8)0.0254 (7)0.0046 (7)0.0047 (6)0.0088 (6)
O410.0440 (9)0.0506 (9)0.0355 (8)0.0027 (8)0.0116 (7)0.0037 (7)
N10.0436 (12)0.0684 (14)0.0402 (11)0.0042 (11)0.0168 (10)0.0119 (10)
N20.0340 (11)0.0528 (12)0.0402 (11)0.0020 (9)0.0024 (9)0.0094 (9)
N30.0792 (18)0.0527 (13)0.0473 (13)0.0154 (13)0.0216 (13)0.0066 (10)
N40.0556 (15)0.0805 (17)0.0319 (11)0.0078 (13)0.0093 (10)0.0018 (11)
N50.0334 (9)0.0399 (9)0.0236 (8)0.0003 (8)0.0057 (7)0.0051 (7)
N60.0509 (12)0.0428 (10)0.0254 (8)0.0063 (9)0.0107 (8)0.0065 (7)
C110.0412 (13)0.0422 (12)0.0249 (10)0.0018 (10)0.0001 (9)0.0075 (8)
C120.0342 (11)0.0335 (10)0.0257 (10)0.0019 (9)0.0013 (8)0.0033 (8)
C130.0317 (11)0.0403 (11)0.0296 (10)0.0033 (9)0.0042 (8)0.0040 (8)
C140.0371 (12)0.0411 (11)0.0301 (10)0.0024 (9)0.0103 (9)0.0054 (8)
C150.0403 (12)0.0416 (11)0.0255 (10)0.0030 (10)0.0035 (9)0.0083 (8)
C160.0306 (11)0.0365 (11)0.0302 (10)0.0013 (9)0.0001 (8)0.0046 (8)
C170.0342 (11)0.0357 (10)0.0277 (10)0.0025 (9)0.0056 (8)0.0040 (8)
C210.0578 (16)0.0431 (12)0.0283 (11)0.0002 (11)0.0126 (11)0.0036 (9)
C220.0513 (14)0.0396 (11)0.0300 (11)0.0023 (10)0.0136 (10)0.0032 (9)
C230.0538 (15)0.0410 (12)0.0332 (11)0.0040 (11)0.0113 (10)0.0016 (9)
C240.0583 (15)0.0395 (12)0.0364 (12)0.0035 (11)0.0173 (11)0.0039 (9)
C250.0609 (16)0.0467 (13)0.0288 (11)0.0041 (12)0.0162 (11)0.0054 (9)
C260.0497 (14)0.0458 (12)0.0282 (10)0.0030 (11)0.0116 (10)0.0008 (9)
C270.0500 (14)0.0430 (12)0.0334 (11)0.0016 (10)0.0166 (10)0.0028 (9)
C310.0305 (11)0.0492 (13)0.0298 (10)0.0012 (9)0.0020 (9)0.0062 (9)
C320.0292 (10)0.0453 (12)0.0262 (9)0.0023 (9)0.0086 (8)0.0067 (8)
C330.0427 (14)0.0485 (13)0.0392 (12)0.0046 (11)0.0027 (11)0.0061 (10)
C340.0524 (16)0.0436 (13)0.0526 (15)0.0058 (12)0.0088 (12)0.0058 (11)
C350.0459 (14)0.0496 (14)0.0449 (13)0.0136 (11)0.0063 (11)0.0067 (11)
C360.0410 (13)0.0479 (13)0.0288 (10)0.0051 (10)0.0025 (9)0.0034 (9)
C410.0496 (15)0.0513 (14)0.0487 (14)0.0074 (12)0.0087 (12)0.0023 (11)
C420.0604 (17)0.0596 (16)0.0373 (12)0.0175 (13)0.0190 (12)0.0092 (11)
C430.086 (2)0.072 (2)0.0392 (14)0.0367 (19)0.0212 (15)0.0074 (13)
C440.105 (3)0.0486 (16)0.0480 (16)0.0265 (18)0.0093 (17)0.0024 (12)
C450.087 (2)0.0410 (14)0.0490 (15)0.0006 (15)0.0051 (15)0.0037 (12)
C460.0602 (16)0.0447 (13)0.0285 (11)0.0026 (12)0.0046 (11)0.0009 (9)
Geometric parameters (Å, º) top
Cu1—O11.967 (2)C15—H150.93
Cu1—N51.972 (2)C16—C171.384 (3)
Cu1—N61.993 (2)C17—H170.93
Cu1—O312.000 (2)C21—C221.524 (3)
Cu1—O412.301 (2)C22—C231.381 (4)
O1—C111.274 (3)C22—C271.390 (3)
O2—C111.224 (3)C23—C241.386 (3)
O3—N11.210 (3)C23—H230.93
O4—N11.210 (3)C24—C251.383 (4)
O5—N21.212 (3)C25—C261.372 (4)
O6—N21.214 (3)C25—H250.93
O9—N31.219 (3)C26—C271.387 (3)
O10—N31.219 (3)C27—H270.93
O11A—N41.273 (1)C31—C321.508 (3)
O11B—N41.217 (1)C31—H3110.97
O12—N41.212 (3)C31—H3120.97
O31—C311.426 (3)C32—C331.380 (3)
O31—H310.87C33—C341.384 (4)
O41—C411.418 (3)C33—H330.93
O41—H410.92C34—C351.385 (4)
N1—C141.474 (3)C34—H340.93
N2—C161.479 (3)C35—C361.373 (4)
N3—C241.475 (3)C35—H350.93
N4—C261.482 (3)C36—H360.93
N5—C321.341 (3)C41—C461.504 (4)
N5—C361.345 (3)C41—H4110.97
N6—C421.339 (3)C41—H4120.97
N6—C461.341 (3)C42—C431.373 (4)
C11—C121.513 (3)C42—H420.93
C12—C131.387 (3)C43—C441.367 (5)
C12—C171.392 (3)C43—H430.93
C13—C141.384 (3)C44—C451.377 (5)
C13—H130.93C44—H440.93
C14—C151.381 (3)C45—C461.395 (4)
C15—C161.368 (3)C45—H450.93
O1—Cu1—N592.43 (7)C23—C22—C27120.1 (2)
O1—Cu1—N693.46 (7)C23—C22—C21119.5 (2)
N5—Cu1—N6173.81 (7)C27—C22—C21120.4 (2)
O1—Cu1—O31162.24 (7)C22—C23—C24119.3 (2)
N5—Cu1—O3181.75 (7)C22—C23—H23120.4
N6—Cu1—O3193.16 (7)C24—C23—H23120.3
O1—Cu1—O4196.50 (7)C25—C24—C23122.4 (2)
N5—Cu1—O4199.99 (7)C25—C24—N3118.7 (2)
N6—Cu1—O4177.45 (8)C23—C24—N3118.8 (2)
O31—Cu1—O41101.02 (6)C26—C25—C24116.5 (2)
C11—O1—Cu1108.2 (1)C26—C25—H25121.8
O11B—O11A—N468.8 (2)C24—C25—H25121.7
O11A—O11B—N477.3 (2)C25—C26—C27123.4 (2)
C31—O31—Cu1114.2 (2)C25—C26—N4117.8 (2)
C31—O31—H31108C27—C26—N4118.7 (2)
Cu1—O31—H31116.1C26—C27—C22118.3 (2)
C41—O41—Cu1102.1 (2)C26—C27—H27121
C41—O41—H41106.2C22—C27—H27120.8
Cu1—O41—H41112.2O31—C31—C32110.4 (2)
O3—N1—O4123.9 (2)O31—C31—H311109.8
O3—N1—C14118.0 (2)C32—C31—H311109.7
O4—N1—C14118.0 (2)O31—C31—H312109.4
O5—N2—O6124.2 (2)C32—C31—H312109.5
O5—N2—C16118.0 (2)H311—C31—H312108.1
O6—N2—C16117.8 (2)N5—C32—C33121.3 (2)
O9—N3—O10124.0 (3)N5—C32—C31115.7 (2)
O9—N3—C24117.9 (3)C33—C32—C31123.0 (2)
O10—N3—C24118.1 (2)C32—C33—C34119.0 (2)
O12—N4—O11B118.9 (5)C32—C33—H33120.5
O12—N4—O11A125.3 (5)C34—C33—H33120.5
O12—N4—C26118.5 (2)C33—C34—C35119.5 (2)
O11B—N4—C26119.6 (5)C33—C34—H34120.3
O11A—N4—C26113.4 (5)C35—C34—H34120.1
C32—N5—C36119.6 (2)C36—C35—C34118.4 (2)
C32—N5—Cu1116.1 (2)C36—C35—H35120.7
C36—N5—Cu1124.3 (2)C34—C35—H35120.8
C42—N6—C46119.7 (2)N5—C36—C35122.1 (2)
C42—N6—Cu1123.0 (2)N5—C36—H36119
C46—N6—Cu1117.3 (2)C35—C36—H36118.9
O2—C11—O1125.0 (2)O41—C41—C46110.9 (2)
O2—C11—C12119.2 (2)O41—C41—H411109.6
O1—C11—C12115.8 (2)C46—C41—H411109.5
C13—C12—C17120.2 (2)O41—C41—H412109.3
C13—C12—C11119.6 (2)C46—C41—H412109.5
C17—C12—C11120.2 (2)H411—C41—H412108
C14—C13—C12118.8 (2)N6—C42—C43122.1 (3)
C14—C13—H13120.5N6—C42—H42119.1
C12—C13—H13120.6C43—C42—H42118.9
C15—C14—C13122.4 (2)C44—C43—C42119.1 (3)
C15—C14—N1117.8 (2)C44—C43—H43120.4
C13—C14—N1119.8 (2)C42—C43—H43120.5
C16—C15—C14117.1 (2)C43—C44—C45119.4 (3)
C16—C15—H15121.4C43—C44—H44120.2
C14—C15—H15121.4C45—C44—H44120.3
C15—C16—C17123.1 (2)C44—C45—C46119.3 (3)
C15—C16—N2117.8 (2)C44—C45—H45120.4
C17—C16—N2119.0 (2)C46—C45—H45120.3
C16—C17—C12118.3 (2)N6—C46—C45120.4 (3)
C16—C17—H17120.8N6—C46—C41116.0 (2)
C12—C17—H17120.8C45—C46—C41123.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O80.871.652.512 (2)173
O41—H41···O70.931.712.631 (3)174

Experimental details

Crystal data
Chemical formula[Cu(C7H3N2O6)(C6H7NO)2](C7H3N2O6)
Mr704.02
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.870 (1), 12.181 (1), 12.732 (1)
α, β, γ (°)95.29 (1), 108.68 (1), 91.80 (1)
V3)1440.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.55 × 0.45 × 0.30
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1990)
Tmin, Tmax0.641, 0.777
No. of measured, independent and
observed [I > 2σ(I)] reflections
7697, 6556, 5266
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.04
No. of reflections6556
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.63

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—O11.967 (2)Cu1—O412.301 (2)
Cu1—N51.972 (2)O1—C111.274 (3)
Cu1—N61.993 (2)O2—C111.224 (3)
Cu1—O312.000 (2)
O1—Cu1—N592.43 (7)N6—Cu1—O3193.16 (7)
O1—Cu1—N693.46 (7)O1—Cu1—O4196.50 (7)
N5—Cu1—N6173.81 (7)N5—Cu1—O4199.99 (7)
O1—Cu1—O31162.24 (7)N6—Cu1—O4177.45 (8)
N5—Cu1—O3181.75 (7)O31—Cu1—O41101.02 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O80.871.652.512 (2)173
O41—H41···O70.931.712.631 (3)174
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds