Download citation
Download citation
link to html
In the crystal structure of the title compound, C26H17NO3, the indole moiety is essentially planar. The benzoyl substituent is perpendicular to the indole moiety as well as to the phenyl­ethynyl substituent. In the crystal, the mol­ecules exist as centrosymmetrically hydrogen-bonded dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802006013/ci6111sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802006013/ci6111Isup2.hkl
Contains datablock I

CCDC reference: 185779

Key indicators

  • Single-crystal X-ray study
  • T = 233 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.077
  • wR factor = 0.210
  • Data-to-parameter ratio = 12.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(9) - C(10) = 1.53 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(18) - C(19) = 1.42 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The photoinduced reactions of 3H-indole-1,2-dione (isatin) with phenylacetylene and 1,2-diphenylacetylene have been investigated in our laboratory (Xue et al., 2000). In a continuation of these investigations, we have studied the photoinduced reactions of 1-acetylisatin with an excess of diphenylbuta-1,4-diyne in benzene. The title compound, (I), one of the isomers resulting from the above reaction, was isolated by column chromatography. The crystal structure analysis of the title compound was undertaken to elucidate the molecular conformation.

In (I), the bond lengths and angles within the benzoyl and phenylethynyl substituents agree with the corresponding values observed for the structure of 4-[α-benzoyl-α-(phenylethynyl)methylene]isoquinoline-1,3-dione (Usman et al., 2001). The increase in the C9—C10 bond distance [1.528 (3) Å] may be due to the steric effect of the bulky substitutents at C9.

The indole moiety is planar, with the atom N1 deviating a maximum of 0.026 (2) Å. The phenylethynyl and indole moieties are almost coplanar, with a dihedral angle of 6.0 (1)°. This facilitated the π-conjugation through the central C9 atom and resulted in a slight elongation of the C8—C9 and C17—C18 bonds and a shortening of the C9—C17 and C18—C19 bonds. The benzoyl phenyl ring is almost perpendicular to both the ethynyl phenyl ring and the indole moiety, with corresponding dihedral angles of 87.9 (1) and 85.7 (1)°, respectively.

In the title molecule, the acetyl O2 atom is invloved in an weak intramolecular C—H···O interaction (Table 2) which results in the formation a six-membered ring. The near coplanarity of the acetyl group with the indole plane [dihedral angle of 8.0 (1)°] may be due to this C—H···O interaction and the partial double-bond character of the N1—C25 bond. In the crystal, the molecules exist as C—H···O hydrogen-bonded dimers around inversion centres. The dimers translated along the a-cell direction are aligned so as to place the ethynylphenyl rings in close proximity to the five-membered rings (Fig. 2). The distance separating the ring centroids is calculated to be 3.550 (2) Å. The molecular packing is stabilized by these interactions along with the van der Waals interactions.

Experimental top

The title compound was prepared by a photoinduced reaction of 1-acetylisatin with 1,4-diphenylbuta-1,4-diyne in benzene, and was isolated from the reaction mixtures by column chromatography on silica gel. Single crystals suitable for X-ray diffraction were grown by slow evaporation from a acetone–petroleum ether (2:1) mixture.

Refinement top

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with aromatic C—H distances of 0.93 Å and methylene C—H distances of 0.96 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing of the title molecules, viewed down the b axis.
1-Acetyl-3-(1-benzoyl-3-phenyl-propyn-2-ylidene)-3H-indol-2-one top
Crystal data top
C26H17NO3F(000) = 408
Mr = 391.41Dx = 1.311 Mg m3
Triclinic, P1Melting point: 462(1)K K
a = 8.5729 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3557 (4) ÅCell parameters from 3782 reflections
c = 13.7085 (6) Åθ = 2.6–28.3°
α = 107.284 (1)°µ = 0.09 mm1
β = 99.774 (1)°T = 233 K
γ = 102.644 (1)°Needle, yellow
V = 991.32 (8) Å30.44 × 0.20 × 0.14 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
3529 independent reflections
Radiation source: fine-focus sealed tube2673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 8.33 pixels mm-1θmax = 25.5°, θmin = 2.6°
ω scansh = 1010
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.963, Tmax = 0.988l = 1615
9930 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.210 w = 1/[σ2(Fo2) + (0.1552P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3529 reflectionsΔρmax = 0.35 e Å3
273 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.12 (2)
Crystal data top
C26H17NO3γ = 102.644 (1)°
Mr = 391.41V = 991.32 (8) Å3
Triclinic, P1Z = 2
a = 8.5729 (4) ÅMo Kα radiation
b = 9.3557 (4) ŵ = 0.09 mm1
c = 13.7085 (6) ÅT = 233 K
α = 107.284 (1)°0.44 × 0.20 × 0.14 mm
β = 99.774 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3529 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2673 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.988Rint = 0.068
9930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.210H-atom parameters constrained
S = 0.99Δρmax = 0.35 e Å3
3529 reflectionsΔρmin = 0.37 e Å3
273 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6265 (2)0.1992 (2)0.04026 (14)0.0375 (5)
O10.4220 (2)0.3275 (2)0.05543 (14)0.0548 (5)
O20.7558 (3)0.1425 (3)0.08983 (15)0.0908 (9)
O30.6362 (2)0.4301 (2)0.44930 (13)0.0568 (5)
C10.5184 (3)0.2707 (2)0.09268 (17)0.0360 (5)
C20.7232 (3)0.1469 (2)0.11006 (17)0.0375 (5)
C30.8388 (3)0.0668 (3)0.0918 (2)0.0502 (6)
H30.86270.03800.02630.060*
C40.9181 (4)0.0307 (3)0.1744 (2)0.0600 (7)
H40.99660.02310.16390.072*
C50.8831 (3)0.0728 (4)0.2711 (2)0.0590 (7)
H50.93930.04850.32540.071*
C60.7656 (3)0.1507 (3)0.2889 (2)0.0499 (6)
H60.74120.17790.35430.060*
C70.6848 (3)0.1877 (2)0.20741 (17)0.0352 (5)
C80.5551 (3)0.2645 (2)0.20088 (16)0.0340 (5)
C90.4742 (3)0.3200 (2)0.27330 (17)0.0358 (5)
C100.5229 (3)0.3243 (2)0.38685 (16)0.0365 (5)
C110.4229 (3)0.2003 (2)0.41530 (16)0.0352 (5)
C120.3192 (3)0.0643 (3)0.33816 (17)0.0402 (5)
H120.30900.05190.26730.048*
C130.2310 (3)0.0526 (3)0.36567 (19)0.0492 (6)
H130.16400.14520.31370.059*
C140.2427 (4)0.0318 (3)0.4709 (2)0.0554 (7)
H140.18060.10950.48950.066*
C150.3446 (3)0.1020 (3)0.5479 (2)0.0547 (7)
H150.35170.11450.61850.066*
C160.4369 (3)0.2186 (3)0.52146 (18)0.0478 (6)
H160.50790.30870.57400.057*
C170.3417 (3)0.3830 (3)0.25509 (18)0.0398 (5)
C180.2260 (3)0.4358 (3)0.25216 (19)0.0425 (6)
C190.0901 (3)0.4988 (3)0.24792 (19)0.0424 (6)
C200.0166 (3)0.5209 (3)0.1569 (2)0.0558 (7)
H200.05640.49320.09700.067*
C210.1139 (4)0.5832 (4)0.1551 (3)0.0680 (9)
H210.16090.59950.09450.082*
C220.1755 (3)0.6215 (3)0.2421 (3)0.0676 (9)
H220.26550.66190.23990.081*
C230.1055 (3)0.6009 (3)0.3322 (3)0.0622 (8)
H230.14700.62870.39140.075*
C240.0255 (3)0.5397 (3)0.3359 (2)0.0495 (6)
H240.07190.52520.39740.059*
C250.6486 (3)0.1953 (3)0.05876 (17)0.0492 (6)
C260.5448 (4)0.2588 (4)0.1222 (2)0.0649 (8)
H26A0.43060.20430.13460.097*
H26B0.57300.24530.18860.097*
H26C0.56330.36800.08490.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0396 (10)0.0414 (10)0.0352 (10)0.0171 (8)0.0098 (8)0.0144 (8)
O10.0601 (11)0.0714 (12)0.0516 (10)0.0400 (9)0.0152 (9)0.0322 (9)
O20.1123 (19)0.147 (2)0.0458 (12)0.0874 (19)0.0362 (13)0.0353 (13)
O30.0540 (11)0.0565 (11)0.0449 (10)0.0022 (9)0.0087 (8)0.0116 (8)
C10.0363 (11)0.0364 (11)0.0388 (12)0.0150 (9)0.0086 (9)0.0152 (9)
C20.0354 (11)0.0371 (11)0.0420 (12)0.0132 (9)0.0089 (9)0.0150 (9)
C30.0523 (15)0.0594 (15)0.0518 (14)0.0317 (12)0.0226 (12)0.0208 (12)
C40.0568 (16)0.0703 (18)0.0757 (19)0.0415 (14)0.0252 (14)0.0363 (15)
C50.0553 (16)0.0818 (19)0.0653 (17)0.0402 (14)0.0184 (14)0.0450 (15)
C60.0538 (15)0.0649 (16)0.0490 (14)0.0317 (12)0.0175 (12)0.0325 (12)
C70.0318 (11)0.0356 (11)0.0423 (12)0.0127 (8)0.0098 (9)0.0166 (9)
C80.0354 (11)0.0324 (10)0.0370 (11)0.0118 (8)0.0095 (9)0.0144 (9)
C90.0365 (12)0.0324 (11)0.0400 (12)0.0103 (9)0.0096 (9)0.0144 (9)
C100.0350 (11)0.0393 (12)0.0369 (11)0.0162 (9)0.0121 (9)0.0101 (9)
C110.0386 (12)0.0368 (11)0.0337 (11)0.0167 (9)0.0095 (9)0.0127 (9)
C120.0432 (13)0.0431 (12)0.0344 (11)0.0123 (10)0.0068 (9)0.0153 (9)
C130.0512 (15)0.0436 (13)0.0472 (14)0.0075 (11)0.0039 (11)0.0172 (11)
C140.0665 (17)0.0514 (15)0.0535 (15)0.0131 (13)0.0140 (13)0.0290 (12)
C150.0717 (18)0.0594 (16)0.0406 (13)0.0195 (13)0.0190 (12)0.0249 (12)
C160.0638 (16)0.0408 (13)0.0351 (12)0.0145 (11)0.0105 (11)0.0093 (10)
C170.0394 (12)0.0412 (12)0.0415 (12)0.0153 (10)0.0114 (10)0.0150 (10)
C180.0404 (13)0.0411 (12)0.0475 (13)0.0139 (10)0.0116 (10)0.0156 (10)
C190.0372 (12)0.0360 (11)0.0544 (14)0.0128 (9)0.0124 (10)0.0141 (10)
C200.0586 (16)0.0556 (15)0.0517 (15)0.0204 (13)0.0059 (12)0.0182 (12)
C210.0615 (18)0.0611 (17)0.074 (2)0.0249 (14)0.0070 (16)0.0215 (15)
C220.0413 (15)0.0561 (17)0.106 (3)0.0233 (12)0.0130 (16)0.0256 (16)
C230.0528 (16)0.0522 (15)0.091 (2)0.0198 (12)0.0365 (16)0.0241 (15)
C240.0471 (14)0.0467 (13)0.0632 (16)0.0156 (11)0.0224 (12)0.0251 (12)
C250.0562 (15)0.0585 (15)0.0305 (11)0.0208 (12)0.0093 (11)0.0096 (11)
C260.083 (2)0.081 (2)0.0418 (14)0.0350 (17)0.0153 (14)0.0287 (14)
Geometric parameters (Å, º) top
N1—C251.393 (3)C12—H120.93
N1—C21.425 (3)C13—C141.379 (4)
N1—C11.426 (3)C13—H130.93
O1—C11.198 (3)C14—C151.366 (4)
O2—C251.216 (3)C14—H140.93
O3—C101.204 (3)C15—C161.379 (3)
C1—C81.484 (3)C15—H150.93
C2—C31.380 (3)C16—H160.93
C2—C71.392 (3)C17—C181.201 (3)
C3—C41.387 (4)C18—C191.416 (3)
C3—H30.93C19—C201.392 (4)
C4—C51.372 (4)C19—C241.397 (3)
C4—H40.93C20—C211.370 (4)
C5—C61.380 (4)C20—H200.93
C5—H50.93C21—C221.368 (5)
C6—C71.386 (3)C21—H210.93
C6—H60.93C22—C231.365 (5)
C7—C81.454 (3)C22—H220.93
C8—C91.350 (3)C23—C241.368 (4)
C9—C171.409 (3)C23—H230.93
C9—C101.528 (3)C24—H240.93
C10—C111.477 (3)C25—C261.475 (4)
C11—C121.383 (3)C26—H26A0.96
C11—C161.395 (3)C26—H26B0.96
C12—C131.375 (3)C26—H26C0.96
C25—N1—C2124.5 (2)C12—C13—H13120.2
C25—N1—C1126.08 (19)C14—C13—H13120.2
C2—N1—C1109.10 (17)C15—C14—C13120.6 (2)
O1—C1—N1125.4 (2)C15—C14—H14119.7
O1—C1—C8128.3 (2)C13—C14—H14119.7
N1—C1—C8106.18 (17)C14—C15—C16120.4 (2)
C3—C2—C7121.2 (2)C14—C15—H15119.8
C3—C2—N1129.2 (2)C16—C15—H15119.8
C7—C2—N1109.57 (19)C15—C16—C11119.4 (2)
C2—C3—C4117.9 (2)C15—C16—H16120.3
C2—C3—H3121.1C11—C16—H16120.3
C4—C3—H3121.1C18—C17—C9171.4 (2)
C5—C4—C3121.3 (2)C17—C18—C19179.4 (3)
C5—C4—H4119.4C20—C19—C24118.2 (2)
C3—C4—H4119.4C20—C19—C18121.5 (2)
C4—C5—C6120.9 (2)C24—C19—C18120.3 (2)
C4—C5—H5119.6C21—C20—C19120.4 (3)
C6—C5—H5119.6C21—C20—H20119.8
C5—C6—C7118.7 (2)C19—C20—H20119.8
C5—C6—H6120.6C22—C21—C20120.3 (3)
C7—C6—H6120.6C22—C21—H21119.8
C6—C7—C2120.0 (2)C20—C21—H21119.8
C6—C7—C8131.6 (2)C23—C22—C21120.4 (3)
C2—C7—C8108.36 (18)C23—C22—H22119.8
C9—C8—C7130.3 (2)C21—C22—H22119.8
C9—C8—C1122.9 (2)C22—C23—C24120.3 (3)
C7—C8—C1106.74 (17)C22—C23—H23119.9
C8—C9—C17125.1 (2)C24—C23—H23119.9
C8—C9—C10122.07 (19)C23—C24—C19120.5 (3)
C17—C9—C10112.85 (18)C23—C24—H24119.8
O3—C10—C11123.2 (2)C19—C24—H24119.8
O3—C10—C9119.1 (2)O2—C25—N1119.0 (2)
C11—C10—C9117.65 (18)O2—C25—C26121.5 (2)
C12—C11—C16119.6 (2)N1—C25—C26119.5 (2)
C12—C11—C10120.90 (18)C25—C26—H26A109.5
C16—C11—C10119.5 (2)C25—C26—H26B109.5
C13—C12—C11120.4 (2)H26A—C26—H26B109.5
C13—C12—H12119.8C25—C26—H26C109.5
C11—C12—H12119.8H26A—C26—H26C109.5
C12—C13—C14119.6 (2)H26B—C26—H26C109.5
C25—N1—C1—O15.9 (4)C1—C8—C9—C10175.06 (19)
C2—N1—C1—O1179.5 (2)C8—C9—C10—O381.6 (3)
C25—N1—C1—C8172.1 (2)C17—C9—C10—O396.9 (2)
C2—N1—C1—C81.4 (2)C8—C9—C10—C11100.9 (2)
C25—N1—C2—C38.9 (4)C17—C9—C10—C1180.7 (2)
C1—N1—C2—C3177.4 (2)O3—C10—C11—C12165.7 (2)
C25—N1—C2—C7171.5 (2)C9—C10—C11—C1216.9 (3)
C1—N1—C2—C72.2 (2)O3—C10—C11—C1612.4 (3)
C7—C2—C3—C41.2 (4)C9—C10—C11—C16165.1 (2)
N1—C2—C3—C4179.3 (2)C16—C11—C12—C130.4 (3)
C2—C3—C4—C50.1 (4)C10—C11—C12—C13177.7 (2)
C3—C4—C5—C60.9 (5)C11—C12—C13—C141.9 (4)
C4—C5—C6—C70.8 (4)C12—C13—C14—C151.9 (4)
C5—C6—C7—C20.3 (4)C13—C14—C15—C160.3 (4)
C5—C6—C7—C8178.4 (2)C14—C15—C16—C111.3 (4)
C3—C2—C7—C61.3 (3)C12—C11—C16—C151.3 (4)
N1—C2—C7—C6179.1 (2)C10—C11—C16—C15179.4 (2)
C3—C2—C7—C8177.6 (2)C24—C19—C20—C210.9 (4)
N1—C2—C7—C82.0 (2)C18—C19—C20—C21179.5 (2)
C6—C7—C8—C91.1 (4)C19—C20—C21—C221.3 (4)
C2—C7—C8—C9177.7 (2)C20—C21—C22—C231.3 (5)
C6—C7—C8—C1179.8 (2)C21—C22—C23—C240.9 (4)
C2—C7—C8—C11.1 (2)C22—C23—C24—C190.5 (4)
O1—C1—C8—C92.9 (4)C20—C19—C24—C230.5 (4)
N1—C1—C8—C9179.10 (19)C18—C19—C24—C23179.8 (2)
O1—C1—C8—C7178.2 (2)C2—N1—C25—O20.9 (4)
N1—C1—C8—C70.2 (2)C1—N1—C25—O2173.4 (2)
C7—C8—C9—C17175.3 (2)C2—N1—C25—C26177.6 (2)
C1—C8—C9—C173.2 (3)C1—N1—C25—C265.0 (4)
C7—C8—C9—C106.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.932.272.806 (3)116
C12—H12···O2i0.932.453.247 (3)144
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H17NO3
Mr391.41
Crystal system, space groupTriclinic, P1
Temperature (K)233
a, b, c (Å)8.5729 (4), 9.3557 (4), 13.7085 (6)
α, β, γ (°)107.284 (1), 99.774 (1), 102.644 (1)
V3)991.32 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.20 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9930, 3529, 2673
Rint0.068
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.210, 0.99
No. of reflections3529
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected bond lengths (Å) top
N1—C251.393 (3)C8—C91.350 (3)
N1—C21.425 (3)C9—C171.409 (3)
N1—C11.426 (3)C9—C101.528 (3)
O1—C11.198 (3)C10—C111.477 (3)
O2—C251.216 (3)C17—C181.201 (3)
O3—C101.204 (3)C18—C191.416 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.932.272.806 (3)116
C12—H12···O2i0.932.453.247 (3)144
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds