Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the title compound, C8H10NO2+·Cl·H2O, contains two crystallographically independent 2-(methoxy­carbon­yl)anilinium cations related by a pseudo-inversion centre, two chloride ions and two water mol­ecules. A three-dimensional network structure is formed via N—H...O, N—H...Cl and O—H...Cl hydrogen bonds, and π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030771/ci6646sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030771/ci6646Isup2.hkl
Contains datablock I

CCDC reference: 287511

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.128
  • Data-to-parameter ratio = 15.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety N1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Methyl 2-aminobenzoate is used as an intermediate for fine chemicals (Zhang, 1992). It is known that many esters of 2-aminobenzoate display a broad range of biological activities (Li et al., 1998). Synthetic esters of 2-aminobenzoate show useful properties (Ye, 2000). Furthermore, these esters can also be used as interesting ligands. These properties stimutated us to find new methods to synthesize them and study their structures and activities. We report here the crystal structure of the title compound, (I).

The asymmetric unit contains two crystallographically independent methyl 2-aminobenzoate cations related by a local inversion centre, two chloride ions and two water molecules (Fig. 1). The corresponding bond lengths and angles in the independent methyl 2-aminobenzoate molecules agree with each other (Table 1) and show normal values. The N1- and N2-containing cations are essentially planar, with r.m.s deviations of 0.074 and 0.045 Å, respectively. In the crystal structure, the molecules are linked together via N—H···O and N—H···Cl hydrogen bonds involving the amine groups, and by O—H···Cl hydrogen bonds, to form a three-dimensional network. In addition, the crystal packing is stabilized by weak ππ interactions resulting from the stacking of inversion-related C9–C14 benzene rings along the a axis. The CgCgv and CgCgvi distances are 3.781 (1) and 3.725 (1) Å, respectively, where Cg is the centroid of the C9–C14 benzene ring [symmetry codes: (v) −x, 2 − y, 1 − z; (vi) 1 − x, 2 − y, 1 − z]; similar features are observed in related structures (Du et al., 2003; Jin & Xiao, 2005).

Experimental top

Compound (I) was synthesized according to a literature procedure (Dan, 2000). Single crystals suitable for X-ray measurements were grown from a solution in methanol at room temperature by slow evaporation.

Refinement top

The water H atoms were located in a difference Fourier map and refined isotropically [O—H = 0.78 (3)–0.84 (3) Å] [please check OH parameters; O—H distances do not exactly agree with those given in CIF and refinement section]. All other H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C,N—H distances of 0.93 (aromatic), 0.96 (methyl) and 0.89 Å (amino). The Uiso(H) values were set equal to 1.2Ueq(carrier) for the aromatic H atoms and to 1.5Ueq(carrier) for methyl and amine H atoms. A rotating-group model was used for the methyl and amine groups.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram for (I). The hydrogen bonds are indicated by dashed lines.
2-(Methoxycarbonyl)anilinium chloride monohydrate top
Crystal data top
C8H10NO2+·Cl·H2OZ = 4
Mr = 205.64F(000) = 432
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4709 (9) ÅCell parameters from 3522 reflections
b = 11.6988 (14) Åθ = 2.4–25.7°
c = 12.3883 (15) ŵ = 0.36 mm1
α = 96.299 (2)°T = 292 K
β = 101.097 (2)°Block, colourless
γ = 106.844 (2)°0.32 × 0.30 × 0.30 mm
V = 1001.0 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3867 independent reflections
Radiation source: fine-focus sealed tube3433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.894, Tmax = 0.900k = 1414
5444 measured reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.2162P]
where P = (Fo2 + 2Fc2)/3
3867 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C8H10NO2+·Cl·H2Oγ = 106.844 (2)°
Mr = 205.64V = 1001.0 (2) Å3
Triclinic, P1Z = 4
a = 7.4709 (9) ÅMo Kα radiation
b = 11.6988 (14) ŵ = 0.36 mm1
c = 12.3883 (15) ÅT = 292 K
α = 96.299 (2)°0.32 × 0.30 × 0.30 mm
β = 101.097 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3867 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3433 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.900Rint = 0.016
5444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
3867 reflectionsΔρmin = 0.23 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2657 (3)0.61200 (15)0.98457 (15)0.0406 (4)
C20.2930 (3)0.72975 (15)1.03841 (15)0.0383 (4)
C30.3387 (3)0.75805 (18)1.15351 (16)0.0483 (5)
H30.35690.83641.18840.058*
C40.3576 (4)0.6709 (2)1.21686 (17)0.0572 (5)
H40.39010.69091.29440.069*
C50.3283 (4)0.5540 (2)1.16565 (18)0.0598 (6)
H50.33920.49481.20850.072*
C60.2827 (3)0.52545 (18)1.05041 (18)0.0538 (5)
H60.26310.44651.01630.065*
C70.2256 (3)0.58225 (16)0.86061 (16)0.0434 (4)
C80.1460 (5)0.4297 (2)0.7027 (2)0.0825 (9)
H8A0.04140.45470.66670.124*
H8B0.11360.34330.68360.124*
H8C0.25960.46840.67840.124*
C90.2314 (2)1.00752 (15)0.61787 (14)0.0343 (4)
C100.2491 (2)0.89784 (15)0.57108 (14)0.0350 (4)
C110.2631 (3)0.87781 (16)0.46209 (15)0.0412 (4)
H110.27320.80430.43180.049*
C120.2621 (3)0.96682 (18)0.39747 (15)0.0442 (4)
H120.26930.95250.32330.053*
C130.2505 (3)1.07669 (17)0.44253 (15)0.0426 (4)
H130.25391.13740.39960.051*
C140.2338 (3)1.09663 (16)0.55155 (15)0.0391 (4)
H140.22411.17060.58120.047*
C150.1997 (2)1.02604 (16)0.73273 (14)0.0378 (4)
C160.1489 (4)1.1601 (2)0.87130 (18)0.0608 (6)
H16A0.03661.09820.87780.091*
H16B0.12871.23760.88140.091*
H16C0.25791.16110.92740.091*
Cl10.37394 (7)0.07755 (4)0.14253 (4)0.04657 (16)
Cl20.18067 (8)0.36339 (4)0.40175 (5)0.05799 (18)
H5A0.880 (4)0.720 (3)0.803 (3)0.070 (9)*
H6A0.500 (6)0.641 (3)0.544 (3)0.109 (13)*
H5B0.826 (5)0.797 (3)0.859 (2)0.083 (9)*
H6B0.326 (5)0.572 (3)0.492 (3)0.080 (9)*
N10.2718 (2)0.82504 (13)0.97525 (13)0.0424 (4)
H1A0.29420.89351.02240.064*
H1B0.15280.80300.93270.064*
H1C0.35570.83680.93210.064*
N20.2535 (2)0.80099 (13)0.63524 (13)0.0405 (3)
H2A0.13470.76180.64000.061*
H2B0.32760.83270.70360.061*
H2C0.30100.74940.60130.061*
O10.1814 (3)0.46450 (12)0.82347 (12)0.0658 (5)
O20.2325 (3)0.65573 (12)0.80063 (12)0.0618 (4)
O30.1842 (2)1.13512 (11)0.76149 (11)0.0493 (3)
O40.1858 (3)0.95180 (13)0.79200 (12)0.0587 (4)
O50.8866 (3)0.74624 (16)0.86478 (16)0.0589 (4)
O60.3892 (3)0.63930 (16)0.51649 (17)0.0646 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0443 (10)0.0337 (8)0.0413 (9)0.0098 (7)0.0083 (8)0.0067 (7)
C20.0418 (9)0.0348 (8)0.0399 (9)0.0121 (7)0.0122 (7)0.0085 (7)
C30.0613 (12)0.0441 (10)0.0404 (10)0.0174 (9)0.0151 (9)0.0045 (8)
C40.0739 (14)0.0619 (13)0.0356 (10)0.0199 (11)0.0141 (10)0.0104 (9)
C50.0802 (15)0.0507 (11)0.0490 (12)0.0190 (11)0.0122 (11)0.0217 (10)
C60.0718 (14)0.0377 (9)0.0487 (11)0.0161 (9)0.0081 (10)0.0082 (8)
C70.0517 (11)0.0331 (8)0.0431 (10)0.0151 (8)0.0055 (8)0.0034 (8)
C80.132 (3)0.0547 (13)0.0511 (13)0.0362 (16)0.0008 (15)0.0090 (11)
C90.0322 (8)0.0340 (8)0.0353 (8)0.0101 (6)0.0065 (6)0.0048 (7)
C100.0340 (8)0.0335 (8)0.0369 (9)0.0107 (7)0.0063 (7)0.0068 (7)
C110.0440 (10)0.0403 (9)0.0387 (9)0.0150 (8)0.0093 (7)0.0010 (7)
C120.0476 (10)0.0536 (11)0.0334 (9)0.0170 (9)0.0125 (8)0.0082 (8)
C130.0433 (10)0.0437 (9)0.0428 (10)0.0135 (8)0.0096 (8)0.0179 (8)
C140.0404 (9)0.0342 (8)0.0424 (9)0.0124 (7)0.0080 (7)0.0069 (7)
C150.0395 (9)0.0376 (9)0.0377 (9)0.0158 (7)0.0072 (7)0.0056 (7)
C160.0830 (16)0.0617 (13)0.0451 (11)0.0343 (12)0.0197 (11)0.0009 (10)
Cl10.0565 (3)0.0417 (3)0.0408 (3)0.0152 (2)0.0128 (2)0.00370 (19)
Cl20.0531 (3)0.0428 (3)0.0703 (4)0.0139 (2)0.0037 (2)0.0012 (2)
N10.0557 (9)0.0329 (7)0.0398 (8)0.0150 (7)0.0135 (7)0.0052 (6)
N20.0517 (9)0.0337 (7)0.0399 (8)0.0185 (7)0.0112 (7)0.0077 (6)
O10.1103 (14)0.0367 (7)0.0455 (8)0.0264 (8)0.0063 (8)0.0004 (6)
O20.1021 (13)0.0402 (7)0.0389 (7)0.0211 (8)0.0094 (8)0.0067 (6)
O30.0723 (9)0.0403 (7)0.0394 (7)0.0234 (7)0.0167 (6)0.0031 (6)
O40.0954 (12)0.0563 (8)0.0476 (8)0.0433 (8)0.0340 (8)0.0230 (7)
O50.0653 (10)0.0513 (9)0.0624 (11)0.0234 (8)0.0127 (8)0.0113 (8)
O60.0615 (11)0.0426 (9)0.0868 (13)0.0220 (8)0.0114 (9)0.0042 (8)
Geometric parameters (Å, º) top
C1—C61.387 (3)C11—C121.382 (3)
C1—C21.403 (2)C11—H110.93
C1—C71.488 (3)C12—C131.377 (3)
C2—C31.379 (3)C12—H120.93
C2—N11.458 (2)C13—C141.381 (3)
C3—C41.375 (3)C13—H130.93
C3—H30.93C14—H140.93
C4—C51.380 (3)C15—O41.192 (2)
C4—H40.93C15—O31.330 (2)
C5—C61.381 (3)C16—O31.450 (2)
C5—H50.93C16—H16A0.96
C6—H60.93C16—H16B0.96
C7—O21.193 (2)C16—H16C0.96
C7—O11.326 (2)N1—H1A0.89
C8—O11.457 (3)N1—H1B0.89
C8—H8A0.96N1—H1C0.89
C8—H8B0.96N2—H2A0.89
C8—H8C0.96N2—H2B0.89
C9—C141.395 (2)N2—H2C0.89
C9—C101.402 (2)O5—H5A0.78 (3)
C9—C151.490 (2)O5—H5B0.84 (3)
C10—C111.374 (2)O6—H6A0.83 (4)
C10—N21.458 (2)O6—H6B0.78 (3)
C6—C1—C2118.00 (17)C12—C11—H11120.0
C6—C1—C7121.18 (16)C13—C12—C11120.21 (16)
C2—C1—C7120.79 (16)C13—C12—H12119.9
C3—C2—C1120.48 (17)C11—C12—H12119.9
C3—C2—N1118.09 (16)C12—C13—C14119.89 (16)
C1—C2—N1121.43 (15)C12—C13—H13120.1
C4—C3—C2120.33 (18)C14—C13—H13120.1
C4—C3—H3119.8C13—C14—C9120.96 (16)
C2—C3—H3119.8C13—C14—H14119.5
C3—C4—C5120.17 (19)C9—C14—H14119.5
C3—C4—H4119.9O4—C15—O3123.32 (16)
C5—C4—H4119.9O4—C15—C9124.57 (16)
C4—C5—C6119.63 (19)O3—C15—C9112.10 (15)
C4—C5—H5120.2O3—C16—H16A109.5
C6—C5—H5120.2O3—C16—H16B109.5
C5—C6—C1121.37 (19)H16A—C16—H16B109.5
C5—C6—H6119.3O3—C16—H16C109.5
C1—C6—H6119.3H16A—C16—H16C109.5
O2—C7—O1123.30 (17)H16B—C16—H16C109.5
O2—C7—C1124.10 (16)C2—N1—H1A109.5
O1—C7—C1112.60 (16)C2—N1—H1B109.5
O1—C8—H8A109.5H1A—N1—H1B109.5
O1—C8—H8B109.5C2—N1—H1C109.5
H8A—C8—H8B109.5H1A—N1—H1C109.5
O1—C8—H8C109.5H1B—N1—H1C109.5
H8A—C8—H8C109.5C10—N2—H2A109.5
H8B—C8—H8C109.5C10—N2—H2B109.5
C14—C9—C10118.03 (15)H2A—N2—H2B109.5
C14—C9—C15120.77 (15)C10—N2—H2C109.5
C10—C9—C15121.12 (15)H2A—N2—H2C109.5
C11—C10—C9120.79 (16)H2B—N2—H2C109.5
C11—C10—N2117.42 (15)C7—O1—C8115.31 (17)
C9—C10—N2121.79 (15)C15—O3—C16115.88 (15)
C10—C11—C12120.09 (16)H5A—O5—H5B104 (3)
C10—C11—H11120.0H6A—O6—H6B109 (3)
C6—C1—C2—C31.1 (3)C14—C9—C10—N2178.21 (15)
C7—C1—C2—C3177.05 (18)C15—C9—C10—N25.2 (2)
C6—C1—C2—N1178.11 (18)C9—C10—C11—C120.8 (3)
C7—C1—C2—N13.7 (3)N2—C10—C11—C12179.20 (16)
C1—C2—C3—C40.2 (3)C10—C11—C12—C131.1 (3)
N1—C2—C3—C4179.07 (19)C11—C12—C13—C142.0 (3)
C2—C3—C4—C50.9 (3)C12—C13—C14—C91.0 (3)
C3—C4—C5—C60.9 (4)C10—C9—C14—C130.9 (3)
C4—C5—C6—C10.0 (4)C15—C9—C14—C13175.69 (16)
C2—C1—C6—C51.0 (3)C14—C9—C15—O4175.95 (18)
C7—C1—C6—C5177.1 (2)C10—C9—C15—O40.5 (3)
C6—C1—C7—O2170.5 (2)C14—C9—C15—O32.7 (2)
C2—C1—C7—O27.6 (3)C10—C9—C15—O3179.19 (15)
C6—C1—C7—O19.4 (3)O2—C7—O1—C81.6 (3)
C2—C1—C7—O1172.55 (18)C1—C7—O1—C8178.3 (2)
C14—C9—C10—C111.8 (2)O4—C15—O3—C160.0 (3)
C15—C9—C10—C11174.81 (16)C9—C15—O3—C16178.72 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.892.333.2163 (16)176
N1—H1B···O40.892.592.915 (2)102
N1—H1B···O5ii0.891.892.770 (3)170
N1—H1C···O20.892.352.677 (2)102
N1—H1C···Cl1iii0.892.383.2459 (17)163
N2—H2A···Cl2iv0.892.313.1700 (17)163
N2—H2B···O20.892.502.801 (2)100
N2—H2B···O40.892.292.699 (2)108
N2—H2B···Cl1iii0.892.513.3534 (17)159
N2—H2C···O60.891.912.801 (3)175
O5—H5A···Cl2iii0.78 (4)2.52 (4)3.295 (2)173 (3)
O5—H5B···Cl1iii0.85 (4)2.38 (4)3.216 (2)172 (3)
O6—H6A···Cl2iii0.83 (5)2.37 (5)3.188 (2)172 (4)
O6—H6B···Cl20.78 (3)2.41 (3)3.177 (2)169 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H10NO2+·Cl·H2O
Mr205.64
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.4709 (9), 11.6988 (14), 12.3883 (15)
α, β, γ (°)96.299 (2), 101.097 (2), 106.844 (2)
V3)1001.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.894, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
5444, 3867, 3433
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.128, 1.05
No. of reflections3867
No. of parameters255
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
C1—C71.488 (3)C9—C151.490 (2)
C2—N11.458 (2)C10—N21.458 (2)
C7—O21.193 (2)C15—O41.192 (2)
C7—O11.326 (2)C15—O31.330 (2)
C8—O11.457 (3)C16—O31.450 (2)
O2—C7—O1123.30 (17)O3—C15—C9112.10 (15)
O1—C7—C1112.60 (16)C7—O1—C8115.31 (17)
O4—C15—O3123.32 (16)C15—O3—C16115.88 (15)
C2—C1—C7—O27.6 (3)C14—C9—C15—O32.7 (2)
C6—C1—C7—O19.4 (3)O2—C7—O1—C81.6 (3)
C10—C9—C15—O40.5 (3)C9—C15—O3—C16178.72 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.892.333.2163 (16)176
N1—H1B···O40.892.592.915 (2)102
N1—H1B···O5ii0.891.892.770 (3)170
N1—H1C···O20.892.352.677 (2)102
N1—H1C···Cl1iii0.892.383.2459 (17)163
N2—H2A···Cl2iv0.892.313.1700 (17)163
N2—H2B···O20.892.502.801 (2)100
N2—H2B···O40.892.292.699 (2)108
N2—H2B···Cl1iii0.892.513.3534 (17)159
N2—H2C···O60.891.912.801 (3)175
O5—H5A···Cl2iii0.78 (4)2.52 (4)3.295 (2)173 (3)
O5—H5B···Cl1iii0.85 (4)2.38 (4)3.216 (2)172 (3)
O6—H6A···Cl2iii0.83 (5)2.37 (5)3.188 (2)172 (4)
O6—H6B···Cl20.78 (3)2.41 (3)3.177 (2)169 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds