Download citation
Download citation
link to html
In the title compound, C12H12O3, the pyran ring adopts a half-chair conformation. In the crystal, the inversion-related mol­ecules exist as O—H...O hydrogen-bonded dimers and these dimeric pairs are reinforced by C—H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803006913/ci6211sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803006913/ci6211Isup2.hkl
Contains datablock I

CCDC reference: 214590

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.067
  • wR factor = 0.198
  • Data-to-parameter ratio = 14.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Chromene derivatives exhibit antifeedant activity against larvae of Spilarctia obliqua (Agarwal et al., 2000) and some 2H-chromene derivatives are found to possess antimicrobial activities (El-Gaby et al., 2000). Endothelin-A (ETA) selective receptor antagonists contain the 2H-chromene moiety (Ishizuka et al., 2002). Apart from the above activities, the chromene derivatives possess photochromic properties. The structure determination of the title compound, (I), was undertaken as part of our studies on chromene derivatives.

In (I) (Fig. 1), the pyran ring adopts a half-chair conformation, with asymmetry parameter Δ2(C2—O1)= 0.009 (1) (Nardelli, 1983). Atoms O1 and C2 deviate from the weighted least-squares plane through the remaining four atoms of the pyran ring by −0.253 (1) and 0.214 (2) Å, respectively. The hydroxy and methyl groups at C2 adopt pseudo-axial and pseudo-equatorial orientations, respectively. The acetyl group is planar and makes a dihedral angle of 28.6 (1)° with the mean plane passing through atoms C3–C10. The bond angles at sp3-hybridized atom C2 show substantial distortion from the ideal tetrahedral value of 109.5°. Similar observations have been noted in the crystal structures of related chromene derivatives (Aldosin et al., 1995, 1996; Yogavel et al., 2003). The C3—C4 [1.343 (2) Å] bond length is comparable with the previously reported value of 1.350 (4) Å for 3-benzoyl-2-hydroxy-2-methylchromene (Yogavel et al., 2003).

The distinctive feature of the crystal structure of (I) is that the inversion-related intermolecular O—H···O hydrogen bonds (Table 2) lead to the formation of dimeric pairs with graph-set R22(12) (Etter et al., 1990) and these dimeric pairs are further reinforced by weak C—H···O interactions.

Experimental top

Acetylacetone (10 mmol) in ethanol was mixed with salicylaldehyde (10 mmol), to which was added 0.5 ml of piperidine. The solution mixture was stirred thoroughly for about 3 h with occasional cooling. This mixture was then kept in a refrigerator for 12 h. A yellow product was obtained and this was separated out, then filtered, washed with a small amount of ethanol and dried under vacuum. The title compound was recrystallized from a chloroform/petroleum ether (1:1 volume ratio) solution.

Refinement top

The H atoms were positioned geometrically and were treated as riding on their parent C and O atoms, with aromatic C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å and O—H distance of 0.82 Å. Rotating-group refinement was used for the methyl and hydroxy groups.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and 35% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the hydrogen-bonded dimers.
3-Acetyl-2-hydroxy-2-methylchromene top
Crystal data top
C12H12O3Z = 2
Mr = 204.22F(000) = 216
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 7.574 (2) ÅCell parameters from 25 reflections
b = 8.672 (2) Åθ = 10–35°
c = 8.789 (3) ŵ = 0.79 mm1
α = 106.32 (3)°T = 293 K
β = 110.99 (3)°Prism, yellow
γ = 93.28 (3)°0.25 × 0.25 × 0.25 mm
V = 509.2 (2) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: Enraf-Nonius FR590θmax = 74.9°, θmin = 5.4°
Graphite monochromatorh = 89
non–profiled ω/2θ scansk = 1010
2091 measured reflectionsl = 100
2091 independent reflections2 standard reflections every 60 reflections
1963 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.1509P)2 + 0.0906P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2091 reflectionsΔρmax = 0.32 e Å3
140 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.104 (12)
Crystal data top
C12H12O3γ = 93.28 (3)°
Mr = 204.22V = 509.2 (2) Å3
Triclinic, P1Z = 2
a = 7.574 (2) ÅCu Kα radiation
b = 8.672 (2) ŵ = 0.79 mm1
c = 8.789 (3) ÅT = 293 K
α = 106.32 (3)°0.25 × 0.25 × 0.25 mm
β = 110.99 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
2091 measured reflections2 standard reflections every 60 reflections
2091 independent reflections intensity decay: none
1963 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
2091 reflectionsΔρmin = 0.33 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77151 (15)0.09860 (13)0.39864 (16)0.0445 (4)
C20.8307 (2)0.26962 (17)0.5000 (2)0.0364 (4)
C30.6864 (2)0.32875 (17)0.57756 (19)0.0350 (4)
C40.5039 (2)0.24953 (18)0.5018 (2)0.0377 (4)
H40.41580.28680.54860.045*
C50.2484 (2)0.0368 (2)0.2492 (2)0.0491 (5)
H50.15270.08040.28110.059*
C60.1993 (3)0.0976 (2)0.1030 (2)0.0555 (5)
H60.07090.14400.03670.067*
C70.3413 (3)0.1628 (2)0.0560 (2)0.0547 (5)
H70.30760.25270.04270.066*
C80.5331 (3)0.0961 (2)0.1536 (2)0.0486 (5)
H80.62830.14130.12200.058*
C90.5814 (2)0.03956 (18)0.2996 (2)0.0378 (4)
C100.4410 (2)0.10749 (18)0.3491 (2)0.0379 (4)
O110.83018 (16)0.36112 (14)0.39158 (15)0.0451 (4)
H110.93290.36500.38000.068*
C121.0288 (2)0.2744 (2)0.6304 (2)0.0469 (5)
H12A1.10320.21760.57180.070*
H12B1.01690.22280.71040.070*
H12C1.09190.38580.69140.070*
C130.7453 (2)0.48739 (19)0.7176 (2)0.0414 (4)
O140.88717 (19)0.58295 (15)0.7476 (2)0.0619 (5)
C150.6240 (3)0.5332 (2)0.8216 (2)0.0532 (5)
H15A0.69280.62710.92080.080*
H15B0.59590.44360.85810.080*
H15C0.50620.55810.75210.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (6)0.0323 (6)0.0593 (8)0.0051 (4)0.0238 (5)0.0018 (5)
C20.0319 (7)0.0306 (7)0.0465 (8)0.0013 (5)0.0202 (6)0.0064 (6)
C30.0332 (7)0.0297 (7)0.0434 (8)0.0031 (5)0.0200 (6)0.0074 (6)
C40.0335 (8)0.0345 (8)0.0477 (9)0.0033 (6)0.0227 (6)0.0088 (6)
C50.0387 (9)0.0430 (9)0.0583 (10)0.0023 (7)0.0163 (7)0.0107 (7)
C60.0506 (10)0.0451 (10)0.0528 (10)0.0102 (8)0.0061 (8)0.0111 (8)
C70.0722 (12)0.0357 (9)0.0421 (9)0.0043 (8)0.0143 (8)0.0050 (7)
C80.0609 (11)0.0349 (8)0.0484 (9)0.0051 (7)0.0255 (8)0.0064 (7)
C90.0414 (8)0.0291 (7)0.0436 (8)0.0020 (6)0.0196 (6)0.0100 (6)
C100.0368 (8)0.0317 (7)0.0445 (8)0.0007 (6)0.0177 (6)0.0104 (6)
O110.0387 (6)0.0491 (7)0.0531 (7)0.0015 (5)0.0245 (5)0.0177 (5)
C120.0330 (8)0.0486 (9)0.0592 (10)0.0076 (6)0.0200 (7)0.0151 (7)
C130.0391 (8)0.0334 (8)0.0486 (9)0.0036 (6)0.0204 (6)0.0048 (6)
O140.0518 (8)0.0439 (7)0.0755 (9)0.0107 (6)0.0323 (7)0.0081 (6)
C150.0626 (11)0.0434 (9)0.0570 (10)0.0104 (8)0.0362 (9)0.0041 (7)
Geometric parameters (Å, º) top
O1—C91.364 (2)C7—C81.383 (3)
O1—C21.4454 (18)C7—H70.93
C2—O111.3998 (19)C8—C91.390 (2)
C2—C121.517 (2)C8—H80.93
C2—C31.5243 (19)C9—C101.388 (2)
C3—C41.343 (2)O11—H110.82
C3—C131.480 (2)C12—H12A0.96
C4—C101.446 (2)C12—H12B0.96
C4—H40.93C12—H12C0.96
C5—C61.384 (3)C13—O141.218 (2)
C5—C101.397 (2)C13—C151.509 (2)
C5—H50.93C15—H15A0.96
C6—C71.380 (3)C15—H15B0.96
C6—H60.93C15—H15C0.96
C9—O1—C2118.97 (11)C9—C8—H8120.5
O11—C2—O1109.02 (13)O1—C9—C10120.74 (14)
O11—C2—C12114.01 (13)O1—C9—C8118.00 (15)
O1—C2—C12102.54 (13)C10—C9—C8121.15 (16)
O11—C2—C3105.64 (12)C9—C10—C5118.77 (16)
O1—C2—C3110.84 (11)C9—C10—C4117.51 (14)
C12—C2—C3114.79 (13)C5—C10—C4123.72 (15)
C4—C3—C13121.67 (13)C2—O11—H11109.5
C4—C3—C2119.49 (13)C2—C12—H12A109.5
C13—C3—C2118.09 (13)C2—C12—H12B109.5
C3—C4—C10121.48 (14)H12A—C12—H12B109.5
C3—C4—H4119.3C2—C12—H12C109.5
C10—C4—H4119.3H12A—C12—H12C109.5
C6—C5—C10120.37 (17)H12B—C12—H12C109.5
C6—C5—H5119.8O14—C13—C3121.16 (14)
C10—C5—H5119.8O14—C13—C15119.52 (15)
C7—C6—C5119.85 (16)C3—C13—C15119.30 (14)
C7—C6—H6120.1C13—C15—H15A109.5
C5—C6—H6120.1C13—C15—H15B109.5
C6—C7—C8120.92 (16)H15A—C15—H15B109.5
C6—C7—H7119.5C13—C15—H15C109.5
C8—C7—H7119.5H15A—C15—H15C109.5
C7—C8—C9118.94 (17)H15B—C15—H15C109.5
C7—C8—H8120.5
C9—O1—C2—O1176.84 (15)C2—O1—C9—C8152.92 (15)
C9—O1—C2—C12162.00 (13)C7—C8—C9—O1176.89 (14)
C9—O1—C2—C339.03 (18)C7—C8—C9—C100.5 (2)
O11—C2—C3—C493.69 (17)O1—C9—C10—C5176.18 (14)
O1—C2—C3—C424.25 (19)C8—C9—C10—C50.1 (2)
C12—C2—C3—C4139.82 (16)O1—C9—C10—C44.4 (2)
O11—C2—C3—C1376.60 (17)C8—C9—C10—C4179.37 (14)
O1—C2—C3—C13165.45 (13)C6—C5—C10—C90.5 (3)
C12—C2—C3—C1349.88 (19)C6—C5—C10—C4178.93 (15)
C13—C3—C4—C10170.83 (14)C3—C4—C10—C910.4 (2)
C2—C3—C4—C100.9 (2)C3—C4—C10—C5169.04 (15)
C10—C5—C6—C70.3 (3)C4—C3—C13—O14155.77 (17)
C5—C6—C7—C80.4 (3)C2—C3—C13—O1414.3 (2)
C6—C7—C8—C90.8 (3)C4—C3—C13—C1522.5 (2)
C2—O1—C9—C1030.7 (2)C2—C3—C13—C15167.43 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O14i0.822.152.899 (2)152
C12—H12C···O11i0.962.603.357 (2)136
C12—H12C···O140.962.442.990 (2)116
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12O3
Mr204.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.574 (2), 8.672 (2), 8.789 (3)
α, β, γ (°)106.32 (3), 110.99 (3), 93.28 (3)
V3)509.2 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2091, 2091, 1963
Rint0.000
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.198, 1.05
No. of reflections2091
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
O1—C91.364 (2)C3—C41.343 (2)
O1—C21.4454 (18)C13—O141.218 (2)
C2—O111.3998 (19)
O11—C2—O1109.02 (13)O11—C2—C3105.64 (12)
O11—C2—C12114.01 (13)O1—C2—C3110.84 (11)
O1—C2—C12102.54 (13)C12—C2—C3114.79 (13)
C9—O1—C2—C339.03 (18)C3—C4—C10—C910.4 (2)
O1—C2—C3—C424.25 (19)C4—C3—C13—O14155.77 (17)
C2—C3—C4—C100.9 (2)C2—C3—C13—O1414.3 (2)
C2—O1—C9—C1030.7 (2)C4—C3—C13—C1522.5 (2)
O1—C9—C10—C44.4 (2)C2—C3—C13—C15167.43 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O14i0.822.152.899 (2)152
C12—H12C···O11i0.962.603.357 (2)136
C12—H12C···O140.962.442.990 (2)116
Symmetry code: (i) x+2, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds