Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C28H27O10Cl·CH3OH·H2O, was isolated from Physalis minima. The rigid mol­ecule consists of eight fused rings involving three lactones. The spiro-fused γ-lactone rings are in half-chair and envelope conformations. The spiro-fused γ-lactone rings are fused to a cyclo­hexene ring, which is in a half-chair conformation. The outermost cyclo­hexene ring and δ-lactone rings adopt half-chair and envelope conformations, respectively. Intra- and inter­molecular O—H...O, C—H...Cl and C—H...O hydrogen bonds are observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030011/ci6649sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030011/ci6649Isup2.hkl
Contains datablock I

CCDC reference: 287514

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in solvent or counterion
  • R factor = 0.035
  • wR factor = 0.095
  • Data-to-parameter ratio = 14.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT243_ALERT_4_C High 'Solvent' Ueq as Compared to Neighbors for C29 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 25.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.49 From the CIF: _reflns_number_total 5745 Count of symmetry unique reflns 3229 Completeness (_total/calc) 177.92% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2516 Fraction of Friedel pairs measured 0.779 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Physalins are the steroidal lactone constituents of Physalis and other closely related genera, belonging to the family Solanaceae (Makino et al., 1995a). Normal withanolides like withaferin-A are C-28 steroidal compounds possessing a relatively highly oxidized ergostane-type skeleton and characterized by a six-membered lactone ring in the side chain (Kirson et al., 1971; Glotter et al., 1974). The physalins are biogenetically related to the withanolides and characterized by (a) oxidative C13/C14-bond cleavage yielding a nine-membered ring, (b) formation of a new six-membered carbocycle between C16 and C24, and (c) oxidation of the C13 methyl group to a carboxylic acid, which results in the formation of 18,20-lactonization (Glotter et al., 1974). Physalins are commonly named as 16,24-cyclo-13,14-seco steroids (Makino et al., 1995a).

The title compound, (I), known as physalin H, is a steroidal lactone (physalin) previously isolated from Physalis angulata (Row et al., 1978; Makino et al., 1995b). Steroidal lactones (withanolides and physalins) exhibited a number of biological activities, including antitumor (Antoun et al., 1981), immunomodulatory (Budhiraja et al., 1984), antimycobacterial (Pietro et al., 2000), antifungal, anti-inflammatory (Budhiraja et al., 1984, 1986), insect repellant (Glotter, 1991) and immunostimulating (Bates & Eckert, 1972). Compound (I) showed moderate in-vitro cytotoxic activity against HeLa cells (Makino et al., 1995b). As part of our on-going research on bioactive constituents from medicinal plants, we have isolated compound (I) from Physalis minima for the first time. The fresh plants of Physalis minima, locally known as Aknaaj, were collected from Karachi (Pakistan). In the present investigation we have established the absolute structure and stereochemistry of (I) by single-crystal X-ray diffraction studies (Fig. 1).

Compound (I) is a highly oxygenated steroidal lactone bearing eight fused rings. The six-membered ring A (C1–C5/C10) is in a half-chair conformation, with atoms C5 and C10 deviating from the C1/C2/C3/C4 plane by 0.335 (4) and −0.453 (4) Å, respectively. Ring B (C5–C10) is trans-fused to ring A and adopts a chair conformation. The two spiro-fused five-membered rings D (O8/C14—C17) and E (O9/C18/C13/C17/C20) adopt half-chair and envelope conformations, respectively; in D, the deviations of atoms C16 and C17 from the O8/C14/C15 plane are 0.355 (4) and −0.226 (4) Å, respectively, and in ring E atom C17 deviates 0.638 (3) Å from the O9/C18/C13/C20 plane. Ring F (C16/C17/C20/C22–C24) is in a half-chair conformation, allowing the C24—C16—C17, C16—C17—C20, C17—C20—C22 and C20—C22—C23 bond angles to widen to 114.61 (14), 114.97 (14), 114.43 (14) and 114.83 (16)°, respectively, while the other internal angles remain close to the tetrahedral value. Ring G (O10/C22–C26) adopts an envelope conformation. The two epoxy seven- and eight-membered rings (O7/C14–C16/C24/C25/C27 and C8/C9/C11–C14/C17/O8) are in chair and boat–chair conformations, respectively.

The Csp3—Csp3 bond distances lie in the range 1.508 (3)–1.566 (2) Å. The C24—C25—C26 [117.03 (15)°], C9—C11—C12 [119.48 (14)°] and C11—C12—C13 [119.98 (14)°] angles significantly deviate from ideal tetrahedral values, as reported for this class of compounds (Kawai et al., 1970, 1994; Taga et al., 1991). The bond angles involving the spiro atom C17 range from 102.02 (13) to 115.05 (13)°.

The water and methanol molecules of solvation participate in several hydrogen bonds. A number of O—H···O, C—H···Cl and C—H···O hydrogen bonds are observed in the molecular and crystal structures. The molecules are linked together by these interactions to form a three-dimensional molecular network (Fig. 2). Most of the intramolecular hydrogen bonds form S(5) or S(6) ring motifs (Bernstein et al., 1995).

Experimental top

Air-dried and milled plant of Physalis minima (25.8 kg) was extracted with methanol (120 l) over a period of 21 d at room temperature. After evaporation of the solvent, an extract (2.5 kg) was obtained, which was dissolved in distilled water (5 l) and defatted with petroleum ether (10 l). The defatted aqueous extract was further fractionated with CH2Cl2 (35 l) and BuOH (5 l), respectively. The CH2Cl2 extract was concentrated to a gum (350.5 g) and subjected to column chromatography. A fraction (1.4 g), obtained on elution with CH2Cl2:MeOH (95:5), was subjected to repeated column chromatography, which yielded sub-fractions A (120.5 mg), B (98.8 mg), C (50.5 mg), D (105.8 mg) and E (88.5 mg). Repeated column chromatography on sub-fraction B (silica gel 70–230 mesh size) by using petroleum ether/acetone (80:20), afforded compound (I) (20 mg), which was recrystalized using CH2Cl2/MeOH (70:30) [Physalin H (I): 20 mg, 5.7 X 10−3% yield, m.p. 548–551 K].

Refinement top

The O atom of the methanol molecule is disordered over two positions with occupancies of 0.602 (6) and 0.398 (6). During the refinement, the Uij components of the disordered atoms were restrained to be equal. Atom H11O was located in a difference map and refined isotropically. The water H atoms were located in a difference map and allowed to ride on the attached atom with Uiso(H) = 1.5Ueq(O) (O—H = 0.82 and 0.84 Å). All other H atoms were placed in calculated positions (O—H = 0.82 Å and C—H = 0.93–0.98 Å), with Uiso values constrained to be 1.5Ueq of the carrier atom for the methyl and hydroxyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms and methanol and water molecules have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis. Dashed lines indicated hydrogen bonds.
(5R,6S,8S,9R,14R,15R,17R,18S,21S,24R,26S,27R)-5α-Chloro- 16,24-cyclo-13,14-secoergosta-2-ene-18,26-dioic acid-14:17,14:27-diepoxy- 6β,13,20,22-tetrahydroxy-1,15-dioxo-γ-lactone δ-lactone 5α-chloro methanol solvate monohydrate top
Crystal data top
C28H31ClO10·CH4O·H2ODx = 1.466 Mg m3
Mr = 613.04Melting point: 548-551K K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 15020 reflections
a = 13.0931 (5) Åθ = 2.0–26.5°
b = 13.5932 (6) ŵ = 0.21 mm1
c = 15.6098 (6) ÅT = 293 K
V = 2778.19 (19) Å3Block, colourless
Z = 40.54 × 0.33 × 0.21 mm
F(000) = 1296
Data collection top
Siemens SMART CCD area-detector
diffractometer
5745 independent reflections
Radiation source: fine-focus sealed tube5545 reflections with I > 2s(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.33 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = 1614
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1716
Tmin = 0.897, Tmax = 0.957l = 1917
15825 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0667P)2 + 1.2367P]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max = 0.002
5745 reflectionsΔρmax = 0.25 e Å3
389 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 2520 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Crystal data top
C28H31ClO10·CH4O·H2OV = 2778.19 (19) Å3
Mr = 613.04Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 13.0931 (5) ŵ = 0.21 mm1
b = 13.5932 (6) ÅT = 293 K
c = 15.6098 (6) Å0.54 × 0.33 × 0.21 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5745 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5545 reflections with I > 2s(I)
Tmin = 0.897, Tmax = 0.957Rint = 0.017
15825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095Δρmax = 0.25 e Å3
S = 0.85Δρmin = 0.25 e Å3
5745 reflectionsAbsolute structure: Flack (1983), 2520 Friedel pairs
389 parametersAbsolute structure parameter: 0.02 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.70341 (4)0.30056 (4)0.53504 (4)0.04919 (14)
O10.47153 (12)0.15284 (12)0.69242 (10)0.0508 (4)
O20.60685 (10)0.02900 (9)0.63390 (8)0.0333 (3)
H1O20.56340.05860.66160.050*
O30.45453 (12)0.23446 (11)0.59524 (10)0.0460 (3)
O40.64876 (13)0.28107 (11)0.28553 (10)0.0494 (4)
H1O40.66820.33310.26450.074*
O50.50681 (13)0.09199 (11)0.33522 (10)0.0467 (4)
O60.92432 (11)0.14723 (12)0.40506 (10)0.0466 (4)
O70.72952 (11)0.03230 (9)0.33403 (8)0.0349 (3)
O80.70155 (9)0.02856 (8)0.47939 (7)0.0262 (2)
O90.63215 (11)0.18638 (10)0.65540 (8)0.0381 (3)
O100.85189 (10)0.21637 (10)0.51482 (9)0.0379 (3)
C10.48313 (14)0.28525 (14)0.53649 (13)0.0356 (4)
C20.47354 (17)0.39417 (15)0.54057 (16)0.0474 (5)
H20.42900.42200.58010.057*
C30.52632 (19)0.45194 (15)0.48990 (17)0.0537 (6)
H30.51750.51960.49530.064*
C40.59990 (18)0.41515 (14)0.42397 (16)0.0478 (5)
H4A0.66220.45360.42690.057*
H4B0.57060.42420.36740.057*
C50.62581 (14)0.30661 (14)0.43658 (13)0.0346 (4)
C60.69655 (15)0.26717 (13)0.36651 (12)0.0360 (4)
H60.76070.30430.36770.043*
C70.71982 (14)0.15902 (13)0.37879 (12)0.0334 (4)
H7A0.76160.15100.42960.040*
H7B0.75890.13550.33010.040*
C80.62309 (13)0.09645 (12)0.38803 (11)0.0280 (3)
H80.58280.10320.33550.034*
C90.55718 (12)0.13218 (12)0.46438 (12)0.0268 (3)
H90.59880.12640.51630.032*
C100.52911 (13)0.24338 (12)0.45306 (12)0.0296 (3)
C110.45929 (13)0.06956 (13)0.47809 (12)0.0321 (4)
H11A0.44220.03950.42360.039*
H11B0.40420.11450.49210.039*
C120.45925 (13)0.01341 (13)0.54687 (13)0.0335 (4)
H12A0.41560.00820.59340.040*
H12B0.42680.07050.52140.040*
C130.55967 (14)0.04772 (12)0.58633 (11)0.0292 (3)
C140.65590 (13)0.01169 (12)0.39691 (11)0.0281 (3)
C150.56997 (14)0.08887 (12)0.39045 (11)0.0308 (4)
C160.58959 (13)0.16217 (12)0.46101 (11)0.0285 (3)
H160.52520.18870.48320.034*
C170.64152 (12)0.09583 (12)0.52817 (10)0.0258 (3)
C180.54521 (16)0.13294 (13)0.65017 (12)0.0359 (4)
C190.45012 (15)0.25844 (15)0.38079 (14)0.0398 (4)
H19A0.43140.32660.37790.060*
H19B0.39050.21960.39240.060*
H19C0.47930.23850.32710.060*
C200.70912 (14)0.15085 (13)0.59430 (11)0.0305 (3)
C210.78881 (16)0.08868 (15)0.63977 (12)0.0385 (4)
H21A0.83330.13060.67220.058*
H21B0.75550.04320.67760.058*
H21C0.82800.05290.59820.058*
C220.75940 (15)0.24517 (14)0.55988 (12)0.0353 (4)
H220.77940.28560.60910.042*
C230.69212 (16)0.30686 (13)0.50272 (13)0.0375 (4)
H23A0.63260.32880.53440.045*
H23B0.72940.36450.48360.045*
C240.65847 (14)0.24626 (13)0.42542 (12)0.0319 (4)
C250.75629 (14)0.21015 (12)0.37799 (11)0.0318 (4)
H250.77850.26860.34630.038*
C260.84869 (14)0.18543 (13)0.43305 (12)0.0334 (4)
C270.74235 (16)0.13267 (14)0.30708 (12)0.0361 (4)
H27A0.80140.13570.26960.043*
H27B0.68320.15100.27330.043*
C280.59433 (17)0.30946 (15)0.36517 (14)0.0439 (5)
H28A0.53320.32990.39400.066*
H28B0.63290.36640.34830.066*
H28C0.57660.27190.31530.066*
O1W0.47528 (12)0.12687 (11)0.74535 (10)0.0485 (4)
H2W10.50330.14040.79050.073*
H1W10.46800.18100.71970.073*
O11A0.7738 (4)0.4185 (3)0.2148 (4)0.0693 (11)0.602 (6)
O11B0.7748 (6)0.4512 (5)0.2552 (5)0.0693 (11)0.398 (6)
H11O0.843 (3)0.414 (3)0.235 (2)0.101 (13)*
C290.7662 (3)0.5197 (3)0.1962 (3)0.0988 (12)
H29A0.77920.55710.24720.148*0.602 (6)
H29B0.69870.53410.17560.148*0.602 (6)
H29C0.81540.53680.15310.148*0.602 (6)
H29D0.75030.53700.13810.148*0.398 (6)
H29E0.71500.54620.23370.148*0.398 (6)
H29F0.83170.54620.21130.148*0.398 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0384 (2)0.0577 (3)0.0514 (3)0.0093 (2)0.0061 (2)0.0103 (2)
O10.0549 (9)0.0460 (8)0.0514 (9)0.0001 (7)0.0237 (8)0.0101 (7)
O20.0385 (7)0.0304 (6)0.0311 (6)0.0007 (5)0.0021 (5)0.0068 (5)
O30.0507 (8)0.0442 (8)0.0429 (8)0.0028 (7)0.0087 (7)0.0009 (7)
O40.0654 (10)0.0401 (8)0.0427 (8)0.0016 (7)0.0026 (7)0.0126 (6)
O50.0550 (9)0.0422 (8)0.0429 (8)0.0015 (7)0.0205 (7)0.0036 (6)
O60.0403 (8)0.0519 (8)0.0478 (8)0.0076 (7)0.0073 (7)0.0063 (7)
O70.0473 (8)0.0282 (6)0.0290 (6)0.0040 (5)0.0091 (5)0.0019 (5)
O80.0292 (5)0.0254 (5)0.0241 (5)0.0031 (5)0.0005 (5)0.0036 (4)
O90.0477 (7)0.0353 (7)0.0313 (6)0.0035 (6)0.0085 (6)0.0092 (6)
O100.0344 (6)0.0431 (7)0.0361 (7)0.0075 (6)0.0001 (5)0.0003 (6)
C10.0292 (8)0.0339 (9)0.0436 (10)0.0016 (7)0.0013 (8)0.0023 (8)
C20.0457 (11)0.0328 (10)0.0638 (14)0.0036 (9)0.0109 (11)0.0104 (9)
C30.0575 (13)0.0272 (9)0.0765 (16)0.0018 (9)0.0114 (12)0.0059 (10)
C40.0508 (12)0.0262 (9)0.0665 (14)0.0026 (9)0.0104 (11)0.0030 (9)
C50.0333 (9)0.0285 (8)0.0421 (10)0.0022 (7)0.0002 (7)0.0006 (8)
C60.0364 (9)0.0303 (9)0.0413 (10)0.0040 (7)0.0053 (8)0.0052 (7)
C70.0326 (9)0.0301 (8)0.0375 (9)0.0008 (7)0.0059 (7)0.0036 (7)
C80.0311 (8)0.0252 (8)0.0277 (8)0.0007 (6)0.0009 (6)0.0035 (6)
C90.0256 (7)0.0228 (7)0.0320 (8)0.0003 (6)0.0023 (7)0.0016 (6)
C100.0272 (8)0.0254 (8)0.0361 (9)0.0006 (6)0.0011 (7)0.0013 (6)
C110.0254 (8)0.0280 (8)0.0430 (10)0.0005 (7)0.0025 (7)0.0011 (7)
C120.0268 (8)0.0301 (9)0.0435 (10)0.0032 (7)0.0065 (7)0.0003 (7)
C130.0338 (9)0.0250 (8)0.0287 (8)0.0026 (7)0.0045 (7)0.0006 (7)
C140.0333 (8)0.0272 (8)0.0237 (8)0.0003 (7)0.0016 (7)0.0015 (6)
C150.0383 (9)0.0248 (8)0.0293 (8)0.0021 (7)0.0016 (7)0.0043 (7)
C160.0307 (8)0.0249 (8)0.0299 (8)0.0022 (6)0.0006 (7)0.0014 (6)
C170.0288 (8)0.0229 (7)0.0258 (8)0.0012 (6)0.0006 (6)0.0013 (6)
C180.0470 (11)0.0295 (8)0.0312 (9)0.0023 (8)0.0081 (8)0.0011 (7)
C190.0353 (9)0.0373 (10)0.0466 (11)0.0036 (8)0.0075 (8)0.0085 (8)
C200.0370 (9)0.0300 (8)0.0245 (8)0.0016 (7)0.0016 (7)0.0044 (6)
C210.0429 (10)0.0415 (10)0.0309 (9)0.0040 (9)0.0067 (8)0.0017 (7)
C220.0418 (10)0.0306 (9)0.0335 (9)0.0062 (8)0.0001 (8)0.0068 (7)
C230.0483 (10)0.0240 (8)0.0402 (10)0.0039 (8)0.0056 (8)0.0028 (7)
C240.0393 (9)0.0234 (8)0.0330 (9)0.0009 (7)0.0024 (7)0.0044 (7)
C250.0400 (9)0.0251 (8)0.0302 (8)0.0023 (7)0.0028 (7)0.0044 (7)
C260.0359 (9)0.0281 (8)0.0363 (9)0.0051 (7)0.0033 (7)0.0056 (7)
C270.0474 (10)0.0334 (9)0.0275 (9)0.0042 (8)0.0038 (8)0.0020 (7)
C280.0536 (12)0.0313 (9)0.0468 (11)0.0067 (9)0.0012 (10)0.0101 (9)
O1W0.0566 (9)0.0474 (8)0.0413 (8)0.0055 (7)0.0012 (7)0.0070 (7)
O11A0.0609 (14)0.059 (2)0.088 (3)0.0100 (18)0.003 (2)0.0176 (18)
O11B0.0609 (14)0.059 (2)0.088 (3)0.0100 (18)0.003 (2)0.0176 (18)
C290.108 (3)0.0626 (19)0.126 (3)0.0004 (19)0.022 (3)0.017 (2)
Geometric parameters (Å, º) top
Cl1—C51.844 (2)C12—H12B0.97
O1—C181.200 (2)C13—C181.540 (2)
O2—C131.421 (2)C13—C171.549 (2)
O2—H1O20.82C14—C151.542 (2)
O3—C11.207 (2)C15—C161.507 (2)
O4—C61.423 (3)C16—C171.541 (2)
O4—H1O40.82C16—C241.558 (2)
O5—C151.195 (2)C16—H160.98
O6—C261.200 (2)C17—C201.552 (2)
O7—C141.404 (2)C19—H19A0.96
O7—C271.438 (2)C19—H19B0.96
O8—C171.4261 (19)C19—H19C0.96
O8—C141.438 (2)C20—C211.519 (3)
O9—C181.353 (2)C20—C221.538 (2)
O9—C201.469 (2)C21—H21A0.96
O10—C261.344 (2)C21—H21B0.96
O10—C221.454 (2)C21—H21C0.96
C1—C21.487 (3)C22—C231.508 (3)
C1—C101.543 (3)C22—H220.98
C2—C31.311 (3)C23—C241.526 (3)
C2—H20.93C23—H23A0.97
C3—C41.496 (3)C23—H23B0.97
C3—H30.93C24—C281.526 (3)
C4—C51.527 (3)C24—C251.559 (3)
C4—H4A0.97C25—C261.522 (3)
C4—H4B0.97C25—C271.539 (3)
C5—C61.530 (3)C25—H250.98
C5—C101.552 (2)C27—H27A0.97
C6—C71.514 (2)C27—H27B0.97
C6—H60.98C28—H28A0.96
C7—C81.532 (2)C28—H28B0.96
C7—H7A0.97C28—H28C0.96
C7—H7B0.97O1W—H2W10.82
C8—C141.538 (2)O1W—H1W10.84
C8—C91.550 (2)O11A—C291.410 (6)
C8—H80.98O11A—H11O0.96 (4)
C9—C111.553 (2)O11B—C291.314 (8)
C9—C101.566 (2)O11B—H11O1.07 (4)
C9—H90.98C29—H29A0.96
C10—C191.544 (2)C29—H29B0.96
C11—C121.557 (3)C29—H29C0.96
C11—H11A0.97C29—H29D0.96
C11—H11B0.97C29—H29E0.96
C12—C131.525 (2)C29—H29F0.96
C12—H12A0.97
C13—O2—H1O2109.5O8—C17—C20110.48 (13)
C6—O4—H1O4109.5C16—C17—C20114.97 (14)
C14—O7—C27118.30 (14)C13—C17—C20102.02 (13)
C17—O8—C14110.56 (12)O1—C18—O9121.50 (17)
C18—O9—C20111.19 (13)O1—C18—C13128.64 (18)
C26—O10—C22121.17 (15)O9—C18—C13109.85 (15)
O3—C1—C2120.70 (19)C10—C19—H19A109.5
O3—C1—C10123.43 (17)C10—C19—H19B109.5
C2—C1—C10115.86 (17)H19A—C19—H19B109.5
C3—C2—C1121.7 (2)C10—C19—H19C109.5
C3—C2—H2119.1H19A—C19—H19C109.5
C1—C2—H2119.1H19B—C19—H19C109.5
C2—C3—C4123.65 (19)O9—C20—C21110.53 (14)
C2—C3—H3118.2O9—C20—C22104.26 (14)
C4—C3—H3118.2C21—C20—C22109.45 (16)
C3—C4—C5112.18 (18)O9—C20—C17101.48 (13)
C3—C4—H4A109.2C21—C20—C17115.75 (14)
C5—C4—H4A109.2C22—C20—C17114.43 (14)
C3—C4—H4B109.2C20—C21—H21A109.5
C5—C4—H4B109.2C20—C21—H21B109.5
H4A—C4—H4B107.9H21A—C21—H21B109.5
C4—C5—C6112.39 (16)C20—C21—H21C109.5
C4—C5—C10112.04 (16)H21A—C21—H21C109.5
C6—C5—C10114.73 (16)H21B—C21—H21C109.5
C4—C5—Cl1105.84 (15)O10—C22—C23110.48 (16)
C6—C5—Cl1104.28 (13)O10—C22—C20107.52 (15)
C10—C5—Cl1106.65 (13)C23—C22—C20114.83 (16)
O4—C6—C7109.26 (16)O10—C22—H22107.9
O4—C6—C5108.81 (16)C23—C22—H22107.9
C7—C6—C5111.82 (15)C20—C22—H22107.9
O4—C6—H6109.0C22—C23—C24109.65 (15)
C7—C6—H6109.0C22—C23—H23A109.7
C5—C6—H6109.0C24—C23—H23A109.7
C6—C7—C8112.62 (15)C22—C23—H23B109.7
C6—C7—H7A109.1C24—C23—H23B109.7
C8—C7—H7A109.1H23A—C23—H23B108.2
C6—C7—H7B109.1C28—C24—C23110.02 (15)
C8—C7—H7B109.1C28—C24—C16108.32 (15)
H7A—C7—H7B107.8C23—C24—C16106.33 (14)
C7—C8—C14107.95 (14)C28—C24—C25109.67 (15)
C7—C8—C9111.02 (14)C23—C24—C25107.96 (15)
C14—C8—C9112.69 (13)C16—C24—C25114.45 (14)
C7—C8—H8108.4C26—C25—C27110.45 (15)
C14—C8—H8108.4C26—C25—C24117.03 (15)
C9—C8—H8108.4C27—C25—C24117.37 (16)
C8—C9—C11113.18 (14)C26—C25—H25103.2
C8—C9—C10110.27 (14)C27—C25—H25103.2
C11—C9—C10110.54 (13)C24—C25—H25103.2
C8—C9—H9107.5O6—C26—O10117.08 (18)
C11—C9—H9107.5O6—C26—C25123.07 (18)
C10—C9—H9107.5O10—C26—C25119.46 (16)
C1—C10—C19107.83 (14)O7—C27—C25116.94 (14)
C1—C10—C5104.71 (14)O7—C27—H27A108.1
C19—C10—C5110.61 (15)C25—C27—H27A108.1
C1—C10—C9110.63 (14)O7—C27—H27B108.1
C19—C10—C9111.57 (15)C25—C27—H27B108.1
C5—C10—C9111.22 (14)H27A—C27—H27B107.3
C9—C11—C12119.48 (14)C24—C28—H28A109.5
C9—C11—H11A107.4C24—C28—H28B109.5
C12—C11—H11A107.4H28A—C28—H28B109.5
C9—C11—H11B107.4C24—C28—H28C109.5
C12—C11—H11B107.4H28A—C28—H28C109.5
H11A—C11—H11B107.0H28B—C28—H28C109.5
C13—C12—C11119.98 (14)H2W1—O1W—H1W1105.3
C13—C12—H12A107.3C29—O11A—H11O101 (3)
C11—C12—H12A107.3C29—O11B—H11O101 (2)
C13—C12—H12B107.3O11B—C29—H29A77.2
C11—C12—H12B107.3O11A—C29—H29A109.5
H12A—C12—H12B106.9O11B—C29—H29B117.3
O2—C13—C12111.18 (14)O11A—C29—H29B109.5
O2—C13—C18105.50 (14)H29A—C29—H29B109.5
C12—C13—C18112.67 (15)O11B—C29—H29C127.2
O2—C13—C17108.37 (13)O11A—C29—H29C109.5
C12—C13—C17119.26 (15)H29A—C29—H29C109.5
C18—C13—C1798.44 (13)H29B—C29—H29C109.5
O7—C14—O8107.99 (13)O11B—C29—H29D148.7
O7—C14—C8108.63 (13)O11A—C29—H29D116.7
O8—C14—C8110.45 (13)H29A—C29—H29D133.9
O7—C14—C15108.63 (14)H29B—C29—H29D55.5
O8—C14—C15104.68 (13)H29C—C29—H29D54.8
C8—C14—C15116.15 (14)O11B—C29—H29E84.2
O5—C15—C16128.43 (17)O11A—C29—H29E106.9
O5—C15—C14125.18 (17)H29A—C29—H29E54.5
C16—C15—C14106.12 (14)H29B—C29—H29E59.1
C15—C16—C17100.69 (13)H29C—C29—H29E143.6
C15—C16—C24108.84 (14)H29D—C29—H29E109.5
C17—C16—C24114.61 (14)O11B—C29—H29F91.0
C15—C16—H16110.8O11A—C29—H29F104.6
C17—C16—H16110.8H29A—C29—H29F55.9
C24—C16—H16110.8H29B—C29—H29F145.8
O8—C17—C16104.79 (13)H29C—C29—H29F58.7
O8—C17—C13115.05 (13)H29D—C29—H29F109.5
C16—C17—C13109.91 (13)H29E—C29—H29F109.5
O3—C1—C2—C3162.0 (2)C14—O8—C17—C1391.43 (16)
C10—C1—C2—C319.2 (3)C14—O8—C17—C20153.75 (13)
C1—C2—C3—C40.2 (4)C15—C16—C17—O836.13 (15)
C2—C3—C4—C513.8 (4)C24—C16—C17—O880.49 (17)
C3—C4—C5—C6176.92 (19)C15—C16—C17—C1388.02 (15)
C3—C4—C5—C1046.0 (3)C24—C16—C17—C13155.36 (14)
C3—C4—C5—Cl169.9 (2)C15—C16—C17—C20157.59 (14)
C4—C5—C6—O458.0 (2)C24—C16—C17—C2040.98 (19)
C10—C5—C6—O471.50 (19)O2—C13—C17—O848.97 (18)
Cl1—C5—C6—O4172.21 (12)C12—C13—C17—O879.54 (18)
C4—C5—C6—C7178.82 (17)C18—C13—C17—O8158.47 (14)
C10—C5—C6—C749.3 (2)O2—C13—C17—C16166.92 (13)
Cl1—C5—C6—C767.01 (17)C12—C13—C17—C1638.42 (19)
O4—C6—C7—C867.5 (2)C18—C13—C17—C1683.57 (16)
C5—C6—C7—C853.0 (2)O2—C13—C17—C2070.66 (16)
C6—C7—C8—C14178.06 (15)C12—C13—C17—C20160.84 (14)
C6—C7—C8—C958.0 (2)C18—C13—C17—C2038.85 (16)
C7—C8—C9—C11178.57 (14)C20—O9—C18—O1176.95 (18)
C14—C8—C9—C1157.34 (19)C20—O9—C18—C134.3 (2)
C7—C8—C9—C1057.01 (18)O2—C13—C18—O194.6 (2)
C14—C8—C9—C10178.24 (13)C12—C13—C18—O126.8 (3)
O3—C1—C10—C19108.7 (2)C17—C13—C18—O1153.5 (2)
C2—C1—C10—C1970.2 (2)O2—C13—C18—O984.05 (17)
O3—C1—C10—C5133.51 (19)C12—C13—C18—O9154.47 (15)
C2—C1—C10—C547.7 (2)C17—C13—C18—O927.78 (18)
O3—C1—C10—C913.6 (2)C18—O9—C20—C21101.94 (18)
C2—C1—C10—C9167.58 (16)C18—O9—C20—C22140.53 (15)
C4—C5—C10—C161.4 (2)C18—O9—C20—C1721.39 (18)
C6—C5—C10—C1168.92 (15)O8—C17—C20—O9160.58 (13)
Cl1—C5—C10—C154.00 (15)C16—C17—C20—O981.11 (16)
C4—C5—C10—C1954.5 (2)C13—C17—C20—O937.78 (15)
C6—C5—C10—C1975.2 (2)O8—C17—C20—C2140.89 (19)
Cl1—C5—C10—C19169.92 (13)C16—C17—C20—C21159.21 (15)
C4—C5—C10—C9179.11 (17)C13—C17—C20—C2181.91 (17)
C6—C5—C10—C949.4 (2)O8—C17—C20—C2287.81 (17)
Cl1—C5—C10—C965.52 (17)C16—C17—C20—C2230.5 (2)
C8—C9—C10—C1168.32 (14)C13—C17—C20—C22149.40 (14)
C11—C9—C10—C165.77 (18)C26—O10—C22—C2342.9 (2)
C8—C9—C10—C1971.64 (18)C26—O10—C22—C2083.1 (2)
C11—C9—C10—C1954.3 (2)O9—C20—C22—O10166.75 (13)
C8—C9—C10—C552.38 (19)C21—C20—C22—O1048.48 (18)
C11—C9—C10—C5178.30 (15)C17—C20—C22—O1083.31 (18)
C8—C9—C11—C1297.88 (19)O9—C20—C22—C2369.87 (19)
C10—C9—C11—C12137.85 (16)C21—C20—C22—C23171.87 (16)
C9—C11—C12—C1313.2 (3)C17—C20—C22—C2340.1 (2)
C11—C12—C13—O264.2 (2)O10—C22—C23—C2462.67 (19)
C11—C12—C13—C18177.63 (15)C20—C22—C23—C2459.1 (2)
C11—C12—C13—C1763.0 (2)C22—C23—C24—C28177.44 (16)
C27—O7—C14—O884.22 (17)C22—C23—C24—C1665.47 (19)
C27—O7—C14—C8155.97 (15)C22—C23—C24—C2557.79 (19)
C27—O7—C14—C1528.8 (2)C15—C16—C24—C2872.27 (18)
C17—O8—C14—O7125.35 (13)C17—C16—C24—C28175.89 (15)
C17—O8—C14—C8115.99 (14)C15—C16—C24—C23169.51 (15)
C17—O8—C14—C159.74 (17)C17—C16—C24—C2357.67 (18)
C7—C8—C14—O746.46 (18)C15—C16—C24—C2550.42 (19)
C9—C8—C14—O7169.43 (13)C17—C16—C24—C2561.4 (2)
C7—C8—C14—O871.80 (17)C28—C24—C25—C26154.51 (16)
C9—C8—C14—O851.16 (18)C23—C24—C25—C2634.6 (2)
C7—C8—C14—C15169.23 (15)C16—C24—C25—C2683.53 (19)
C9—C8—C14—C1567.81 (19)C28—C24—C25—C2770.58 (19)
O7—C14—C15—O573.5 (2)C23—C24—C25—C27169.55 (14)
O8—C14—C15—O5171.37 (17)C16—C24—C25—C2751.4 (2)
C8—C14—C15—O549.3 (2)C22—O10—C26—O6167.52 (17)
O7—C14—C15—C16100.97 (15)C22—O10—C26—C2519.4 (2)
O8—C14—C15—C1614.19 (17)C27—C25—C26—O634.0 (2)
C8—C14—C15—C16136.26 (15)C24—C25—C26—O6171.85 (17)
O5—C15—C16—C17155.65 (19)C27—C25—C26—O10153.29 (15)
C14—C15—C16—C1730.15 (16)C24—C25—C26—O1015.5 (2)
O5—C15—C16—C2483.5 (2)C14—O7—C27—C2550.5 (2)
C14—C15—C16—C2490.66 (16)C26—C25—C27—O758.2 (2)
C14—O8—C17—C1629.37 (16)C24—C25—C27—O779.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11O···O1Wi0.96 (4)1.84 (4)2.780 (5)163 (4)
O1W—H1W1···O30.842.082.775 (2)139
O2—H1O2···O1W0.821.982.786 (2)170
O4—H1O4···O11A0.821.972.718 (5)152
O1W—H2W1···O6ii0.822.032.832 (2)170
C4—H4B···O40.972.542.898 (3)102
C7—H7A···Cl10.972.723.1140 (19)105
C7—H7B···O70.972.312.696 (2)102
C9—H9···Cl10.982.753.1814 (17)107
C9—H9···O20.982.273.065 (2)138
C11—H11A···O50.972.413.191 (2)137
C11—H11B···O30.972.382.894 (2)112
C19—H19B···Cl1iii0.962.713.578 (2)150
C19—H19C···O40.962.383.012 (3)123
C21—H21B···O20.962.282.871 (2)119
C21—H21C···O80.962.512.871 (2)102
C22—H22···O11Aii0.982.543.404 (6)146
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3/2, y, z+1/2; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC28H31ClO10·CH4O·H2O
Mr613.04
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)13.0931 (5), 13.5932 (6), 15.6098 (6)
V3)2778.19 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.54 × 0.33 × 0.21
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.897, 0.957
No. of measured, independent and
observed [I > 2s(I)] reflections
15825, 5745, 5545
Rint0.017
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 0.85
No. of reflections5745
No. of parameters389
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.25
Absolute structureFlack (1983), 2520 Friedel pairs
Absolute structure parameter0.02 (6)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11O···O1Wi0.96 (4)1.84 (4)2.780 (5)163 (4)
O1W—H1W1···O30.842.082.775 (2)139
O2—H1O2···O1W0.821.982.786 (2)170
O4—H1O4···O11A0.821.972.718 (5)152
O1W—H2W1···O6ii0.822.032.832 (2)170
C4—H4B···O40.972.542.898 (3)102
C7—H7A···Cl10.972.723.1140 (19)105
C7—H7B···O70.972.312.696 (2)102
C9—H9···Cl10.982.753.1814 (17)107
C9—H9···O20.982.273.065 (2)138
C11—H11A···O50.972.413.191 (2)137
C11—H11B···O30.972.382.894 (2)112
C19—H19B···Cl1iii0.962.713.578 (2)150
C19—H19C···O40.962.383.012 (3)123
C21—H21B···O20.962.282.871 (2)119
C21—H21C···O80.962.512.871 (2)102
C22—H22···O11Aii0.982.543.404 (6)146
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3/2, y, z+1/2; (iii) x1/2, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds