Download citation
Download citation
link to html
The dication in the title compound, [Ag22-dppm)2](ClO4)2·2CH3CN, where dppm is bis­(di­phenyl­phosphino)­methane (C25H22P2), is situated across an inversion centre. Each Ag atom is two-coordinate and exists in an approx­imately linear geometry. An Ag...N contact of 2.874 (10) Å is observed in the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007244/ci6210sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007244/ci6210Isup2.hkl
Contains datablock I

CCDC reference: 214558

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.066
  • wR factor = 0.131
  • Data-to-parameter ratio = 14.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Binuclear complexes of silver with certain bidentate ligands are of great interest due to their rich luminescence and bonding properties. Several compounds of binuclear [Ag22-dppm)2]2+ dications, counterbalanced by various anionic species have been reported previously (Ahrens & Jones, 1998; Lusser & Peringer, 1985; Ho & Bau, 1983). Herein we report the crystal structure of the title compound, [Ag22-dppm)2](ClO4)2·2CH3CN, (I).

The asymmetric unit of (I) consists of one-half of an [Ag22-dppm)2]2+ dication, situated across a crystallographic inversion centre, an independent ClO4 anion and a acetonitrile solvent molecule. The structure of the dication with atomic numbering scheme is shown in Fig. 1. In the dication, the Ag atoms are doubly bridged by two dppm ligands, forming an eight-membered Ag2P4C2 ring. The formation of M2P4C2 ring (M = Cu, Ag, Au, Pt and Pd) has been reported previously (Ho & Bau, 1983; Neo et al., 1995; Van der Ploeg et al., 1979; Yam et al., 1997). The eight-membered ring displays a pseudo-chair conformation, as observed in [Ag22-dppm)2](ClO4)2·2CH2Cl2 (Ahrens & Jones, 1998). In the ring, the Ag centers are two-coordinated to exhibit an approximately linear coordination geometry with a P1—Ag1—P2i [symmetry code: (i) −x, 1 − y, −z] angle of 174.95 (7)°. The intramolecular Ag···Ag contact is 3.0581 (12) Å, which is longer than that observed in other silver systems; 2.9532 (7) Å in [Ag22-dppm)2](ClO4)2·2CH2Cl2 (Ahrens & Jones, 1998) and 2.987 (2) Å in [Ag22-dppm)3](NO3)2·2H2O (Hong et al., 1997). The Ag—P distances of 2.408 (2) and 2.410 (2) Å are comparable to those observed in the above two complexes.

The Ag1···N1 contact distance of 2.874 (10) Å is shorter than that observed [3.160 (6) Å] in [Ag3{HC(PPh2)3}2](ClO4)3·2CH3CN (Che et al., 1992) but longer than that observed [2.552 (2) Å] in [Ag3(dppm)2(CH3CN)2](ClO4)2·(CH3CH2)2O (Che et al., 1991). The Ag···O contact distances in (I) [Ag1···O12 = 3.071 (7) Å and Ag1···O12i = 3.367 (6) Å] lie in the range 2.959 (3)–3.514 (2) Å reported for [Ag22-dppm)2](ClO4)2·2CH2Cl2 (Ahrens et al., 1998) but lie outside the range of 2.418 (5)–2.689 (6) Å reported for [Ag2(dppm)2(NO3)2] (Ho et al., 1983).

Experimental top

The title compound was synthesized by a modification of a literature procedure (Lusser & Peringer, 1985). The complex was obtained by the reaction between [Cu22-dppm)2](ClO4)2 and AgCCC(CH3)3 in a 1:2 ratio in acetonitrile solution under anaerobic conditions for 24 h. Well formed colorless crystals suitable for X-ray diffraction measurements were grown by the slow diffusion of diethyl ether into a solution of acetonitrile at room temperature.

Refinement top

The H atoms were positioned geometrically (C—H bond lengths were fixed in the range 0.93–0.97 Å), assigned isotropic displacement parameters and allowed to ride on their respective parent C atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the dication of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.
Bis[µ-methylenebis(diphenylphosphine)-P:P']disilver(I) diperchlorate diacetonitrile solvate top
Crystal data top
[Ag2(C50H44P4)2](ClO4)2·2C2H3NF(000) = 1280
Mr = 1265.48Dx = 1.538 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2900 reflections
a = 11.4553 (3) Åθ = 2.3–25.0°
b = 15.1766 (1) ŵ = 0.99 mm1
c = 16.0597 (5) ÅT = 293 K
β = 101.826 (2)°Prism, colorless
V = 2732.76 (11) Å30.32 × 0.30 × 0.28 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
4806 independent reflections
Radiation source: fine-focus sealed tube2920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 139
Tmin = 0.723, Tmax = 0.759k = 1815
9485 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0246P)2 + 7.4956P]
where P = (Fo2 + 2Fc2)/3
4806 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ag2(C50H44P4)2](ClO4)2·2C2H3NV = 2732.76 (11) Å3
Mr = 1265.48Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.4553 (3) ŵ = 0.99 mm1
b = 15.1766 (1) ÅT = 293 K
c = 16.0597 (5) Å0.32 × 0.30 × 0.28 mm
β = 101.826 (2)°
Data collection top
Siemens SMART CCD
diffractometer
4806 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2920 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.759Rint = 0.060
9485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.14Δρmax = 0.63 e Å3
4806 reflectionsΔρmin = 0.53 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.09335 (5)0.51188 (4)0.05485 (4)0.0507 (2)
P10.01338 (14)0.38672 (12)0.13986 (11)0.0382 (4)
C110.0293 (6)0.3960 (4)0.2500 (4)0.0414 (17)
C120.0567 (7)0.4305 (6)0.3128 (6)0.074 (3)
H120.12900.44830.30040.089*
C130.0378 (9)0.4395 (7)0.3946 (6)0.094 (3)
H130.09650.46460.43650.113*
C140.0674 (11)0.4114 (7)0.4143 (7)0.092 (3)
H140.07840.41460.47000.110*
C150.1539 (10)0.3794 (7)0.3529 (7)0.094 (3)
H150.22650.36250.36530.112*
C160.1347 (7)0.3715 (6)0.2707 (6)0.073 (3)
H160.19530.34900.22850.088*
C210.0812 (6)0.2810 (4)0.1095 (4)0.0393 (16)
C220.0554 (6)0.2084 (5)0.1630 (5)0.056 (2)
H220.00000.21390.21390.067*
C230.1106 (8)0.1286 (5)0.1416 (6)0.068 (2)
H230.09260.08010.17730.082*
C240.1933 (8)0.1219 (6)0.0662 (7)0.075 (3)
H240.23230.06860.05190.090*
C250.2191 (7)0.1915 (6)0.0124 (6)0.069 (2)
H250.27430.18560.03860.082*
C260.1628 (6)0.2712 (5)0.0340 (5)0.0516 (19)
H260.18020.31890.00280.062*
P20.18296 (15)0.37193 (12)0.03915 (12)0.0398 (5)
C200.1470 (5)0.3723 (4)0.1448 (4)0.0363 (16)
H20A0.19030.41970.17820.044*
H20B0.17280.31710.17320.044*
C310.1413 (6)0.2630 (4)0.0019 (4)0.0426 (17)
C320.0596 (6)0.2537 (5)0.0773 (5)0.055 (2)
H320.03090.30340.10870.066*
C330.0193 (7)0.1704 (6)0.1069 (6)0.067 (2)
H330.03460.16450.15840.080*
C340.0596 (8)0.0977 (6)0.0595 (7)0.079 (3)
H340.03130.04210.07810.094*
C350.1414 (8)0.1061 (5)0.0150 (6)0.067 (2)
H350.16930.05610.04630.081*
C360.1826 (7)0.1876 (5)0.0440 (5)0.057 (2)
H360.23860.19250.09470.068*
C410.3452 (6)0.3769 (5)0.0576 (5)0.0462 (18)
C420.4018 (7)0.3437 (6)0.0027 (5)0.069 (2)
H420.35910.31160.04820.082*
C430.5233 (7)0.3579 (7)0.0043 (7)0.087 (3)
H430.56090.33480.03700.104*
C440.5869 (8)0.4034 (7)0.0683 (8)0.090 (3)
H440.66780.41310.07120.108*
C450.5324 (7)0.4361 (7)0.1300 (8)0.098 (4)
H450.57680.46690.17580.117*
C460.4111 (7)0.4233 (6)0.1246 (6)0.077 (3)
H460.37420.44610.16630.092*
N10.1897 (9)0.5868 (6)0.1907 (6)0.104 (3)
C10.0815 (10)0.6813 (8)0.3134 (8)0.127 (4)
H1A0.04430.73020.29110.153*
H1B0.02160.64620.34900.153*
H1C0.13670.70280.34620.153*
C20.1434 (10)0.6290 (7)0.2450 (7)0.084 (3)
Cl10.23319 (18)0.62567 (14)0.20439 (13)0.0609 (6)
O110.2947 (6)0.5654 (4)0.2641 (4)0.098 (2)
O120.1535 (6)0.5837 (4)0.1384 (4)0.111 (3)
O130.1764 (8)0.6882 (6)0.2446 (5)0.159 (4)
O140.3154 (7)0.6731 (7)0.1683 (5)0.174 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0438 (3)0.0460 (4)0.0622 (4)0.0067 (3)0.0109 (2)0.0124 (3)
P10.0333 (9)0.0398 (11)0.0420 (11)0.0036 (8)0.0090 (8)0.0018 (9)
C110.048 (4)0.036 (4)0.041 (4)0.006 (3)0.012 (3)0.004 (3)
C120.059 (5)0.099 (7)0.064 (6)0.012 (5)0.012 (5)0.019 (5)
C130.089 (7)0.141 (10)0.045 (6)0.030 (7)0.003 (5)0.034 (6)
C140.136 (10)0.082 (8)0.065 (7)0.021 (7)0.040 (7)0.001 (6)
C150.104 (8)0.103 (8)0.093 (8)0.021 (7)0.064 (7)0.026 (7)
C160.063 (5)0.093 (7)0.072 (6)0.011 (5)0.035 (5)0.014 (5)
C210.041 (4)0.039 (4)0.039 (4)0.002 (3)0.011 (3)0.003 (3)
C220.054 (5)0.051 (5)0.060 (5)0.008 (4)0.008 (4)0.002 (4)
C230.081 (6)0.038 (5)0.087 (7)0.006 (5)0.021 (5)0.005 (5)
C240.070 (6)0.051 (6)0.108 (8)0.010 (5)0.024 (6)0.018 (6)
C250.062 (5)0.064 (6)0.076 (6)0.014 (5)0.005 (5)0.015 (5)
C260.048 (4)0.053 (5)0.055 (5)0.000 (4)0.013 (4)0.001 (4)
P20.0347 (9)0.0381 (11)0.0482 (12)0.0058 (8)0.0121 (8)0.0023 (9)
C200.031 (3)0.029 (4)0.048 (4)0.002 (3)0.008 (3)0.002 (3)
C310.041 (4)0.041 (4)0.050 (5)0.004 (3)0.019 (3)0.001 (4)
C320.049 (4)0.051 (5)0.066 (6)0.002 (4)0.014 (4)0.002 (4)
C330.064 (5)0.067 (6)0.071 (6)0.012 (5)0.018 (5)0.020 (5)
C340.089 (7)0.050 (6)0.110 (9)0.012 (5)0.053 (7)0.021 (6)
C350.090 (7)0.036 (5)0.083 (7)0.008 (5)0.036 (6)0.003 (5)
C360.072 (5)0.050 (5)0.053 (5)0.008 (4)0.022 (4)0.004 (4)
C410.040 (4)0.040 (4)0.060 (5)0.008 (3)0.014 (4)0.006 (4)
C420.056 (5)0.088 (7)0.066 (6)0.016 (5)0.024 (4)0.001 (5)
C430.050 (6)0.125 (9)0.093 (8)0.022 (6)0.031 (5)0.019 (7)
C440.040 (5)0.092 (8)0.139 (11)0.004 (5)0.020 (6)0.021 (7)
C450.042 (5)0.099 (8)0.146 (10)0.006 (5)0.006 (6)0.032 (7)
C460.050 (5)0.081 (7)0.100 (8)0.002 (5)0.019 (5)0.026 (6)
N10.117 (8)0.100 (8)0.100 (8)0.009 (6)0.030 (6)0.002 (6)
C10.124 (10)0.134 (11)0.137 (12)0.020 (8)0.058 (9)0.025 (9)
C20.101 (8)0.075 (8)0.082 (8)0.013 (6)0.034 (7)0.002 (6)
Cl10.0605 (12)0.0630 (14)0.0560 (13)0.0011 (11)0.0042 (10)0.0068 (11)
O110.117 (5)0.078 (5)0.078 (5)0.005 (4)0.025 (4)0.003 (4)
O120.128 (6)0.070 (4)0.101 (5)0.009 (4)0.055 (4)0.021 (4)
O130.185 (8)0.166 (8)0.104 (6)0.096 (7)0.026 (6)0.057 (6)
O140.117 (6)0.265 (12)0.129 (7)0.083 (7)0.002 (5)0.066 (8)
Geometric parameters (Å, º) top
Ag1—P12.4081 (18)C20—H20B0.97
Ag1—P2i2.4097 (18)C31—C321.377 (10)
Ag1—Ag1i3.0581 (12)C31—C361.392 (10)
P1—C211.806 (7)C32—C331.395 (10)
P1—C111.820 (7)C32—H320.93
P1—C201.836 (6)C33—C341.367 (12)
C11—C121.362 (10)C33—H330.93
C11—C161.368 (9)C34—C351.366 (12)
C12—C131.381 (11)C34—H340.93
C12—H120.93C35—C361.371 (11)
C13—C141.376 (13)C35—H350.93
C13—H130.93C36—H360.93
C14—C151.337 (13)C41—C421.367 (10)
C14—H140.93C41—C461.374 (10)
C15—C161.387 (12)C42—C431.390 (11)
C15—H150.93C42—H420.93
C16—H160.93C43—C441.326 (13)
C21—C261.378 (9)C43—H430.93
C21—C221.391 (9)C44—C451.368 (13)
C22—C231.377 (10)C44—H440.93
C22—H220.93C45—C461.388 (11)
C23—C241.380 (11)C45—H450.93
C23—H230.93C46—H460.93
C24—C251.359 (11)N1—C21.123 (12)
C24—H240.93C1—C21.422 (14)
C25—C261.381 (10)C1—H1A0.96
C25—H250.93C1—H1B0.96
C26—H260.93C1—H1C0.96
P2—C311.808 (7)Cl1—O131.383 (7)
P2—C411.823 (7)Cl1—O121.402 (6)
P2—C201.826 (6)Cl1—O141.402 (8)
P2—Ag1i2.4097 (18)Cl1—O111.406 (6)
C20—H20A0.97
P1—Ag1—P2i174.95 (7)P1—C20—H20A109.2
P1—Ag1—Ag1i90.22 (5)P2—C20—H20B109.2
P2i—Ag1—Ag1i89.07 (5)P1—C20—H20B109.2
C21—P1—C11102.0 (3)H20A—C20—H20B107.9
C21—P1—C20106.1 (3)C32—C31—C36118.5 (7)
C11—P1—C20105.4 (3)C32—C31—P2119.7 (6)
C21—P1—Ag1117.1 (2)C36—C31—P2121.5 (6)
C11—P1—Ag1112.8 (2)C31—C32—C33120.7 (8)
C20—P1—Ag1112.3 (2)C31—C32—H32119.6
C12—C11—C16117.7 (7)C33—C32—H32119.6
C12—C11—P1123.2 (6)C34—C33—C32119.4 (8)
C16—C11—P1119.0 (6)C34—C33—H33120.3
C11—C12—C13120.7 (9)C32—C33—H33120.3
C11—C12—H12119.6C35—C34—C33120.3 (8)
C13—C12—H12119.6C35—C34—H34119.8
C14—C13—C12120.3 (9)C33—C34—H34119.8
C14—C13—H13119.9C34—C35—C36120.6 (8)
C12—C13—H13119.9C34—C35—H35119.7
C15—C14—C13119.6 (9)C36—C35—H35119.7
C15—C14—H14120.2C35—C36—C31120.4 (8)
C13—C14—H14120.2C35—C36—H36119.8
C14—C15—C16119.7 (9)C31—C36—H36119.8
C14—C15—H15120.2C42—C41—C46118.7 (7)
C16—C15—H15120.2C42—C41—P2119.0 (6)
C11—C16—C15121.9 (9)C46—C41—P2121.7 (6)
C11—C16—H16119.1C41—C42—C43119.9 (9)
C15—C16—H16119.1C41—C42—H42120.1
C26—C21—C22118.6 (7)C43—C42—H42120.1
C26—C21—P1120.6 (5)C44—C43—C42121.6 (10)
C22—C21—P1120.7 (5)C44—C43—H43119.2
C23—C22—C21120.9 (7)C42—C43—H43119.2
C23—C22—H22119.6C43—C44—C45119.4 (9)
C21—C22—H22119.6C43—C44—H44120.3
C22—C23—C24118.8 (8)C45—C44—H44120.3
C22—C23—H23120.6C44—C45—C46120.2 (10)
C24—C23—H23120.6C44—C45—H45119.9
C25—C24—C23121.5 (8)C46—C45—H45119.9
C25—C24—H24119.3C41—C46—C45120.2 (9)
C23—C24—H24119.3C41—C46—H46119.9
C24—C25—C26119.4 (8)C45—C46—H46119.9
C24—C25—H25120.3C2—C1—H1A109.5
C26—C25—H25120.3C2—C1—H1B109.5
C21—C26—C25120.9 (7)H1A—C1—H1B109.5
C21—C26—H26119.6C2—C1—H1C109.5
C25—C26—H26119.6H1A—C1—H1C109.5
C31—P2—C41106.4 (3)H1B—C1—H1C109.5
C31—P2—C20104.4 (3)N1—C2—C1178.3 (13)
C41—P2—C20105.4 (3)O13—Cl1—O12111.6 (5)
C31—P2—Ag1i113.2 (2)O13—Cl1—O14105.1 (7)
C41—P2—Ag1i111.1 (2)O12—Cl1—O14108.1 (5)
C20—P2—Ag1i115.6 (2)O13—Cl1—O11110.2 (5)
P2—C20—P1112.0 (3)O12—Cl1—O11112.2 (4)
P2—C20—H20A109.2O14—Cl1—O11109.3 (5)
Ag1i—Ag1—P1—C2193.2 (2)Ag1i—P2—C20—P147.0 (4)
Ag1i—Ag1—P1—C11148.8 (2)C21—P1—C20—P277.6 (4)
Ag1i—Ag1—P1—C2029.8 (2)C11—P1—C20—P2174.7 (3)
C21—P1—C11—C12140.8 (7)Ag1—P1—C20—P251.5 (4)
C20—P1—C11—C1230.1 (7)C41—P2—C31—C32126.4 (6)
Ag1—P1—C11—C1292.8 (6)C20—P2—C31—C32122.4 (6)
C21—P1—C11—C1642.8 (7)Ag1i—P2—C31—C324.1 (6)
C20—P1—C11—C16153.4 (6)C41—P2—C31—C3658.8 (6)
Ag1—P1—C11—C1683.7 (6)C20—P2—C31—C3652.4 (6)
C16—C11—C12—C130.6 (13)Ag1i—P2—C31—C36178.9 (5)
P1—C11—C12—C13177.2 (7)C36—C31—C32—C330.1 (11)
C11—C12—C13—C141.7 (15)P2—C31—C32—C33175.1 (6)
C12—C13—C14—C153.4 (16)C31—C32—C33—C341.4 (12)
C13—C14—C15—C162.6 (16)C32—C33—C34—C351.9 (13)
C12—C11—C16—C151.4 (13)C33—C34—C35—C361.1 (13)
P1—C11—C16—C15178.1 (7)C34—C35—C36—C310.3 (12)
C14—C15—C16—C110.2 (16)C32—C31—C36—C350.8 (11)
C11—P1—C21—C26132.7 (6)P2—C31—C36—C35174.1 (6)
C20—P1—C21—C26117.1 (6)C31—P2—C41—C4243.8 (7)
Ag1—P1—C21—C269.1 (7)C20—P2—C41—C42154.3 (6)
C11—P1—C21—C2245.0 (6)Ag1i—P2—C41—C4279.8 (6)
C20—P1—C21—C2265.2 (6)C31—P2—C41—C46144.9 (7)
Ag1—P1—C21—C22168.6 (5)C20—P2—C41—C4634.4 (8)
C26—C21—C22—C230.5 (11)Ag1i—P2—C41—C4691.5 (7)
P1—C21—C22—C23177.3 (6)C46—C41—C42—C430.7 (12)
C21—C22—C23—C240.6 (12)P2—C41—C42—C43170.9 (7)
C22—C23—C24—C251.3 (13)C41—C42—C43—C440.1 (15)
C23—C24—C25—C261.0 (13)C42—C43—C44—C451.2 (16)
C22—C21—C26—C250.9 (11)C43—C44—C45—C461.5 (17)
P1—C21—C26—C25176.9 (6)C42—C41—C46—C450.4 (13)
C24—C25—C26—C210.2 (12)P2—C41—C46—C45170.9 (7)
C31—P2—C20—P178.0 (4)C44—C45—C46—C410.7 (16)
C41—P2—C20—P1170.2 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2(C50H44P4)2](ClO4)2·2C2H3N
Mr1265.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.4553 (3), 15.1766 (1), 16.0597 (5)
β (°) 101.826 (2)
V3)2732.76 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.32 × 0.30 × 0.28
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.723, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
9485, 4806, 2920
Rint0.060
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.131, 1.14
No. of reflections4806
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.53

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SAINT, SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Ag1—P12.4081 (18)P1—C211.806 (7)
Ag1—P2i2.4097 (18)P1—C111.820 (7)
Ag1—Ag1i3.0581 (12)P1—C201.836 (6)
P1—Ag1—P2i174.95 (7)C11—P1—C20105.4 (3)
P1—Ag1—Ag1i90.22 (5)C21—P1—Ag1117.1 (2)
P2i—Ag1—Ag1i89.07 (5)C11—P1—Ag1112.8 (2)
C21—P1—C11102.0 (3)C20—P1—Ag1112.3 (2)
C21—P1—C20106.1 (3)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds