Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C6H4ClNO4S, the molecular structure and molecular packing in the crystal are stabilized by C—H...O interactions. The C—H...O interactions form S(5) and R12 ring motifs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013321/ci6235sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013321/ci6235Isup2.hkl
Contains datablock I

CCDC reference: 217610

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.106
  • Data-to-parameter ratio = 14.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Structural studies on aryl sulfonyl chlorides are essential for understanding the mechanisms of nucleophilic substitution reactions at the sulfonyl reaction center (Kislov & Ivanov, 2000). Substitution reactions of sulfonyl chlorides bridge inorganic and organic chemistry (Koo et al., 2000). The complex of 4-toluenesulfonyl chloride with protein had been reported as a ruminant feed material (Miller, US patent No. 3711289). Sulfonyl halides are used as initiators in the metal catalyzed living radical polymerization of acrylonitrile (Barboiu & Percec, 2002). Arene sulfonyl halides were reported to be the universal class of functional initiators for metal catalyzed living radical polymerization of styrenes, methacrylates and acrylates (Percec et al., 1998). The present crystal structure determination of the title compound, (I), is undertaken owing to the biological activity and synthetic utility of its analogues.

A search of the July 2002 release of Cambridge Structural Database (Allen, 2002) revealed 11 structures (with the following refcodes: COKCOU, FAQJOW, FOHYAC, KADZOE, NAQLUM, NAXFEX, NAXFIB, NBZSOC, QQQHJA, QQQHJA01 and SUTYAH) that are closely related to the title compound. The SO, S—C and S—Cl bond lengths (Table 1) are comparable to those found in these structures. The crystal structure of (I) is stabilized by weak C—H···O interactions. The range of H···O distances (Table 2) found in (I) agrees with those found for weak C—H···O bonds (Desiraju & Steiner, 1999). The C6—H6···O4 and C6—H6···O2 (Fig. 1) interactions constitute a pair of bifurcated donor bonds generating two rings fused to each other each of graph set (Etter, 1990; Bernstein et al., 1995) motif S(5). Each of the C4—H4···O3 and C2—H2···O1 (Fig. 2) interactions generate S(5) motif. The C3—H3···O2iii and C2—H2···O2iii (Fig. 2 and Table 2 for symmetry codes) interactions constitute a pair of bifurcated acceptor bonds generating a ring of graph set R12(5). The molecular aggregation is completed by several other weak C—H···O interactions (Table 2 and Fig. 2). Other short intermolecular contacts are Cl1···O1(1 − x, −y, 1 − z) of 3.231 (2) Å and Cl1···Cl1(1 − x, 1 − y, 1 − z) of 3.437 (1) Å.

Experimental top

The title compound was purchased from National Chemicals, Vadodara, Gujarat, India. Diffraction quality crystals were obtained by recrystallizing the sample from a 1:1 mixture of petroleum ether and acetone.

Refinement top

H atoms were located from a difference Fourier map and both positional and isotropic displacement paramaters were refined. The C—H bond lengths are in the range 0.90 (3)–0.95 (3) Å and the C—C—H angles for the aromatic ring are in the range 118 (2)–123 (2)°. The highest peak in the difference Fourier map lies close to the Cl atom (0.84 Å).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probablity displacement ellipsoids and intramolecular C—H···O interactions.
[Figure 2] Fig. 2. Part of the molecular network, showing intermolecular C—H···O interactions and also Cl···Cl and Cl···O contacts. [Symmetry codes: (v) 1 − x, 1 − y, 1 − z; (vi) 1 − x, −y, 1 − z; other codes are given in Table 2.]
3-Nitrobenzenesulfonyl chloride top
Crystal data top
C6H4ClNO4SF(000) = 448
Mr = 221.61Dx = 1.745 Mg m3
Monoclinic, P21/nMelting point: 333-335 K K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.8868 (4) ÅCell parameters from 823 reflections
b = 9.4298 (4) Åθ = 2.8–27.5°
c = 11.8789 (5) ŵ = 0.68 mm1
β = 107.318 (2)°T = 120 K
V = 843.40 (7) Å3Block, colourless
Z = 40.39 × 0.24 × 0.13 mm
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
1928 independent reflections
Radiation source: fine-focus sealed tube1667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
k = 1212
Tmin = 0.822, Tmax = 0.916l = 1515
9420 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.106All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.053P)2 + 0.872P]
where P = (Fo2 + 2Fc2)/3
1928 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C6H4ClNO4SV = 843.40 (7) Å3
Mr = 221.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8868 (4) ŵ = 0.68 mm1
b = 9.4298 (4) ÅT = 120 K
c = 11.8789 (5) Å0.39 × 0.24 × 0.13 mm
β = 107.318 (2)°
Data collection top
Bruker SMART CCD 6K area-detector
diffractometer
1928 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1667 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.916Rint = 0.028
9420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106All H-atom parameters refined
S = 1.08Δρmax = 1.26 e Å3
1928 reflectionsΔρmin = 0.69 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32306 (8)0.43025 (6)0.53772 (6)0.03728 (19)
S10.10523 (7)0.30523 (5)0.49511 (4)0.02122 (16)
O10.3023 (3)0.28186 (18)0.32733 (16)0.0359 (4)
O20.1028 (3)0.13592 (19)0.22689 (15)0.0386 (4)
O30.0254 (2)0.32696 (18)0.58608 (16)0.0316 (4)
O40.0094 (3)0.3315 (2)0.37543 (16)0.0410 (5)
N10.2148 (3)0.17316 (19)0.31766 (16)0.0248 (4)
C10.2439 (3)0.0821 (2)0.42233 (18)0.0203 (4)
C20.3410 (3)0.1353 (2)0.5311 (2)0.0244 (4)
C30.3635 (3)0.0513 (2)0.6308 (2)0.0271 (5)
C40.2911 (3)0.0838 (2)0.61985 (19)0.0247 (5)
C50.1983 (3)0.1340 (2)0.50833 (18)0.0190 (4)
C60.1716 (3)0.0529 (2)0.40713 (18)0.0194 (4)
H20.386 (4)0.224 (3)0.540 (2)0.026 (6)*
H30.429 (4)0.082 (3)0.706 (3)0.040 (8)*
H40.303 (3)0.139 (3)0.685 (2)0.025 (6)*
H60.108 (4)0.086 (3)0.330 (2)0.026 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0286 (3)0.0218 (3)0.0638 (4)0.0036 (2)0.0174 (3)0.0001 (3)
S10.0207 (3)0.0197 (3)0.0215 (3)0.00173 (19)0.0036 (2)0.00229 (18)
O10.0443 (10)0.0287 (9)0.0386 (10)0.0089 (8)0.0183 (8)0.0060 (7)
O20.0581 (12)0.0280 (9)0.0229 (8)0.0007 (8)0.0015 (8)0.0050 (7)
O30.0325 (9)0.0284 (9)0.0398 (10)0.0031 (7)0.0194 (8)0.0083 (7)
O40.0527 (12)0.0318 (9)0.0266 (9)0.0173 (8)0.0064 (8)0.0034 (7)
N10.0318 (10)0.0220 (9)0.0230 (9)0.0032 (7)0.0117 (8)0.0015 (7)
C10.0210 (10)0.0192 (10)0.0216 (10)0.0028 (8)0.0077 (8)0.0022 (8)
C20.0245 (10)0.0192 (11)0.0286 (11)0.0008 (8)0.0067 (9)0.0028 (8)
C30.0310 (12)0.0247 (11)0.0210 (10)0.0008 (9)0.0010 (9)0.0034 (8)
C40.0279 (11)0.0249 (11)0.0186 (10)0.0009 (8)0.0027 (8)0.0015 (8)
C50.0189 (9)0.0172 (10)0.0200 (9)0.0004 (7)0.0043 (7)0.0008 (7)
C60.0189 (10)0.0211 (10)0.0174 (9)0.0015 (8)0.0044 (8)0.0016 (7)
Geometric parameters (Å, º) top
S1—O31.4182 (17)C1—C61.384 (3)
S1—O41.4193 (18)C1—C21.385 (3)
S1—C51.761 (2)C6—H60.95 (3)
S1—Cl12.0198 (8)C3—C41.386 (3)
O1—N11.222 (3)C3—C21.391 (3)
N1—O21.224 (3)C3—H30.93 (3)
N1—C11.472 (3)C4—H40.91 (3)
C5—C61.387 (3)C2—H20.90 (3)
C5—C41.392 (3)
O3—S1—O4120.87 (12)C2—C1—N1118.73 (19)
O3—S1—C5109.41 (10)C1—C6—C5116.33 (19)
O4—S1—C5109.45 (10)C1—C6—H6120.5 (16)
O3—S1—Cl1105.20 (8)C5—C6—H6123.2 (16)
O4—S1—Cl1107.98 (10)C4—C3—C2119.9 (2)
C5—S1—Cl1102.24 (7)C4—C3—H3118.2 (19)
O1—N1—O2124.23 (19)C2—C3—H3121.9 (19)
O1—N1—C1117.94 (18)C3—C4—C5119.2 (2)
O2—N1—C1117.83 (18)C3—C4—H4120.6 (16)
C6—C5—C4122.58 (19)C5—C4—H4120.2 (16)
C6—C5—S1118.46 (15)C1—C2—C3118.9 (2)
C4—C5—S1118.93 (16)C1—C2—H2122.4 (18)
C6—C1—C2123.1 (2)C3—C2—H2118.6 (17)
C6—C1—N1118.14 (18)
O3—S1—C5—C6135.78 (17)C2—C1—C6—C51.1 (3)
O4—S1—C5—C61.2 (2)N1—C1—C6—C5178.45 (18)
Cl1—S1—C5—C6113.06 (16)C4—C5—C6—C10.6 (3)
O3—S1—C5—C442.4 (2)S1—C5—C6—C1178.63 (15)
O4—S1—C5—C4176.90 (18)C2—C3—C4—C50.7 (3)
Cl1—S1—C5—C468.79 (18)C6—C5—C4—C31.5 (3)
O1—N1—C1—C6167.96 (19)S1—C5—C4—C3179.53 (17)
O2—N1—C1—C612.9 (3)C6—C1—C2—C31.8 (3)
O1—N1—C1—C212.5 (3)N1—C1—C2—C3177.8 (2)
O2—N1—C1—C2166.6 (2)C4—C3—C2—C10.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O40.95 (3)2.55 (3)2.897 (3)101.9 (18)
C6—H6···O20.95 (3)2.42 (3)2.712 (3)97.1 (18)
C4—H4···O30.91 (3)2.79 (3)3.051 (3)97.8 (18)
C2—H2···O10.90 (3)2.48 (3)2.725 (3)96.0 (19)
C4—H4···O4i0.91 (3)2.38 (3)3.116 (3)138 (2)
C6—H6···O1ii0.95 (3)2.52 (3)3.251 (3)134 (2)
C3—H3···O2iii0.93 (3)2.97 (3)3.504 (3)118 (2)
C2—H2···O2iii0.90 (3)2.71 (3)3.387 (3)133 (2)
C3—H3···O3iv0.93 (3)2.54 (3)3.412 (3)156 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H4ClNO4S
Mr221.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)7.8868 (4), 9.4298 (4), 11.8789 (5)
β (°) 107.318 (2)
V3)843.40 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.39 × 0.24 × 0.13
Data collection
DiffractometerBruker SMART CCD 6K area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.822, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
9420, 1928, 1667
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.08
No. of reflections1928
No. of parameters134
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.26, 0.69

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
S1—O31.4182 (17)C5—C61.387 (3)
S1—O41.4193 (18)C5—C41.392 (3)
S1—C51.761 (2)C1—C61.384 (3)
S1—Cl12.0198 (8)C1—C21.385 (3)
O1—N11.222 (3)C3—C41.386 (3)
N1—O21.224 (3)C3—C21.391 (3)
N1—C11.472 (3)
O3—S1—O4120.87 (12)C5—S1—Cl1102.24 (7)
O3—S1—C5109.41 (10)O1—N1—O2124.23 (19)
O4—S1—C5109.45 (10)O1—N1—C1117.94 (18)
O3—S1—Cl1105.20 (8)O2—N1—C1117.83 (18)
O4—S1—Cl1107.98 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O40.95 (3)2.55 (3)2.897 (3)101.9 (18)
C6—H6···O20.95 (3)2.42 (3)2.712 (3)97.1 (18)
C4—H4···O30.91 (3)2.79 (3)3.051 (3)97.8 (18)
C2—H2···O10.90 (3)2.48 (3)2.725 (3)96.0 (19)
C4—H4···O4i0.91 (3)2.38 (3)3.116 (3)138 (2)
C6—H6···O1ii0.95 (3)2.52 (3)3.251 (3)134 (2)
C3—H3···O2iii0.93 (3)2.97 (3)3.504 (3)118 (2)
C2—H2···O2iii0.90 (3)2.71 (3)3.387 (3)133 (2)
C3—H3···O3iv0.93 (3)2.54 (3)3.412 (3)156 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds