Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C19H18N2O4, the indole moiety is planar and the dihedral angle between it and the substituted phenyl ring is 24.38 (5)°. In the solid state, inversion-related mol­ecules are linked to form N—H...O hydrogen-bonded dimers. The molecular packing is stabilized by C—H...π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007876/ci6217sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007876/ci6217Isup2.hkl
Contains datablock I

CCDC reference: 214622

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.061
  • wR factor = 0.189
  • Data-to-parameter ratio = 18.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Substituted-indole compounds have gained much importance in the past years, since they are present in a number of natural products, many of which are found to possess antibacterial (Okabe & Adachi, 1998), antitumour (Schollmeyer et al., 1995), antidepressant (Grinev et al., 1984), antimicrobial (El-Sayed et al., 1986; Gadaginamath & Patil, 1999) and anti-inflammatory (Rodriguez et al., 1985) activities. The interaction of a phenylsulfonyl indole with calf-thymus DNA has been reported (Sivaraman et al., 1996). Indoles have been proved to dispaly high aldose reductose inhibitory activity (Rajeswaran et al., 1999). 2-Aroylindole derivatives are found to possess high cytotoxicity and are used as antimitotic agents (Mahboobi et al., 2001). The structure determination of the title compound, (I), was undertaken as part of our studies on indole derivatives.

The bond lengths and angles observed in the indole ring system show normal values. The Csp2—Csp2 single bond distances, C2—C10 [1.444 (3) Å] and C11—C12 [1.466 (2) Å], and Csp2—Csp2 double-bond distance C10C11 [1.331 (3) Å] are comparable with the corresponding mean value of 1.455 (11) and 1.330 (14) Å, reported by Allen et al. (1987). These bond distances indicate conjugation along C3—C2—C9—C10—C11—C12. The C2—C10 bond is trans to C10—C11 [C2—C10—C11—C12 = −178.0 (2)°]. The dihedral angle between the indole plane and phenyl ring is 24.38 (5)°; the N1—C2—C10—C11 and C10—C11—C12—C13 torsion angles are 4.7 (3) and −30.5 (3)°, respectively.

The NO2 group is twisted away from the attached phenyl ring with C12—C17—N21—O3 and C16—C17—N21—O4 torsion angles being −25.2 (3) and −24.3 (3)°, respectively. The rotation of the NO2 group is restricted by a weak C11—H11···O3 interaction. The N—O distances in the nitro group agree with the mean value of 1.217 (11) Å (Allen et al., 1987). The coplanarity of the methoxy carbon with the phenyl ring [C20—O2—C15—C16 = 4.9 (3)°] results in H16···H20A (2.30 Å) and H16···H20C (2.34 Å) short contacts. These contacts cause the widening of O2—C15—C16 [125.3 (2)°] and narrowing of O2—C15—C14 [116.0 (2)°] angles from 120°. Similar features have been reported in structures containing methoxy substituents (Chandrakantha et al., 1990; Wakahara et al., 1972; Falkenberg & Carlstrom, 1971; Sakaki et al., 1975). The ethoxy group is also coplanar with the phenyl ring with C14—O1—C18—C19 = −179.1 (2) and C18—O1—C14—C13 = −2.8 (3)°; the resultant H13···H18A [2.31 Å] and H13···H18B [2.36 Å] short contacts cause the widening of C13—C14—O1 [125.5 (2)°] and narrowing of C15—C14—O1 [114.6 (2)°] angles, as reported in the literature (Chandrakantha et al., 1998; Sakaki et al., 1976).

One of the nitro group O atoms, O3, is involved in an intramolecular C11—H11···O3 interaction. The other O atom, O4, is involved in the formation of centro-symmetrically N1—H1···O4(-x, 1 − y, 1 − z) hydrogen-bonded dimers, in the solid state. Apart from these interactions, the molecular packing is also stabilized by C—H···π interactions (Table 2 and Fig. 2). In Table 2, CgA and CgB denote the centriods of the rings A and B, respectively.

Experimental top

1-(Indol-2-yl)-2-(6-nitrovertatryl)ethene (0.68 g, 2 mmol) and sodium ethoxide (0.24 g, 5 mmol) were taken in dry THF (40 ml) and refluxed for 6 h. The solution was cooled and poured over crushed ice. The preciptated solid was filtered, washed with water (2 × 5 ml) and dried over CaCl2. This was recrystallized from ethanol to afford the title compound.

Refinement top

The H atoms were geometrically positioned and were treated as riding on the parent atoms, with C—H distances in the range 0.93–0.97 Å and N—H distance of 0.86 Å. The rotating group refinement was used for the methyl groups.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 35% probability displacement elliposids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed down the b axis. For clarity, H atoms not involved in hydrogen bonding have been omitted.
2-[2-(4-Ethoxy-5-methoxy-2-nitrophenyl)vinyl]-1H-indole top
Crystal data top
C19H18N2O4Z = 2
Mr = 338.35F(000) = 356
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5949 (4) ÅCell parameters from 3349 reflections
b = 10.0887 (6) Åθ = 1.8–28.3°
c = 11.5777 (7) ŵ = 0.09 mm1
α = 85.298 (1)°T = 293 K
β = 76.924 (1)°Plate, red
γ = 86.166 (1)°0.44 × 0.28 × 0.16 mm
V = 860.14 (9) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
2759 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ω scansh = 810
5992 measured reflectionsk = 1313
4109 independent reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1036P)2 + 0.0867P]
where P = (Fo2 + 2Fc2)/3
4109 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H18N2O4γ = 86.166 (1)°
Mr = 338.35V = 860.14 (9) Å3
Triclinic, P1Z = 2
a = 7.5949 (4) ÅMo Kα radiation
b = 10.0887 (6) ŵ = 0.09 mm1
c = 11.5777 (7) ÅT = 293 K
α = 85.298 (1)°0.44 × 0.28 × 0.16 mm
β = 76.924 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2759 reflections with I > 2σ(I)
5992 measured reflectionsRint = 0.025
4109 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
4109 reflectionsΔρmin = 0.23 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38514 (19)0.31020 (13)0.06658 (11)0.0539 (4)
O20.4804 (2)0.13263 (13)0.08272 (12)0.0586 (4)
O30.2156 (3)0.51133 (18)0.45182 (14)0.0933 (6)
O40.2176 (3)0.30062 (18)0.47735 (13)0.0910 (6)
N10.0386 (3)0.87630 (16)0.32494 (15)0.0588 (5)
H10.05900.81440.38120.071*
C20.0604 (3)0.85939 (19)0.21157 (17)0.0500 (4)
C30.0622 (3)0.9808 (2)0.1486 (2)0.0598 (5)
H30.12030.99780.06940.072*
C40.0393 (3)1.07595 (19)0.2241 (2)0.0573 (5)
C50.1001 (3)1.00694 (19)0.3348 (2)0.0582 (5)
C60.2040 (4)1.0692 (3)0.4316 (3)0.0858 (8)
H60.24401.02200.50420.103*
C70.2458 (5)1.2027 (3)0.4164 (3)0.0971 (10)
H70.31531.24660.48010.117*
C80.1879 (4)1.2733 (3)0.3098 (4)0.0918 (9)
H80.21801.36400.30290.110*
C90.0867 (3)1.2130 (2)0.2135 (3)0.0784 (8)
H90.04941.26210.14150.094*
C100.1458 (3)0.73275 (19)0.17516 (17)0.0513 (5)
H100.21800.73060.09880.062*
C110.1292 (3)0.61877 (18)0.24236 (17)0.0502 (5)
H110.05390.62020.31780.060*
C120.2206 (2)0.49116 (17)0.20652 (15)0.0449 (4)
C130.2612 (2)0.46289 (18)0.08610 (15)0.0457 (4)
H130.22960.52670.03070.055*
C140.3461 (2)0.34426 (18)0.04690 (15)0.0438 (4)
C150.3962 (2)0.24551 (18)0.12914 (15)0.0447 (4)
C160.3539 (3)0.26872 (18)0.24771 (15)0.0468 (4)
H160.38280.20410.30340.056*
C170.2679 (3)0.38900 (18)0.28445 (15)0.0465 (4)
C180.3282 (3)0.4009 (2)0.15483 (16)0.0531 (5)
H18A0.38410.48540.15960.064*
H18B0.19780.41670.13510.064*
C190.3865 (3)0.3368 (2)0.27094 (18)0.0679 (6)
H19A0.51550.32090.28890.102*
H19B0.35210.39480.33290.102*
H19C0.32920.25380.26520.102*
C200.5163 (3)0.0253 (2)0.1640 (2)0.0606 (5)
H20A0.59720.05300.20920.091*
H20B0.57090.04950.12050.091*
H20C0.40500.00050.21680.091*
N210.2303 (3)0.40219 (18)0.41256 (14)0.0589 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0717 (9)0.0553 (8)0.0345 (6)0.0050 (6)0.0125 (6)0.0055 (6)
O20.0791 (10)0.0499 (8)0.0452 (7)0.0086 (7)0.0133 (7)0.0057 (6)
O30.165 (2)0.0682 (11)0.0490 (9)0.0046 (11)0.0266 (10)0.0191 (8)
O40.1530 (19)0.0694 (11)0.0397 (8)0.0003 (11)0.0052 (9)0.0102 (7)
N10.0857 (13)0.0405 (9)0.0478 (9)0.0030 (8)0.0132 (8)0.0016 (7)
C20.0521 (10)0.0472 (10)0.0514 (10)0.0064 (8)0.0133 (8)0.0009 (8)
C30.0539 (12)0.0592 (12)0.0627 (12)0.0106 (9)0.0102 (10)0.0159 (10)
C40.0523 (11)0.0448 (10)0.0792 (14)0.0094 (8)0.0262 (10)0.0094 (10)
C50.0734 (13)0.0412 (10)0.0648 (13)0.0021 (9)0.0265 (11)0.0047 (9)
C60.125 (2)0.0616 (15)0.0705 (15)0.0189 (14)0.0228 (15)0.0159 (12)
C70.122 (3)0.0619 (16)0.113 (2)0.0234 (16)0.037 (2)0.0308 (17)
C80.0894 (19)0.0463 (13)0.148 (3)0.0085 (13)0.045 (2)0.0123 (17)
C90.0685 (15)0.0494 (13)0.119 (2)0.0117 (11)0.0319 (15)0.0228 (13)
C100.0520 (11)0.0516 (11)0.0482 (10)0.0040 (8)0.0071 (8)0.0019 (8)
C110.0559 (11)0.0492 (11)0.0440 (9)0.0024 (8)0.0069 (8)0.0058 (8)
C120.0488 (10)0.0453 (9)0.0394 (9)0.0071 (7)0.0062 (7)0.0028 (7)
C130.0524 (10)0.0441 (10)0.0396 (9)0.0038 (7)0.0097 (8)0.0015 (7)
C140.0476 (10)0.0481 (9)0.0355 (8)0.0064 (7)0.0078 (7)0.0028 (7)
C150.0497 (10)0.0426 (9)0.0415 (9)0.0023 (7)0.0094 (8)0.0038 (7)
C160.0587 (11)0.0441 (10)0.0374 (9)0.0049 (8)0.0116 (8)0.0026 (7)
C170.0560 (11)0.0489 (10)0.0335 (8)0.0083 (8)0.0067 (7)0.0015 (7)
C180.0600 (12)0.0604 (12)0.0407 (9)0.0018 (9)0.0157 (8)0.0017 (8)
C190.0858 (16)0.0793 (15)0.0419 (10)0.0006 (12)0.0209 (10)0.0076 (10)
C200.0749 (14)0.0509 (11)0.0589 (12)0.0060 (10)0.0239 (10)0.0031 (9)
N210.0798 (12)0.0587 (10)0.0363 (8)0.0023 (8)0.0093 (8)0.0036 (7)
Geometric parameters (Å, º) top
O1—C141.348 (2)C10—C111.331 (3)
O1—C181.436 (2)C10—H100.93
O2—C151.357 (2)C11—C121.466 (2)
O2—C201.429 (2)C11—H110.93
O3—N211.214 (2)C12—C171.397 (3)
O4—N211.215 (2)C12—C131.407 (2)
N1—C51.374 (2)C13—C141.381 (3)
N1—C21.375 (3)C13—H130.93
N1—H10.86C14—C151.415 (2)
C2—C31.372 (3)C15—C161.373 (2)
C2—C101.444 (3)C16—C171.390 (3)
C3—C41.420 (3)C16—H160.93
C3—H30.93C17—N211.461 (2)
C4—C51.403 (3)C18—C191.502 (3)
C4—C91.408 (3)C18—H18A0.97
C5—C61.387 (3)C18—H18B0.97
C6—C71.369 (4)C19—H19A0.96
C6—H60.93C19—H19B0.96
C7—C81.369 (4)C19—H19C0.96
C7—H70.93C20—H20A0.96
C8—C91.365 (4)C20—H20B0.96
C8—H80.93C20—H20C0.96
C9—H90.93
C14—O1—C18118.32 (14)C13—C12—C11119.93 (17)
C15—O2—C20117.57 (15)C14—C13—C12122.66 (17)
C5—N1—C2109.78 (17)C14—C13—H13118.7
C5—N1—H1125.1C12—C13—H13118.7
C2—N1—H1125.1O1—C14—C13125.5 (2)
C3—C2—N1107.60 (17)O1—C14—C15114.6 (2)
C3—C2—C10129.88 (19)C13—C14—C15119.95 (15)
N1—C2—C10122.49 (17)O2—C15—C16125.3 (2)
C2—C3—C4108.72 (19)O2—C15—C14116.0 (2)
C2—C3—H3125.6C16—C15—C14118.75 (16)
C4—C3—H3125.6C15—C16—C17119.92 (17)
C5—C4—C9117.7 (2)C15—C16—H16120.0
C5—C4—C3106.05 (17)C17—C16—H16120.0
C9—C4—C3136.2 (2)C16—C17—C12123.52 (16)
N1—C5—C6130.0 (2)C16—C17—N21114.91 (16)
N1—C5—C4107.84 (18)C12—C17—N21121.57 (16)
C6—C5—C4122.2 (2)O1—C18—C19106.67 (16)
C7—C6—C5117.7 (3)O1—C18—H18A110.4
C7—C6—H6121.2C19—C18—H18A110.4
C5—C6—H6121.2O1—C18—H18B110.4
C6—C7—C8121.7 (3)C19—C18—H18B110.4
C6—C7—H7119.2H18A—C18—H18B108.6
C8—C7—H7119.2C18—C19—H19A109.5
C9—C8—C7121.3 (2)C18—C19—H19B109.5
C9—C8—H8119.4H19A—C19—H19B109.5
C7—C8—H8119.4C18—C19—H19C109.5
C8—C9—C4119.5 (3)H19A—C19—H19C109.5
C8—C9—H9120.3H19B—C19—H19C109.5
C4—C9—H9120.3O2—C20—H20A109.5
C11—C10—C2125.09 (18)O2—C20—H20B109.5
C11—C10—H10117.5H20A—C20—H20B109.5
C2—C10—H10117.5O2—C20—H20C109.5
C10—C11—C12124.98 (18)H20A—C20—H20C109.5
C10—C11—H11117.5H20B—C20—H20C109.5
C12—C11—H11117.5O3—N21—O4121.71 (17)
C17—C12—C13115.15 (16)O3—N21—C17120.58 (17)
C17—C12—C11124.88 (16)O4—N21—C17117.70 (17)
C5—N1—C2—C30.1 (2)C11—C12—C13—C14179.61 (17)
C5—N1—C2—C10178.67 (17)C18—O1—C14—C132.8 (3)
N1—C2—C3—C40.4 (2)C18—O1—C14—C15175.91 (16)
C10—C2—C3—C4178.82 (19)C12—C13—C14—O1178.52 (17)
C2—C3—C4—C50.5 (2)C12—C13—C14—C150.2 (3)
C2—C3—C4—C9179.8 (2)C20—O2—C15—C164.9 (3)
C2—N1—C5—C6179.9 (2)C20—O2—C15—C14173.73 (17)
C2—N1—C5—C40.2 (2)O1—C14—C15—O21.8 (2)
C9—C4—C5—N1179.91 (18)C13—C14—C15—O2179.40 (16)
C3—C4—C5—N10.5 (2)O1—C14—C15—C16176.92 (16)
C9—C4—C5—C60.2 (3)C13—C14—C15—C161.9 (3)
C3—C4—C5—C6179.7 (2)O2—C15—C16—C17179.71 (17)
N1—C5—C6—C7179.8 (3)C14—C15—C16—C171.7 (3)
C4—C5—C6—C70.4 (4)C15—C16—C17—C120.2 (3)
C5—C6—C7—C80.0 (5)C15—C16—C17—N21179.89 (17)
C6—C7—C8—C90.5 (5)C13—C12—C17—C161.9 (3)
C7—C8—C9—C40.7 (4)C11—C12—C17—C16179.70 (17)
C5—C4—C9—C80.3 (3)C13—C12—C17—N21178.47 (16)
C3—C4—C9—C8178.9 (2)C11—C12—C17—N210.6 (3)
C3—C2—C10—C11177.0 (2)C14—O1—C18—C19179.10 (16)
N1—C2—C10—C114.7 (3)C16—C17—N21—O3154.4 (2)
C2—C10—C11—C12177.99 (17)C12—C17—N21—O325.2 (3)
C10—C11—C12—C17151.7 (2)C16—C17—N21—O424.3 (3)
C10—C11—C12—C1330.5 (3)C12—C17—N21—O4156.0 (2)
C17—C12—C13—C141.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O30.932.352.771 (3)107
N1—H1···O4i0.862.112.919 (2)156
C18—H18A···CgBii0.972.843.714 (2)150
C20—H20A···CgAiii0.962.813.770 (3)175
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC19H18N2O4
Mr338.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5949 (4), 10.0887 (6), 11.5777 (7)
α, β, γ (°)85.298 (1), 76.924 (1), 86.166 (1)
V3)860.14 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.28 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5992, 4109, 2759
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.189, 1.02
No. of reflections4109
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
O1—C141.348 (2)N1—C51.374 (2)
O1—C181.436 (2)N1—C21.375 (3)
O2—C151.357 (2)C2—C101.444 (3)
O2—C201.429 (2)C10—C111.331 (3)
O3—N211.214 (2)C11—C121.466 (2)
O4—N211.215 (2)C17—N211.461 (2)
O1—C14—C13125.5 (2)O2—C15—C16125.3 (2)
O1—C14—C15114.6 (2)O2—C15—C14116.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O30.932.352.771 (3)107
N1—H1···O4i0.862.112.919 (2)156
C18—H18A···CgBii0.972.843.714 (2)150
C20—H20A···CgAiii0.962.813.770 (3)175
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds