Download citation
Download citation
link to html
In the title compound, C25H29NO2, ring A adopts a slightly distorted half-chair conformation, while rings B and C are in chair conformations. The five-membered ring D adopts a 13β,14α-half-chair conformation. The 3-pyridyl ring has an E configuration with respect to the carbonyl group at position 17. The crystal structure is stabilized by weak intra- and intermolecular C—H...O interactions and van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802019906/ci6176sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802019906/ci6176Isup2.hkl
Contains datablock I

CCDC reference: 202325

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.108
  • Data-to-parameter ratio = 8.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.96 From the CIF: _reflns_number_total 2172 Count of symmetry unique reflns 2073 Completeness (_total/calc) 104.78% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 99 Fraction of Friedel pairs measured 0.048 Are heavy atom types Z>Si present no ALERT: MoKa measured Friedel data cannot be used to determine absolute structure in a light-atom study EXCEPT under VERY special conditions. It is preferred that Friedel data is merged in such cases.

Comment top

The X-ray investigation of the title compound, (I), was undertaken as a part of our study on the structure and conformation of new synthetic steroid derivatives (Hema et al., 2002; Vasuki et al., 2001; Vasuki, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002a,b; Vasuki, Parthasarathi, Ramamurthi, Jindal & Dubey, 2002; Vasuki, Thamotharan et al., 2002a,b). We are particularly interested in studying the conformational flexibilities of the steroids due to various possible substitutions at the C3, C16 and C17 positions, as it is well known that the steroid-receptors are able to modify the mode of binding at ring D to accommodate several different types of C17 substitution (Duax & Norton, 1975).

In (I), ring A has a slightly distorted half-chair conformation, with asymmetry parameters (Duax & Norton, 1975) ΔC2(C1—C2) = 9.2 (5)° and ΔCs(C1) = 13.83°, as observed in a similar androstene derivative (Galdecki et al., 1990). Rings B and C adopt chair conformations, while ring D adopts a 13β,14α-half-chair conformation, with pseudo-rotational parameters Δ = 1.2° and ϕm = 41.5 (3)° (Altona et al., 1968). The geometry of the rings is trans at the B/C and C/D ring junctions. The C17—C16—C20—C21 torsion angle of 172.5 (3)° indicates that the 3-pyridyl ring has an E configuration with respect to the carbonyl group at position 17. The larger exocyclic angle C15—C16—C20 [132.1 (3)°] compared with C17—C16—C20 [119.2 (3)°] might be a consequence of the steric repulsion between H15B and H22 (H15B···H22 = 2.23 Å). The dihedral angle between the plane of the pyridine ring and the average molecular plane comprising rings A, B, C and D is 5.27 (1)°. The values of the C8—C14—C15 [120.4 (2)°] and C14—C13—C17 [100.6 (2)°] angles are close to the expected values of 119.3 and 99.2°, respectively (Duax & Norton, 1975). The pseudo-torsion angle C19—C10···C13—C18 is observed to be 6.3 (3)°. The C4—C5 (Csp2—Csp2) distance of 1.343 (4) Å confirms the localization of a double bond at this position (Vasuki, Parthasarathi, Ramamurthi, Jindal & Dubey, 2002; Vasuki, Thamotharan et al., 2002a). A short intramolecular C—H···O contact is observed between C20 and O17, with an H20···O17 distance of 2.54 Å. An intermolecular C—H···O contact is observed between C26 and O3i, with an H26···O3i distance of 2.53 Å [symmetry code: (i) x, y, z − 1]. The structure is stabilized by van der Waals interactions.

Experimental top

The title compound was prepared by dissolving 17-oxo-16-(3-pyridylmethylene)androst-5-en-3β-ol (1 g, 2.66 mmol) in dry toluene (150 ml) under reflux and then adding cyclohexanone (10 ml) to it. Traces of moisture were removed by azeotropic distillation. The distillation was continued at a slow rate during dropwise addition of a solution of aluminium isopropoxide (1 g) in dry toluene (15 ml). The reaction mixture was refluxed for 4 h and left overnight at room temperature. The slurry was filtered and the residue washed thoroughly with dry toluene. The combined filterate and washing were steam distilled until the organic solvent was completely removed. The solid residue was allowed to stand overnight and then filtered, washed, dried and crystallized from methanol to afford crystals of (I) (yield 0.6 g, 59.68%, m.p. 475–481 K).

Refinement top

All H atoms were placed geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for all others. The absolute configuration was assigned to correspond with that of a known chiral centre in a starting molecule, namely 17-oxo-16-(3-pyridylmethylene)androst-5-ene-3β-ol.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP97 (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
16-(3-Pyridylmethylene) androst-4-ene-3,17-dione top
Crystal data top
C25H29NO2F(000) = 808
Mr = 375.49Dx = 1.207 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 11.4545 (12) Åθ = 10–15°
b = 12.207 (2) ŵ = 0.08 mm1
c = 14.784 (3) ÅT = 293 K
V = 2067.2 (6) Å3Plate, white
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1671 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.008
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω–2θ scansh = 213
Absorption correction: ψ scan
(North et al., 1968)
k = 514
Tmin = 0.993, Tmax = 1.000l = 1017
2222 measured reflections2 standard reflections every 120 min
2172 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.047P)2 + 0.4599P]
where P = (Fo2 + 2Fc2)/3
2172 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H29NO2V = 2067.2 (6) Å3
Mr = 375.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.4545 (12) ŵ = 0.08 mm1
b = 12.207 (2) ÅT = 293 K
c = 14.784 (3) Å0.20 × 0.15 × 0.10 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1671 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.008
Tmin = 0.993, Tmax = 1.0002 standard reflections every 120 min
2222 measured reflections intensity decay: none
2172 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.12Δρmax = 0.26 e Å3
2172 reflectionsΔρmin = 0.18 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7002 (3)0.3282 (3)0.3994 (2)0.0555 (9)
H1A0.68420.40350.38250.067*
H1B0.63330.28440.38180.067*
C20.7144 (4)0.3220 (3)0.5016 (2)0.0665 (11)
H2A0.77400.37340.52070.080*
H2B0.64160.34280.53040.080*
C30.7475 (3)0.2098 (3)0.5311 (2)0.0637 (10)
C40.8229 (3)0.1483 (3)0.4706 (2)0.0615 (9)
H40.85120.08090.49020.074*
C50.8540 (3)0.1831 (3)0.3878 (2)0.0521 (9)
C60.9417 (4)0.1197 (3)0.3328 (2)0.0706 (11)
H6A0.95740.05030.36240.085*
H6B1.01420.16050.33020.085*
C70.8987 (3)0.0981 (3)0.2370 (2)0.0580 (9)
H7A0.96030.06330.20240.070*
H7B0.83270.04840.23910.070*
C80.8623 (3)0.2036 (2)0.19031 (19)0.0431 (7)
H80.93110.25070.18350.052*
C90.7701 (3)0.2646 (2)0.24678 (18)0.0406 (7)
H90.70350.21450.25110.049*
C100.8079 (3)0.2881 (2)0.34651 (19)0.0457 (7)
C110.7233 (3)0.3677 (3)0.1983 (2)0.0566 (9)
H11A0.65920.39780.23330.068*
H11B0.78470.42240.19620.068*
C120.6809 (3)0.3451 (3)0.10173 (19)0.0561 (9)
H12A0.61150.29960.10360.067*
H12B0.66070.41370.07240.067*
C130.7758 (3)0.2874 (2)0.04786 (19)0.0457 (8)
C140.8101 (3)0.1818 (2)0.09692 (18)0.0412 (7)
H140.73700.14210.10770.049*
C150.8776 (3)0.1141 (2)0.02682 (18)0.0473 (8)
H15A0.95950.13450.02550.057*
H15B0.87110.03630.03900.057*
C160.8166 (3)0.1448 (3)0.06125 (19)0.0461 (7)
C170.7398 (3)0.2419 (3)0.0438 (2)0.0517 (8)
C180.8799 (4)0.3637 (3)0.0289 (2)0.0647 (10)
H18A0.93840.32460.00450.097*
H18B0.91230.38860.08520.097*
H18C0.85390.42560.00570.097*
C190.9056 (4)0.3756 (3)0.3514 (2)0.0711 (11)
H19A0.87810.44280.32520.107*
H19B0.97270.35040.31860.107*
H19C0.92650.38800.41350.107*
C200.8271 (3)0.1066 (2)0.1461 (2)0.0507 (8)
H200.77710.13890.18790.061*
C210.9047 (3)0.0222 (2)0.1834 (2)0.0470 (7)
C220.9693 (3)0.0521 (3)0.1341 (2)0.0568 (9)
H220.96400.05320.07130.068*
C231.0417 (3)0.1248 (3)0.1782 (3)0.0671 (10)
H231.08570.17570.14600.081*
C241.0475 (4)0.1204 (4)0.2702 (3)0.0774 (12)
H241.09720.16940.29920.093*
N250.9868 (3)0.0509 (3)0.3218 (2)0.0773 (10)
C260.9163 (3)0.0179 (3)0.2770 (2)0.0596 (9)
H260.87180.06640.31110.072*
O30.7173 (3)0.1743 (3)0.60509 (17)0.0922 (9)
O170.6663 (2)0.2791 (2)0.09451 (16)0.0810 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.071 (2)0.0531 (19)0.0425 (16)0.0081 (19)0.0031 (18)0.0037 (16)
C20.089 (3)0.063 (2)0.0475 (19)0.006 (2)0.0070 (19)0.0039 (17)
C30.077 (3)0.071 (2)0.0430 (19)0.004 (2)0.0034 (19)0.0019 (18)
C40.080 (2)0.0519 (19)0.0532 (19)0.007 (2)0.011 (2)0.0030 (17)
C50.056 (2)0.054 (2)0.0456 (18)0.0048 (17)0.0083 (16)0.0015 (15)
C60.076 (3)0.076 (3)0.059 (2)0.029 (2)0.009 (2)0.000 (2)
C70.068 (2)0.055 (2)0.0516 (19)0.0205 (18)0.0011 (18)0.0025 (16)
C80.0413 (17)0.0419 (16)0.0461 (16)0.0000 (14)0.0063 (14)0.0010 (14)
C90.0418 (16)0.0412 (15)0.0387 (15)0.0015 (14)0.0017 (13)0.0032 (13)
C100.0497 (18)0.0428 (16)0.0447 (16)0.0014 (16)0.0018 (15)0.0046 (14)
C110.070 (2)0.0526 (17)0.0469 (17)0.0218 (18)0.0018 (17)0.0007 (15)
C120.066 (2)0.058 (2)0.0442 (16)0.0248 (19)0.0031 (18)0.0026 (16)
C130.0544 (19)0.0408 (16)0.0419 (17)0.0082 (15)0.0063 (15)0.0021 (14)
C140.0408 (16)0.0402 (16)0.0426 (15)0.0019 (15)0.0061 (15)0.0015 (14)
C150.0551 (19)0.0423 (17)0.0445 (17)0.0032 (16)0.0047 (16)0.0022 (15)
C160.0492 (18)0.0466 (17)0.0425 (16)0.0013 (16)0.0062 (15)0.0011 (14)
C170.056 (2)0.0546 (19)0.0442 (18)0.0070 (18)0.0055 (17)0.0007 (16)
C180.088 (3)0.0456 (18)0.061 (2)0.0004 (19)0.014 (2)0.0084 (17)
C190.072 (2)0.072 (2)0.069 (2)0.018 (2)0.013 (2)0.006 (2)
C200.0541 (19)0.0508 (19)0.0472 (17)0.0027 (17)0.0003 (16)0.0006 (15)
C210.0482 (17)0.0429 (17)0.0501 (18)0.0073 (16)0.0034 (16)0.0089 (15)
C220.066 (2)0.051 (2)0.053 (2)0.0014 (19)0.0037 (18)0.0115 (16)
C230.064 (2)0.049 (2)0.088 (3)0.0075 (19)0.010 (2)0.017 (2)
C240.071 (3)0.071 (3)0.090 (3)0.000 (2)0.016 (2)0.038 (3)
N250.082 (2)0.077 (2)0.073 (2)0.002 (2)0.017 (2)0.0260 (19)
C260.068 (2)0.060 (2)0.051 (2)0.006 (2)0.0080 (18)0.0147 (18)
O30.118 (2)0.100 (2)0.0584 (15)0.007 (2)0.0156 (17)0.0191 (15)
O170.0878 (19)0.102 (2)0.0530 (13)0.0429 (18)0.0105 (15)0.0059 (14)
Geometric parameters (Å, º) top
C1—C21.523 (4)C12—H12B0.97
C1—C101.539 (4)C13—C171.521 (4)
C1—H1A0.97C13—C141.531 (4)
C1—H1B0.97C13—C181.539 (5)
C2—C31.487 (5)C14—C151.534 (4)
C2—H2A0.97C14—H140.98
C2—H2B0.97C15—C161.525 (4)
C3—O31.226 (4)C15—H15A0.97
C3—C41.453 (5)C15—H15B0.97
C4—C51.343 (4)C16—C201.343 (4)
C4—H40.93C16—C171.499 (4)
C5—C61.506 (5)C17—O171.215 (4)
C5—C101.515 (4)C18—H18A0.96
C6—C71.522 (4)C18—H18B0.96
C6—H6A0.97C18—H18C0.96
C6—H6B0.97C19—H19A0.96
C7—C81.519 (4)C19—H19B0.96
C7—H7A0.97C19—H19C0.96
C7—H7B0.97C20—C211.469 (4)
C8—C141.528 (4)C20—H200.93
C8—C91.539 (4)C21—C221.380 (4)
C8—H80.98C21—C261.391 (4)
C9—C111.545 (4)C22—C231.380 (5)
C9—C101.563 (4)C22—H220.93
C9—H90.98C23—C241.363 (5)
C10—C191.549 (5)C23—H230.93
C11—C121.533 (4)C24—N251.336 (5)
C11—H11A0.97C24—H240.93
C11—H11B0.97N25—C261.339 (4)
C12—C131.521 (4)C26—H260.93
C12—H12A0.97
C2—C1—C10113.8 (3)C11—C12—H12A109.6
C2—C1—H1A108.8C13—C12—H12B109.6
C10—C1—H1A108.8C11—C12—H12B109.6
C2—C1—H1B108.8H12A—C12—H12B108.1
C10—C1—H1B108.8C12—C13—C17116.2 (3)
H1A—C1—H1B107.7C12—C13—C14109.0 (2)
C3—C2—C1111.4 (3)C17—C13—C14100.6 (2)
C3—C2—H2A109.4C12—C13—C18111.6 (3)
C1—C2—H2A109.4C17—C13—C18105.6 (2)
C3—C2—H2B109.4C14—C13—C18113.4 (3)
C1—C2—H2B109.4C8—C14—C13112.5 (2)
H2A—C2—H2B108.0C8—C14—C15120.4 (2)
O3—C3—C4122.3 (3)C13—C14—C15105.2 (2)
O3—C3—C2121.0 (4)C8—C14—H14105.9
C4—C3—C2116.6 (3)C13—C14—H14105.9
C5—C4—C3123.7 (3)C15—C14—H14105.9
C5—C4—H4118.1C16—C15—C14102.3 (2)
C3—C4—H4118.1C16—C15—H15A111.3
C4—C5—C6120.4 (3)C14—C15—H15A111.3
C4—C5—C10122.8 (3)C16—C15—H15B111.3
C6—C5—C10116.7 (3)C14—C15—H15B111.3
C5—C6—C7112.0 (3)H15A—C15—H15B109.2
C5—C6—H6A109.2C20—C16—C17119.2 (3)
C7—C6—H6A109.2C20—C16—C15132.1 (3)
C5—C6—H6B109.2C17—C16—C15108.4 (2)
C7—C6—H6B109.2O17—C17—C16126.5 (3)
H6A—C6—H6B107.9O17—C17—C13127.0 (3)
C8—C7—C6111.4 (3)C16—C17—C13106.5 (3)
C8—C7—H7A109.3C13—C18—H18A109.5
C6—C7—H7A109.3C13—C18—H18B109.5
C8—C7—H7B109.3H18A—C18—H18B109.5
C6—C7—H7B109.3C13—C18—H18C109.5
H7A—C7—H7B108.0H18A—C18—H18C109.5
C7—C8—C14111.8 (2)H18B—C18—H18C109.5
C7—C8—C9110.6 (2)C10—C19—H19A109.5
C14—C8—C9107.8 (2)C10—C19—H19B109.5
C7—C8—H8108.9H19A—C19—H19B109.5
C14—C8—H8108.9C10—C19—H19C109.5
C9—C8—H8108.9H19A—C19—H19C109.5
C8—C9—C11112.4 (2)H19B—C19—H19C109.5
C8—C9—C10114.3 (2)C16—C20—C21130.4 (3)
C11—C9—C10112.5 (2)C16—C20—H20114.8
C8—C9—H9105.6C21—C20—H20114.8
C11—C9—H9105.6C22—C21—C26116.7 (3)
C10—C9—H9105.6C22—C21—C20126.0 (3)
C5—C10—C1110.1 (3)C26—C21—C20117.3 (3)
C5—C10—C19108.2 (3)C21—C22—C23119.7 (3)
C1—C10—C19109.6 (3)C21—C22—H22120.2
C5—C10—C9108.7 (2)C23—C22—H22120.2
C1—C10—C9108.4 (3)C24—C23—C22118.4 (4)
C19—C10—C9111.8 (3)C24—C23—H23120.8
C12—C11—C9113.3 (3)C22—C23—H23120.8
C12—C11—H11A108.9N25—C24—C23124.7 (4)
C9—C11—H11A108.9N25—C24—H24117.6
C12—C11—H11B108.9C23—C24—H24117.6
C9—C11—H11B108.9C24—N25—C26115.4 (3)
H11A—C11—H11B107.7N25—C26—C21125.0 (4)
C13—C12—C11110.1 (3)N25—C26—H26117.5
C13—C12—H12A109.6C21—C26—H26117.5
C10—C1—C2—C354.5 (5)C9—C8—C14—C15175.3 (2)
C1—C2—C3—O3149.2 (4)C12—C13—C14—C862.9 (3)
C1—C2—C3—C434.6 (5)C17—C13—C14—C8174.5 (2)
O3—C3—C4—C5177.4 (4)C18—C13—C14—C862.1 (3)
C2—C3—C4—C56.4 (5)C12—C13—C14—C15164.2 (2)
C3—C4—C5—C6174.1 (3)C17—C13—C14—C1541.6 (3)
C3—C4—C5—C103.6 (5)C18—C13—C14—C1570.7 (3)
C4—C5—C6—C7130.3 (4)C8—C14—C15—C16161.8 (3)
C10—C5—C6—C751.9 (4)C13—C14—C15—C1633.6 (3)
C5—C6—C7—C853.8 (4)C14—C15—C16—C20173.2 (3)
C6—C7—C8—C14175.5 (3)C14—C15—C16—C1712.3 (3)
C6—C7—C8—C955.4 (4)C20—C16—C17—O1715.6 (5)
C7—C8—C9—C11175.5 (3)C15—C16—C17—O17169.0 (3)
C14—C8—C9—C1153.0 (3)C20—C16—C17—C13161.9 (3)
C7—C8—C9—C1054.7 (3)C15—C16—C17—C1313.5 (3)
C14—C8—C9—C10177.1 (2)C12—C13—C17—O1731.7 (5)
C4—C5—C10—C115.5 (4)C14—C13—C17—O17149.2 (3)
C6—C5—C10—C1166.8 (3)C18—C13—C17—O1792.7 (4)
C4—C5—C10—C19104.3 (4)C12—C13—C17—C16150.8 (3)
C6—C5—C10—C1973.4 (4)C14—C13—C17—C1633.4 (3)
C4—C5—C10—C9134.1 (3)C18—C13—C17—C1684.8 (3)
C6—C5—C10—C948.2 (4)C17—C16—C20—C21172.5 (3)
C2—C1—C10—C544.0 (4)C15—C16—C20—C211.6 (6)
C2—C1—C10—C1974.9 (4)C16—C20—C21—C2213.7 (6)
C2—C1—C10—C9162.8 (3)C16—C20—C21—C26164.9 (3)
C8—C9—C10—C549.4 (3)C26—C21—C22—C230.7 (5)
C11—C9—C10—C5179.2 (3)C20—C21—C22—C23177.9 (3)
C8—C9—C10—C1169.1 (2)C21—C22—C23—C240.2 (5)
C11—C9—C10—C161.2 (3)C22—C23—C24—N250.6 (7)
C8—C9—C10—C1970.0 (3)C23—C24—N25—C260.1 (6)
C11—C9—C10—C1959.8 (4)C24—N25—C26—C211.2 (5)
C8—C9—C11—C1251.8 (4)C22—C21—C26—N251.5 (5)
C10—C9—C11—C12177.5 (3)C20—C21—C26—N25177.2 (3)
C9—C11—C12—C1353.0 (4)C17—C16—C20—H207.5
C11—C12—C13—C17169.7 (3)C15—C16—C20—H20178.4
C11—C12—C13—C1457.0 (3)C22—C21—C20—H20166.3
C11—C12—C13—C1869.0 (3)C26—C21—C20—H2015.1
C7—C8—C14—C13178.5 (3)C18—C13—C14—H14177.4
C9—C8—C14—C1359.7 (3)H9—C9—C8—H8179.5
C7—C8—C14—C1553.6 (4)C19—C10—C13—C186.3 (3)

Experimental details

Crystal data
Chemical formulaC25H29NO2
Mr375.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.4545 (12), 12.207 (2), 14.784 (3)
V3)2067.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.993, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2222, 2172, 1671
Rint0.008
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.12
No. of reflections2172
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP97 (Zsolnai, 1997), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds