Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mol­ecule, C12H7N3O9S, there are weak C-H...O interactions which generate rings of motifs S(5), R12(8) and R12(4).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301818X/ci6264sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301818X/ci6264Isup2.hkl
Contains datablock I

CCDC reference: 222903

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.030
  • wR factor = 0.059
  • Data-to-parameter ratio = 12.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT430_ALERT_2_B Short Inter D...A Contact O8 .. N1 = 2.82 Ang.
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - N1 = 6.79 su PLAT230_ALERT_2_C Hirshfeld Test Diff for O8 - N3 = 5.12 su PLAT350_ALERT_3_C Short C-H Bond (0.96A) C8 - H8 = 0.81 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O4 .. C8 = 3.01 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.11 From the CIF: _reflns_number_total 2952 Count of symmetry unique reflns 1644 Completeness (_total/calc) 179.56% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1308 Fraction of Friedel pairs measured 0.796 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al., 1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). The molecular and crystal structures of 3-nitrobenzenesulfonyl chloride have been recently reported (Vembu Nallu Spencer & Howard, 2003c). An X-ray study of the title compound, (I), was undertaken in view of the biological importance of its analogues and also to compare its structural parameters with those of its precursor, 3-nitrobenzenesulfonyl chloride.

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. Atoms N1, O1 and O2 deviate from the mean plane formed by atoms C1—C6 by 0.005 (3), −0.248 (4) and 0.267 (4) Å, respectively. Atoms N2, O6, O7, N3, O8 and O9 deviate from the mean plane formed by atoms C7—C12 by 0.069 (3), −0.849 (3), 1.051 (3), 0.026 (3), 0.341 (4) and −0.277 (4) Å, respectively. The dihedral angle between the above-mentioned planes is 36.10 (7)°. This shows their non-coplanar orientation, similar to that reported for some aromatic sulfonates (Vembu Nallu Garrison & Youngs, 2003b-e; Vembu Nallu Spencer & Howard, 2003a,b,d,e), and in contrast with the near-coplanar orientation found in 2,4-dinitrophenyl 4-toluenesulfonate (Vembu Nallu Garrison & Youngs, 2003a) and 4-methoxyphenyl 4-toluenesulfonate (Vembu et al., 2003).

The crystal structure of (I) is stabilized by weak C—H···O interactions (Table 2). The range of H···O distances found in (I) agrees with that found for weak C—H···O bonds (Desiraju & Steiner, 1999). As shown in Fig. 2, each C2—H2···O1, C4—H4···O3, C6—H6···O2, C6—H6···O4, C9—H9···O8 and C11—H11···O9 interaction generates an S(5) graph-set motif (Bernstein et al., 1995; Etter, 1990). The C6—H6···O2 and C6—H6···O4 interactions constitute a pair of bifurcated donor bonds. As can be seen in Fig. 3, the C3—H3···O3ii and C3—H3···O6ii interactions constitute a pair of bifurcated donor bonds generating an R12(8) motif. The C6—H6···N3iv, C6—H6···O8iv and C6—H6···O9iv interactions together constitute a set of trifurcated donor bonds. The C6—H6···O8iv and C6—H6···O9iv interactions generate a symmetrical three-centred hydrogen-bonded chelate motif of graph set R12(4). There are several other weak C—H···O interactions which contribute to the supramolecular aggregation of (I) (Table 2). Other short intermolecular contacts are C9···O9(1 − x, 1 − y, z − 1/2) 3.130 (3) Å, N1···O8(1 − x, 2 − y, z − 1/2) 2.818 (2) Å and N1···O7(x, y, z − 1) 3.037 (2) Å. A view of the molecular packing down the b axis is shown in Fig. 4.

Experimental top

2,4-Dinitrophenol (5 mmol) and triethylamine (5 mmol) were dissolved in acetone (20 ml). To this solution, 3-nitrobenzenesulfonyl chloride (5 mmol) in acetone (20 ml) was added. The resulting solution was allowed to evaporate. The residue was washed several times with aqueous triethylamine solution. The crude product of the title compound, (I), was recrystallized from a 1:1 mixture of petroleum ether and ethanol.

Refinement top

All H atoms were located from difference Fourier maps and their positional parameters were refined, with Uiso = 1.2Ueq(parent atom). The C—H bond lengths are in the range 0.81 (2)–0.97 (2) Å.

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Diagram showing hydrogen bonds 1–3, 5 and 6 (the numbers correspond to the sequence of entries in Table 2).
[Figure 3] Fig. 3. Diagram showing hydrogen bonds 7–18 (the numbers correspond to the sequence of entries in Table 2). Symmetry codes are as in Table 2.
[Figure 4] Fig. 4. Packing of the molecules in the unit cell of (I), viewed along the b axis, showing the network of hydrogen bonds.
2,4-Dinitrophenyl 3-nitrobenzenesulfonate top
Crystal data top
C12H7N3O9SDx = 1.732 Mg m3
Mr = 369.27Melting point = 377–379 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3073 reflections
a = 27.730 (2) Åθ = 2.4–27.1°
b = 4.7374 (3) ŵ = 0.29 mm1
c = 10.7800 (8) ÅT = 120 K
V = 1416.16 (17) Å3Block, colourless
Z = 40.28 × 0.25 × 0.11 mm
F(000) = 752
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
2619 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.1°, θmin = 2.9°
Detector resolution: 8 pixels mm-1h = 3527
ω scansk = 65
8989 measured reflectionsl = 1312
2952 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030Only H-atom coordinates refined
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0274P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
2952 reflectionsΔρmax = 0.34 e Å3
247 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: (Flack, 1983); 1310 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C12H7N3O9SV = 1416.16 (17) Å3
Mr = 369.27Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 27.730 (2) ŵ = 0.29 mm1
b = 4.7374 (3) ÅT = 120 K
c = 10.7800 (8) Å0.28 × 0.25 × 0.11 mm
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
2619 reflections with I > 2σ(I)
8989 measured reflectionsRint = 0.033
2952 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030Only H-atom coordinates refined
wR(F2) = 0.059Δρmax = 0.34 e Å3
S = 0.97Δρmin = 0.33 e Å3
2952 reflectionsAbsolute structure: (Flack, 1983); 1310 Friedel pairs
247 parametersAbsolute structure parameter: 0.05 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63940 (7)0.8435 (4)0.11796 (18)0.0177 (4)
C20.67868 (8)1.0065 (4)0.0840 (2)0.0219 (5)
H20.6760 (7)1.124 (5)0.013 (2)0.026*
C30.71927 (8)1.0039 (5)0.1583 (2)0.0242 (5)
H30.7474 (9)1.113 (4)0.134 (2)0.029*
C40.72028 (7)0.8437 (4)0.2661 (2)0.0194 (4)
H40.7483 (9)0.842 (4)0.315 (2)0.023*
C50.67987 (7)0.6855 (4)0.29759 (19)0.0146 (4)
C60.63895 (8)0.6804 (4)0.22407 (19)0.0175 (4)
H60.6131 (8)0.564 (4)0.250 (2)0.021*
C70.61813 (7)0.6853 (4)0.58859 (19)0.0154 (4)
C80.58006 (8)0.8235 (4)0.5321 (2)0.0179 (4)
H80.5841 (7)0.913 (4)0.469 (2)0.021*
C90.53528 (8)0.8283 (4)0.5895 (2)0.0188 (5)
H90.5118 (8)0.909 (4)0.551 (2)0.023*
C100.52982 (7)0.6906 (4)0.70080 (19)0.0166 (4)
C110.56676 (7)0.5508 (4)0.7602 (2)0.0181 (4)
H110.5631 (8)0.453 (4)0.831 (2)0.022*
C120.61079 (7)0.5526 (4)0.70134 (18)0.0155 (4)
S10.680852 (17)0.47848 (9)0.43241 (5)0.01655 (11)
N10.59615 (6)0.8425 (4)0.03865 (17)0.0234 (4)
N20.65165 (6)0.4156 (4)0.76543 (17)0.0200 (4)
N30.48240 (6)0.6976 (4)0.76390 (18)0.0238 (4)
O10.59276 (5)1.0242 (3)0.04173 (15)0.0303 (4)
O20.56581 (5)0.6588 (4)0.05693 (15)0.0279 (4)
O30.72932 (5)0.4132 (3)0.46165 (14)0.0247 (4)
O40.64466 (5)0.2683 (3)0.42225 (15)0.0211 (3)
O50.66457 (5)0.6961 (3)0.54078 (13)0.0179 (3)
O60.67106 (6)0.2177 (3)0.71487 (15)0.0339 (4)
O70.66216 (6)0.5114 (3)0.86734 (14)0.0299 (4)
O80.45300 (5)0.8714 (3)0.72981 (15)0.0321 (4)
O90.47545 (6)0.5267 (4)0.84620 (17)0.0437 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0152 (11)0.0196 (11)0.0182 (11)0.0031 (9)0.0017 (8)0.0035 (8)
C20.0258 (12)0.0228 (11)0.0170 (11)0.0027 (10)0.0024 (9)0.0049 (9)
C30.0216 (12)0.0256 (12)0.0255 (12)0.0049 (10)0.0046 (9)0.0056 (10)
C40.0159 (11)0.0235 (11)0.0189 (11)0.0006 (9)0.0020 (9)0.0021 (10)
C50.0151 (10)0.0144 (10)0.0142 (10)0.0048 (9)0.0024 (8)0.0031 (8)
C60.0178 (10)0.0152 (10)0.0194 (12)0.0017 (9)0.0024 (9)0.0006 (8)
C70.0152 (10)0.0149 (10)0.0160 (11)0.0028 (8)0.0035 (8)0.0025 (8)
C80.0221 (11)0.0182 (11)0.0133 (11)0.0030 (9)0.0007 (9)0.0055 (8)
C90.0163 (11)0.0203 (11)0.0197 (11)0.0007 (9)0.0049 (8)0.0009 (9)
C100.0125 (10)0.0209 (11)0.0164 (11)0.0009 (8)0.0004 (8)0.0015 (8)
C110.0194 (11)0.0215 (11)0.0134 (11)0.0022 (9)0.0007 (9)0.0019 (9)
C120.0146 (10)0.0169 (10)0.0150 (11)0.0014 (8)0.0021 (8)0.0007 (8)
S10.0162 (2)0.0174 (2)0.0160 (2)0.0025 (2)0.0025 (2)0.0041 (2)
N10.0247 (10)0.0262 (10)0.0194 (10)0.0058 (9)0.0012 (8)0.0043 (8)
N20.0179 (9)0.0263 (9)0.0159 (9)0.0004 (8)0.0014 (8)0.0062 (8)
N30.0162 (9)0.0344 (11)0.0207 (10)0.0018 (8)0.0008 (8)0.0011 (9)
O10.0361 (9)0.0296 (8)0.0253 (10)0.0083 (7)0.0088 (7)0.0082 (7)
O20.0244 (8)0.0335 (9)0.0259 (9)0.0030 (8)0.0049 (7)0.0019 (7)
O30.0200 (8)0.0312 (8)0.0230 (9)0.0079 (6)0.0020 (6)0.0093 (6)
O40.0256 (8)0.0152 (6)0.0227 (8)0.0018 (6)0.0045 (7)0.0025 (6)
O50.0136 (7)0.0221 (8)0.0181 (8)0.0027 (6)0.0023 (6)0.0015 (6)
O60.0330 (9)0.0402 (10)0.0286 (10)0.0214 (8)0.0008 (8)0.0027 (8)
O70.0291 (8)0.0388 (9)0.0218 (9)0.0056 (7)0.0101 (7)0.0005 (7)
O80.0187 (8)0.0411 (9)0.0364 (11)0.0112 (7)0.0041 (7)0.0068 (8)
O90.0219 (9)0.0711 (13)0.0382 (12)0.0029 (9)0.0073 (8)0.0315 (10)
Geometric parameters (Å, º) top
C1—C61.380 (3)C9—C101.374 (3)
C1—C21.385 (3)C9—H90.86 (2)
C1—N11.473 (3)C10—C111.378 (3)
C2—C31.382 (3)C10—N31.481 (2)
C2—H20.95 (2)C11—C121.376 (3)
C3—C41.388 (3)C11—H110.90 (2)
C3—H30.97 (2)C12—N21.477 (2)
C4—C51.390 (3)S1—O31.4147 (15)
C4—H40.94 (2)S1—O41.4182 (13)
C5—C61.384 (3)S1—O51.6222 (15)
C5—S11.753 (2)N1—O11.225 (2)
C6—H60.95 (2)N1—O21.227 (2)
C7—C81.383 (3)N2—O61.211 (2)
C7—C121.384 (3)N2—O71.224 (2)
C7—O51.388 (2)N3—O81.216 (2)
C8—C91.387 (3)N3—O91.216 (2)
C8—H80.81 (2)
C6—C1—C2122.58 (19)C8—C9—H9117.8 (16)
C6—C1—N1118.16 (18)C9—C10—C11123.52 (18)
C2—C1—N1119.27 (18)C9—C10—N3119.23 (17)
C3—C2—C1118.8 (2)C11—C10—N3117.22 (18)
C3—C2—H2122.4 (13)C12—C11—C10116.26 (19)
C1—C2—H2118.6 (13)C12—C11—H11119.6 (15)
C2—C3—C4120.5 (2)C10—C11—H11124.0 (15)
C2—C3—H3119.5 (14)C11—C12—C7122.58 (18)
C4—C3—H3120.0 (14)C11—C12—N2117.53 (17)
C3—C4—C5118.9 (2)C7—C12—N2119.85 (17)
C3—C4—H4119.5 (14)O3—S1—O4122.42 (8)
C5—C4—H4121.6 (14)O3—S1—O5104.06 (8)
C6—C5—C4122.03 (19)O4—S1—O5107.75 (8)
C6—C5—S1118.52 (16)O3—S1—C5108.77 (9)
C4—C5—S1119.43 (16)O4—S1—C5108.53 (10)
C1—C6—C5117.21 (19)O5—S1—C5103.71 (8)
C1—C6—H6125.3 (14)O1—N1—O2124.03 (18)
C5—C6—H6117.5 (14)O1—N1—C1118.10 (18)
C8—C7—C12119.30 (18)O2—N1—C1117.88 (17)
C8—C7—O5121.82 (18)O6—N2—O7125.83 (17)
C12—C7—O5118.65 (18)O6—N2—C12118.07 (17)
C7—C8—C9119.66 (19)O7—N2—C12116.08 (17)
C7—C8—H8120.9 (15)O8—N3—O9124.40 (18)
C9—C8—H8119.2 (15)O8—N3—C10118.16 (17)
C10—C9—C8118.7 (2)O9—N3—C10117.44 (17)
C10—C9—H9123.4 (16)C7—O5—S1120.15 (12)
C6—C1—C2—C30.7 (3)C6—C5—S1—O3154.18 (15)
N1—C1—C2—C3179.36 (19)C4—C5—S1—O324.31 (19)
C1—C2—C3—C41.0 (3)C6—C5—S1—O418.87 (18)
C2—C3—C4—C50.3 (3)C4—C5—S1—O4159.63 (15)
C3—C4—C5—C60.7 (3)C6—C5—S1—O595.51 (16)
C3—C4—C5—S1179.18 (16)C4—C5—S1—O586.00 (17)
C2—C1—C6—C50.2 (3)C6—C1—N1—O1166.58 (18)
N1—C1—C6—C5179.69 (17)C2—C1—N1—O113.3 (3)
C4—C5—C6—C11.0 (3)C6—C1—N1—O213.7 (3)
S1—C5—C6—C1179.42 (15)C2—C1—N1—O2166.39 (18)
C12—C7—C8—C90.3 (3)C11—C12—N2—O6119.0 (2)
O5—C7—C8—C9174.04 (19)C7—C12—N2—O663.4 (2)
C7—C8—C9—C101.0 (3)C11—C12—N2—O759.6 (2)
C8—C9—C10—C111.1 (3)C7—C12—N2—O7118.1 (2)
C8—C9—C10—N3179.11 (18)C9—C10—N3—O815.3 (3)
C9—C10—C11—C120.5 (3)C11—C10—N3—O8162.79 (19)
N3—C10—C11—C12178.51 (17)C9—C10—N3—O9164.2 (2)
C10—C11—C12—C70.3 (3)C11—C10—N3—O917.7 (3)
C10—C11—C12—N2177.28 (17)C8—C7—O5—S184.7 (2)
C8—C7—C12—C110.3 (3)C12—C7—O5—S1100.94 (19)
O5—C7—C12—C11174.87 (18)O3—S1—O5—C7142.85 (14)
C8—C7—C12—N2177.16 (17)O4—S1—O5—C711.52 (16)
O5—C7—C12—N22.6 (3)C5—S1—O5—C7103.41 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.95 (2)2.43 (2)2.742 (3)99.0 (15)
C4—H4···O30.94 (2)2.63 (2)2.944 (3)100.4 (15)
C6—H6···O20.95 (2)2.50 (2)2.715 (3)92.7 (15)
C6—H6···O40.95 (2)2.49 (2)2.898 (2)106.4 (16)
C9—H9···O80.86 (2)2.53 (2)2.745 (3)94.9 (18)
C11—H11···O90.90 (2)2.46 (2)2.699 (3)95.3 (16)
C2—H2···O7i0.95 (2)2.45 (2)3.374 (3)166.2 (19)
C3—H3···O3ii0.97 (2)2.43 (2)3.208 (3)137.0 (18)
C3—H3···O6ii0.97 (2)2.47 (2)3.263 (3)138.2 (18)
C4—H4···O7iii0.94 (2)2.99 (2)3.781 (3)142.9 (17)
C6—H6···N3iv0.95 (2)2.93 (2)3.836 (3)161.2 (18)
C6—H6···O8iv0.95 (2)2.77 (2)3.652 (3)155.7 (19)
C6—H6···O9iv0.95 (2)2.70 (2)3.572 (3)153.6 (17)
C8—H8···O4v0.81 (2)2.43 (2)3.008 (2)129.2 (19)
C8—H8···O8vi0.81 (2)2.96 (2)3.681 (3)150.0 (18)
C9—H9···O2vii0.86 (2)2.97 (2)3.726 (3)147 (2)
C11—H11···O1viii0.90 (2)2.58 (2)3.362 (3)145.1 (18)
C11—H11···O2ix0.90 (2)2.62 (2)3.240 (3)126.4 (17)
Symmetry codes: (i) x, y+1, z1; (ii) x+3/2, y+1, z1/2; (iii) x+3/2, y, z1/2; (iv) x+1, y+1, z1/2; (v) x, y+1, z; (vi) x+1, y+2, z1/2; (vii) x+1, y+2, z+1/2; (viii) x, y1, z+1; (ix) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H7N3O9S
Mr369.27
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)120
a, b, c (Å)27.730 (2), 4.7374 (3), 10.7800 (8)
V3)1416.16 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.25 × 0.11
Data collection
DiffractometerBruker SMART CCD 6K area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8989, 2952, 2619
Rint0.033
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.059, 0.97
No. of reflections2952
No. of parameters247
No. of restraints1
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.34, 0.33
Absolute structure(Flack, 1983); 1310 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: SMART-NT (Bruker, 1998), SMART-NT, SAINT-NT (Bruker, 1998), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
C1—N11.473 (3)N1—O11.225 (2)
C5—S11.753 (2)N1—O21.227 (2)
C10—N31.481 (2)N2—O61.211 (2)
C12—N21.477 (2)N2—O71.224 (2)
S1—O31.4147 (15)N3—O81.216 (2)
S1—O41.4182 (13)N3—O91.216 (2)
S1—O51.6222 (15)
O3—S1—O4122.42 (8)O2—N1—C1117.88 (17)
O3—S1—O5104.06 (8)O6—N2—O7125.83 (17)
O4—S1—O5107.75 (8)O6—N2—C12118.07 (17)
O3—S1—C5108.77 (9)O7—N2—C12116.08 (17)
O4—S1—C5108.53 (10)O8—N3—O9124.40 (18)
O5—S1—C5103.71 (8)O8—N3—C10118.16 (17)
O1—N1—O2124.03 (18)O9—N3—C10117.44 (17)
O1—N1—C1118.10 (18)C7—O5—S1120.15 (12)
C5—S1—O5—C7103.41 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.95 (2)2.43 (2)2.742 (3)99.0 (15)
C4—H4···O30.94 (2)2.63 (2)2.944 (3)100.4 (15)
C6—H6···O20.95 (2)2.50 (2)2.715 (3)92.7 (15)
C6—H6···O40.95 (2)2.49 (2)2.898 (2)106.4 (16)
C9—H9···O80.86 (2)2.53 (2)2.745 (3)94.9 (18)
C11—H11···O90.90 (2)2.46 (2)2.699 (3)95.3 (16)
C2—H2···O7i0.95 (2)2.45 (2)3.374 (3)166.2 (19)
C3—H3···O3ii0.97 (2)2.43 (2)3.208 (3)137.0 (18)
C3—H3···O6ii0.97 (2)2.47 (2)3.263 (3)138.2 (18)
C4—H4···O7iii0.94 (2)2.99 (2)3.781 (3)142.9 (17)
C6—H6···N3iv0.95 (2)2.93 (2)3.836 (3)161.2 (18)
C6—H6···O8iv0.95 (2)2.77 (2)3.652 (3)155.7 (19)
C6—H6···O9iv0.95 (2)2.70 (2)3.572 (3)153.6 (17)
C8—H8···O4v0.81 (2)2.43 (2)3.008 (2)129.2 (19)
C8—H8···O8vi0.81 (2)2.96 (2)3.681 (3)150.0 (18)
C9—H9···O2vii0.86 (2)2.97 (2)3.726 (3)147 (2)
C11—H11···O1viii0.90 (2)2.58 (2)3.362 (3)145.1 (18)
C11—H11···O2ix0.90 (2)2.62 (2)3.240 (3)126.4 (17)
Symmetry codes: (i) x, y+1, z1; (ii) x+3/2, y+1, z1/2; (iii) x+3/2, y, z1/2; (iv) x+1, y+1, z1/2; (v) x, y+1, z; (vi) x+1, y+2, z1/2; (vii) x+1, y+2, z+1/2; (viii) x, y1, z+1; (ix) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds