Download citation
Download citation
link to html
The [2+2] cyclo­condensation reaction between sodium 2,6-di­formyl-4-chloro­phenolate and benzyl­diethyl­enetri­amine using the sodium template method, followed by transmetal­lation with Hg(CH3COO)2·2H2O, gave an unexpected 18-membered macrocyclic product in which ring contractions have occurred to produce two imidazolidine rings. In the dinuclear macrocyclic complex, bis­[μ-3,17-di­benzyl-3,6,9,17,20,23-hexa­aza­tetra­cyclo­[23.3.1.111,15.02,6.016,20]­tricosa-1(29),9,11,13,15(30),23,25,27-octaene-29,30diolato]­bis­[diace­ta­to­mer­cury(II)] tetrahydrate diethanol solvate, [Hg2(C38H38Cl2N6O2)(CH3COO)4]·4H2O·2CH3CH2OH, each HgII ion is coordinated by the imine N atom and O atom of the macrocyclic ligand and four O atoms from the acetate ligands, to form a centrosymmetric structure. The Hg coordination is irregular and it may be described as a distorted square pyramid.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802006232/ci6106sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802006232/ci6106Isup2.hkl
Contains datablock I

CCDC reference: 185749

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.022 Å
  • H-atom completeness 89%
  • R factor = 0.099
  • wR factor = 0.238
  • Data-to-parameter ratio = 14.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.110 PLAT_202 Alert C Isotropic non-H Atoms in Anion/Solvent = 3 General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C50 H70 Cl2 Hg2 N6 O16 Atom count from the _atom_site data: C50 H62 Cl2 Hg2 N6 O16 CELLZ_01 From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_sum C50 H70 Cl2 Hg2 N6 O16 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 50.00 50.00 0.00 H 70.00 62.00 8.00 Cl 2.00 2.00 0.00 Hg 2.00 2.00 0.00 N 6.00 6.00 0.00 O 16.00 16.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Much effort has now been focused on pendant-arm macrocyclic complexes due to the fact that the pendant-arm attached to the macrocyclic skeleton can effect the coordination sphere of the metal in the macrocycle (Gou & Fenton, 1994; Zhou et al., 1995; Qian et al., 2000), as well as the potential application of macrocyclic complexes in the extraction or recovery of metals and for modelling of metallo-biosites (Fenton, 1989). A number of pendant-arm macrocyclic complexes have been designed and synthesized by sodium template method (Gou & Fenton, 1994; Zhou et al., 1995; Qian et al., 2000). Recently, we have applied sodium 2,6-diformyl-4-chlorophenolate as a precursor to carry out cyclocondensation reactions with ethylenetriamine derivative by this method and then transmetallation by zinc acetate to obtain a dinuclear ZnII complex of a Robson macrocycle (Wongratchasee et al., 2002). Herein, we report the structure of a dinuclear mercury complex with the Schiff base macrocyclic ligand in which ring contraction has occurred. The reaction between sodium 2,6-diformyl-4-chlorophenolate and benzyldiethylenetriamine and transmetallation with Hg(CH3COO)2·2H2O has been investigated with the aim of producing the corresponding 24-membered Schiff base macrocycle complex. The macrocyclic complex product resulting from an unexpected ring-contraction reaction gave instead a 18-membered macrocycle, [Hg2(C38H38Cl2N6O2)(CH3COO)4]·4H2O·2CH3CH2OH, (I). The formation of the 18-membered ring was a result of further reaction of the initial 24-membered ring by the nucleophilic additions of the two tertiary amine groups across the C10—N2 bond to form an imidazolidine ring concomitant with the benzyl migration from N2 to N1. Ring contractions have been reported to occur for Schiff base macrocycles as a consequence of nucleophilic addition of secondary amines across an adjacent imine bond (Drew et al., 1981; Adam et al., 1987; Menif et al., 1990).

A displacement ellipsoid plot of (I) with the atomic numbering scheme is shown in Fig. 1. The asymmetric unit consists of one-half of the dinuclear [Hg2(C38H38Cl2N6O2)(CH3COO)4] unit (the other half being generated by a centre of symmetry), two water molecules and one ethanol molecule. The HgII is coordinated by an imine N atom and an O atom from the macrocycle ligand and four O atoms from the two acetate ligands. The HgII coordination is irregular; if the longest bond, Hg1—O3 [2.594 (16) Å] is not taken into consideration, the coordination around the Hg atom may be described as a distorted square pyramid with the O2 atom as its apex. It is observed that each HgII ion has coordinated with ligating atoms outside the cavity of the macrocycle ligand which is a rare example. This may be due to the realtionship between the sizes of the Hg ion and the macrocycle cavity and also due to steric hindrance.

The conformation of the macrocycle is `crown-like' with its skeleton bent back so as to present the imine N atom and O atom to the HgII ions. Hence the ring framework here is much more twisted than that of the related zinc complex (Wongratchasee et al., 2002). The effect of the pendant arm and steric requirement of the macrocycle could have forced the two benzene planes of the macrocycle to be mutually anti-parallel. The imidazolidine rings are twisted on C8—C9 with puckering parameters Q = 0.14 (2) Å and ϕ = 238 (6)° (Cremer & Pople, 1975). The phenyl rings C1–C6 and C11–C16 form dihedral angles of 80.1 (8) and 73.2 (7)°, respectively, with the imidazolidine ring. The packing of (I) viewed down the a axis is shown in Fig. 2. In the crystal, the molecules are linked by intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) to form sheet like structures parallel to the bc plane.

Experimental top

The binuclear HgII complex of a Robson macrocycle was derived from the [2 + 2] cyclocondensation between sodium 2,6-diformyl-4-chlorophenolate (0.8065 g, 1 mmol) and benzyldiethylenetriamine (0.3385 g, 1 mmol) in ethanol (30 ml) via the sodium template method (Gou & Fenton, 1994) and transmetallation with Hg(CH3COO)2·2H2O (0.3186 g, 1 mmol) in ethanol (25 ml). The solution was refluxed for 1 h under inert nitrogen. After the reaction was completed, the resulting hot clear solution was filtered and left to cool. After one week, yellow single crystals of (I) were deposited; melting and decomposition point 473–479 K. These single crystals were not stable and deteriorated quite rapidly upon exposure to air. We have put much effort to get a good quality single-crystal of (I) but the attempts were not sucessful. Before data collection, the crystal was coated with superglue to delay its deterioration.

Refinement top

Geometric similarity restraints were applied to the phenyl ring distances and also for the C—C bonds in the acetate groups. All H atoms were geometrically fixed and allowed to ride on the atoms to which they were attached. The H atoms of the water molecules were not located. Due to large fraction of weak data at higher angles, the 2θ maximum was limited to 50°. Even with this limitation, the coverage is only 93.2% complete due to the poor diffraction quality of the crystal.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms and the solvent molecules have been omitted for clarify.
[Figure 2] Fig. 2. Packing of (I) viewed down the a axis.
(I) top
Crystal data top
[Hg2(C38H38Cl2N6O2)(C2H3O2)4]·4H2O·2C2H6OZ = 1
Mr = 1483.20F(000) = 734
Triclinic, P1Dx = 1.758 Mg m3
a = 10.1376 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0131 (2) ÅCell parameters from 4581 reflections
c = 13.4833 (2) Åθ = 2.7–25.0°
α = 87.599 (1)°µ = 5.64 mm1
β = 71.388 (1)°T = 293 K
γ = 79.135 (1)°Plate, yellow
V = 1400.79 (4) Å30.12 × 0.10 × 0.08 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4735 independent reflections
Radiation source: fine-focus sealed tube2923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 1112
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1312
Tmin = 0.551, Tmax = 0.661l = 1613
6734 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.099Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0692P)2]
where P = (Fo2 + 2Fc2)/3
4735 reflections(Δ/σ)max = 0.001
330 parametersΔρmax = 2.46 e Å3
17 restraintsΔρmin = 3.70 e Å3
Crystal data top
[Hg2(C38H38Cl2N6O2)(C2H3O2)4]·4H2O·2C2H6Oγ = 79.135 (1)°
Mr = 1483.20V = 1400.79 (4) Å3
Triclinic, P1Z = 1
a = 10.1376 (1) ÅMo Kα radiation
b = 11.0131 (2) ŵ = 5.64 mm1
c = 13.4833 (2) ÅT = 293 K
α = 87.599 (1)°0.12 × 0.10 × 0.08 mm
β = 71.388 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4735 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2923 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.661Rint = 0.110
6734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.09917 restraints
wR(F2) = 0.238H-atom parameters constrained
S = 0.96Δρmax = 2.46 e Å3
4735 reflectionsΔρmin = 3.70 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg11.21153 (6)0.25568 (5)0.08568 (6)0.0611 (3)
Cl11.1445 (4)0.2450 (4)0.3441 (3)0.0579 (10)
O10.8282 (9)0.5332 (8)0.0964 (8)0.043 (2)
H10.76480.49710.09550.065*
O21.4300 (13)0.2234 (14)0.2160 (11)0.083 (4)
O31.3060 (17)0.0977 (16)0.2410 (13)0.106 (5)
O41.3317 (13)0.2087 (13)0.0402 (11)0.077 (4)
O51.2152 (14)0.0782 (13)0.0226 (13)0.092 (5)
N10.6177 (10)0.3686 (10)0.2240 (9)0.041 (3)
N20.7588 (10)0.2349 (9)0.1085 (9)0.036 (3)
N30.9899 (10)0.2818 (10)0.0920 (9)0.035 (2)
C10.4379 (13)0.4568 (12)0.3853 (11)0.051 (4)
C20.4373 (16)0.3586 (16)0.4503 (12)0.067 (5)
H20.51980.29990.43960.081*
C30.3195 (15)0.344 (2)0.5306 (13)0.097 (7)
H30.32130.27600.57430.116*
C40.1992 (18)0.4301 (18)0.5453 (14)0.091 (8)
H40.11670.42040.59800.110*
C50.1994 (16)0.5307 (18)0.4828 (14)0.081 (6)
H50.11810.59120.49550.097*
C60.3174 (12)0.5436 (17)0.4020 (13)0.078 (6)
H60.31580.61130.35850.093*
C70.5694 (15)0.4737 (14)0.2980 (13)0.057 (4)
H7A0.54950.54920.26150.069*
H7B0.64370.48120.32700.069*
C80.5172 (14)0.3197 (14)0.1846 (11)0.047 (4)
H8A0.47530.38010.14360.056*
H8B0.44270.29220.24110.056*
C90.6196 (15)0.2091 (13)0.1154 (13)0.051 (4)
H9A0.60520.13070.14860.062*
H9B0.60780.20840.04690.062*
C100.7474 (13)0.3204 (11)0.1758 (10)0.033 (3)
C110.8693 (11)0.3610 (10)0.1926 (10)0.030 (3)
C120.9439 (13)0.2896 (12)0.2503 (10)0.037 (3)
H120.91950.21510.27780.044*
C131.0536 (13)0.3306 (12)0.2658 (11)0.038 (3)
C141.0918 (14)0.4380 (13)0.2258 (11)0.042 (3)
H141.16810.46300.23790.050*
C151.0187 (13)0.5120 (11)0.1666 (10)0.036 (3)
C160.9015 (14)0.4712 (11)0.1500 (11)0.037 (3)
C171.0662 (14)0.6257 (12)0.1323 (11)0.042 (3)
H171.15190.63230.14120.051*
C180.8855 (13)0.1503 (12)0.0495 (10)0.039 (3)
H18A0.86940.06600.06070.047*
H18B0.96320.15820.07460.047*
C190.9253 (15)0.1764 (12)0.0659 (11)0.041 (3)
H19A0.99000.10510.10450.049*
H19B0.84090.18900.08700.049*
C201.420 (2)0.1347 (18)0.2645 (14)0.070 (5)
C211.540 (3)0.082 (3)0.3572 (16)0.155 (15)
H21A1.51400.01670.38820.232*
H21B1.62130.04850.33590.232*
H21C1.56260.14500.40740.232*
C221.2933 (13)0.1128 (14)0.0607 (11)0.045 (4)
C231.3489 (19)0.0300 (15)0.1336 (13)0.063 (5)
H23A1.27760.01490.17360.095*
H23B1.37380.07850.18010.095*
H23C1.43130.02710.09440.095*
C241.152 (3)0.007 (3)0.414 (3)0.182 (15)*
H24A1.12900.05120.45480.218*
H24B1.22500.04780.45950.218*
C251.021 (3)0.101 (3)0.356 (3)0.153 (12)*
H25A0.98090.14480.40520.230*
H25B1.04700.15780.31660.230*
H25C0.95240.05810.30840.230*
O61.196 (3)0.052 (2)0.335 (2)0.191 (10)*
H6A1.23220.00600.30970.286*
O1W0.3685 (18)0.4656 (15)0.0010 (13)0.104 (5)
O2W0.3744 (15)0.6804 (14)0.1414 (14)0.101 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0413 (4)0.0444 (4)0.1008 (6)0.0017 (3)0.0328 (3)0.0049 (3)
Cl10.054 (2)0.057 (2)0.072 (3)0.0016 (18)0.039 (2)0.0069 (19)
O10.035 (5)0.040 (5)0.067 (6)0.014 (4)0.032 (5)0.009 (5)
O20.047 (7)0.097 (10)0.099 (10)0.011 (7)0.017 (6)0.004 (9)
O30.085 (11)0.117 (13)0.119 (13)0.034 (10)0.025 (9)0.015 (10)
O40.069 (8)0.076 (9)0.092 (9)0.004 (7)0.040 (7)0.003 (8)
O50.068 (8)0.094 (10)0.136 (13)0.008 (7)0.071 (9)0.029 (9)
N10.018 (5)0.042 (6)0.061 (7)0.001 (5)0.008 (5)0.025 (6)
N20.023 (5)0.028 (6)0.055 (7)0.002 (4)0.011 (5)0.019 (5)
N30.016 (5)0.041 (6)0.049 (7)0.003 (4)0.011 (4)0.006 (5)
C10.037 (8)0.061 (10)0.057 (10)0.009 (7)0.025 (7)0.026 (8)
C20.056 (10)0.083 (13)0.069 (12)0.013 (9)0.028 (9)0.004 (10)
C30.094 (17)0.14 (2)0.051 (12)0.016 (16)0.019 (11)0.006 (13)
C40.051 (11)0.16 (2)0.054 (12)0.025 (14)0.001 (9)0.035 (14)
C50.041 (10)0.094 (16)0.085 (15)0.012 (10)0.003 (9)0.030 (12)
C60.040 (9)0.098 (14)0.093 (14)0.011 (9)0.023 (9)0.044 (12)
C70.040 (8)0.043 (8)0.088 (12)0.010 (7)0.026 (8)0.022 (8)
C80.033 (7)0.056 (9)0.051 (9)0.002 (6)0.015 (6)0.019 (7)
C90.043 (8)0.037 (8)0.080 (11)0.000 (6)0.031 (8)0.018 (8)
C100.030 (7)0.033 (7)0.041 (7)0.013 (5)0.011 (5)0.005 (6)
C110.017 (6)0.022 (6)0.051 (8)0.001 (5)0.013 (5)0.003 (6)
C120.037 (7)0.030 (7)0.044 (8)0.004 (6)0.014 (6)0.007 (6)
C130.028 (7)0.038 (8)0.049 (8)0.011 (6)0.022 (6)0.013 (6)
C140.031 (7)0.042 (8)0.055 (9)0.007 (6)0.022 (6)0.021 (7)
C150.030 (7)0.026 (6)0.046 (8)0.002 (5)0.007 (6)0.016 (6)
C160.047 (8)0.026 (7)0.044 (8)0.003 (6)0.028 (6)0.010 (6)
C170.030 (7)0.045 (8)0.058 (9)0.008 (6)0.029 (6)0.015 (7)
C180.034 (7)0.034 (7)0.049 (8)0.008 (6)0.019 (6)0.007 (6)
C190.038 (7)0.026 (7)0.057 (9)0.006 (6)0.011 (6)0.010 (6)
C200.076 (13)0.055 (11)0.078 (13)0.004 (10)0.029 (10)0.007 (10)
C210.12 (2)0.24 (4)0.068 (15)0.08 (2)0.027 (14)0.042 (19)
C220.022 (7)0.051 (9)0.053 (9)0.004 (6)0.001 (6)0.022 (8)
C230.080 (12)0.062 (11)0.059 (10)0.007 (9)0.041 (9)0.012 (8)
O1W0.132 (13)0.096 (11)0.105 (12)0.024 (10)0.066 (10)0.006 (9)
O2W0.080 (9)0.098 (11)0.141 (13)0.006 (8)0.066 (9)0.022 (10)
Geometric parameters (Å, º) top
Hg1—N32.239 (9)C8—H8A0.97
Hg1—O1i2.290 (9)C8—H8B0.97
Hg1—O22.322 (12)C9—H9A0.97
Hg1—O42.375 (12)C9—H9B0.97
Hg1—O52.392 (16)C10—C111.475 (16)
Hg1—O32.594 (16)C11—C161.372 (18)
Hg1—C222.712 (15)C11—C121.376 (18)
Cl1—C131.751 (13)C12—C131.352 (17)
O1—C161.285 (16)C12—H120.93
O1—Hg1i2.290 (9)C13—C141.35 (2)
O1—H10.82C14—C151.395 (19)
O2—C201.23 (2)C14—H140.93
O3—C201.24 (2)C15—C161.428 (18)
O4—C221.186 (18)C15—C171.432 (19)
O5—C221.195 (17)C17—N3i1.261 (17)
N1—C101.286 (15)C17—H170.93
N1—C71.464 (17)C18—C191.51 (2)
N1—C81.480 (16)C18—H18A0.97
N2—C101.299 (15)C18—H18B0.97
N2—C181.452 (14)C19—H19A0.97
N2—C91.464 (17)C19—H19B0.97
N3—C17i1.261 (17)C20—C211.485 (18)
N3—C191.415 (16)C21—H21A0.96
C1—C21.36 (2)C21—H21B0.96
C1—C61.36 (2)C21—H21C0.96
C1—C71.51 (2)C22—C231.483 (18)
C2—C31.36 (2)C23—H23A0.96
C2—H20.93C23—H23B0.96
C3—C41.36 (3)C23—H23C0.96
C3—H30.93C24—O61.37 (4)
C4—C51.36 (3)C24—C251.52 (5)
C4—H40.93C24—H24A0.97
C5—C61.36 (2)C24—H24B0.97
C5—H50.93C25—H25A0.96
C6—H60.93C25—H25B0.96
C7—H7A0.97C25—H25C0.96
C7—H7B0.97O6—H6A0.82
C8—C91.559 (18)
N3—Hg1—O1i82.3 (3)H9A—C9—H9B109.2
N3—Hg1—O2132.0 (5)N1—C10—N2112.5 (10)
O1i—Hg1—O295.5 (4)N1—C10—C11123.5 (10)
N3—Hg1—O4138.3 (5)N2—C10—C11123.9 (11)
O1i—Hg1—O4105.7 (4)C16—C11—C12123.0 (11)
O2—Hg1—O488.6 (5)C16—C11—C10117.2 (11)
N3—Hg1—O5100.3 (4)C12—C11—C10119.8 (11)
O1i—Hg1—O5147.9 (4)C13—C12—C11118.3 (13)
O2—Hg1—O5105.4 (5)C13—C12—H12120.8
O4—Hg1—O552.0 (5)C11—C12—H12120.8
N3—Hg1—O392.2 (5)C14—C13—C12121.9 (12)
O1i—Hg1—O3126.6 (5)C14—C13—Cl1119.0 (10)
O2—Hg1—O351.2 (5)C12—C13—Cl1119.1 (11)
O4—Hg1—O3112.5 (5)C13—C14—C15121.0 (12)
O5—Hg1—O385.4 (5)C13—C14—H14119.5
N3—Hg1—C22121.6 (4)C15—C14—H14119.5
O1i—Hg1—C22128.7 (4)C14—C15—C16118.0 (12)
O2—Hg1—C2297.0 (4)C14—C15—C17115.5 (12)
O4—Hg1—C2225.9 (4)C16—C15—C17126.5 (12)
O5—Hg1—C2226.1 (4)O1—C16—C11120.0 (12)
O3—Hg1—C2299.1 (5)O1—C16—C15122.3 (12)
C16—O1—Hg1i124.5 (8)C11—C16—C15117.7 (11)
C16—O1—H1109.5N3i—C17—C15130.1 (12)
Hg1i—O1—H1118.0N3i—C17—H17115.0
C20—O2—Hg1101.1 (11)C15—C17—H17115.0
C20—O3—Hg187.7 (12)N2—C18—C19111.4 (11)
C22—O4—Hg193.1 (10)N2—C18—H18A109.3
C22—O5—Hg192.1 (12)C19—C18—H18A109.3
C10—N1—C7126.0 (11)N2—C18—H18B109.3
C10—N1—C8112.4 (9)C19—C18—H18B109.3
C7—N1—C8121.0 (10)H18A—C18—H18B108.0
C10—N2—C18128.1 (11)N3—C19—C18112.6 (11)
C10—N2—C9111.0 (10)N3—C19—H19A109.1
C18—N2—C9119.3 (10)C18—C19—H19A109.1
C17i—N3—C19120.7 (11)N3—C19—H19B109.1
C17i—N3—Hg1123.3 (9)C18—C19—H19B109.1
C19—N3—Hg1115.0 (8)H19A—C19—H19B107.8
C2—C1—C6118.9 (14)O2—C20—O3119.6 (17)
C2—C1—C7121.7 (11)O2—C20—C21120 (2)
C6—C1—C7119.4 (13)O3—C20—C21120 (2)
C1—C2—C3122.1 (16)C20—C21—H21A109.5
C1—C2—H2118.9C20—C21—H21B109.5
C3—C2—H2118.9H21A—C21—H21B109.5
C4—C3—C2118.3 (17)C20—C21—H21C109.5
C4—C3—H3120.9H21A—C21—H21C109.5
C2—C3—H3120.9H21B—C21—H21C109.5
C5—C4—C3120.3 (17)O4—C22—O5122.8 (16)
C5—C4—H4119.9O4—C22—C23118.7 (15)
C3—C4—H4119.9O5—C22—C23118.5 (16)
C4—C5—C6120.8 (16)O4—C22—Hg161.0 (9)
C4—C5—H5119.6O5—C22—Hg161.8 (10)
C6—C5—H5119.6C23—C22—Hg1175.2 (10)
C5—C6—C1119.6 (15)C22—C23—H23A109.5
C5—C6—H6120.2C22—C23—H23B109.5
C1—C6—H6120.2H23A—C23—H23B109.5
N1—C7—C1110.7 (12)C22—C23—H23C109.5
N1—C7—H7A109.5H23A—C23—H23C109.5
C1—C7—H7A109.5H23B—C23—H23C109.5
N1—C7—H7B109.5O6—C24—C25104 (3)
C1—C7—H7B109.5O6—C24—H24A111.0
H7A—C7—H7B108.1C25—C24—H24A111.0
N1—C8—C999.9 (10)O6—C24—H24B111.0
N1—C8—H8A111.8C25—C24—H24B111.0
C9—C8—H8A111.8H24A—C24—H24B109.0
N1—C8—H8B111.8C24—C25—H25A109.5
C9—C8—H8B111.8C24—C25—H25B109.5
H8A—C8—H8B109.5H25A—C25—H25B109.5
N2—C9—C8102.2 (10)C24—C25—H25C109.5
N2—C9—H9A111.3H25A—C25—H25C109.5
C8—C9—H9A111.3H25B—C25—H25C109.5
N2—C9—H9B111.3C24—O6—H6A109.5
C8—C9—H9B111.3
N3—Hg1—O2—C2052.5 (15)C7—N1—C10—C113 (2)
O1i—Hg1—O2—C20137.1 (12)C8—N1—C10—C11174.1 (12)
O4—Hg1—O2—C20117.3 (13)C18—N2—C10—N1171.7 (13)
O5—Hg1—O2—C2067.5 (13)C9—N2—C10—N16.1 (17)
O3—Hg1—O2—C203.4 (12)C18—N2—C10—C1110 (2)
C22—Hg1—O2—C2092.7 (13)C9—N2—C10—C11175.9 (13)
N3—Hg1—O3—C20149.1 (13)N1—C10—C11—C1674.5 (18)
O1i—Hg1—O3—C2067.0 (14)N2—C10—C11—C16103.2 (15)
O2—Hg1—O3—C203.3 (12)N1—C10—C11—C12104.6 (16)
O4—Hg1—O3—C2065.3 (14)N2—C10—C11—C1277.6 (18)
O5—Hg1—O3—C20110.7 (13)C16—C11—C12—C130 (2)
C22—Hg1—O3—C2088.4 (13)C10—C11—C12—C13178.8 (11)
N3—Hg1—O4—C2259.3 (11)C11—C12—C13—C140.6 (19)
O1i—Hg1—O4—C22155.4 (9)C11—C12—C13—Cl1177.0 (10)
O2—Hg1—O4—C22109.2 (10)C12—C13—C14—C150 (2)
O5—Hg1—O4—C221.6 (8)Cl1—C13—C14—C15177.3 (10)
O3—Hg1—O4—C2262.7 (10)C13—C14—C15—C160.4 (19)
N3—Hg1—O5—C22146.8 (9)C13—C14—C15—C17177.6 (12)
O1i—Hg1—O5—C2254.7 (12)Hg1i—O1—C16—C11149.5 (9)
O2—Hg1—O5—C2274.1 (10)Hg1i—O1—C16—C1531.3 (18)
O4—Hg1—O5—C221.6 (8)C12—C11—C16—O1179.6 (12)
O3—Hg1—O5—C22121.8 (10)C10—C11—C16—O11.3 (18)
O1i—Hg1—N3—C17i24.6 (11)C12—C11—C16—C150.4 (19)
O2—Hg1—N3—C17i66.0 (13)C10—C11—C16—C15179.5 (10)
O4—Hg1—N3—C17i129.6 (11)C14—C15—C16—O1179.9 (12)
O5—Hg1—N3—C17i172.2 (11)C17—C15—C16—O13 (2)
O3—Hg1—N3—C17i102.1 (11)C14—C15—C16—C110.7 (17)
C22—Hg1—N3—C17i155.7 (10)C17—C15—C16—C11177.5 (12)
O1i—Hg1—N3—C19167.1 (9)C14—C15—C17—N3i168.4 (14)
O2—Hg1—N3—C19102.3 (10)C16—C15—C17—N3i9 (2)
O4—Hg1—N3—C1962.1 (11)C10—N2—C18—C19112.9 (16)
O5—Hg1—N3—C1919.5 (10)C9—N2—C18—C1982.6 (16)
O3—Hg1—N3—C1966.2 (9)C17i—N3—C19—C18118.6 (14)
C22—Hg1—N3—C1935.9 (10)Hg1—N3—C19—C1872.7 (12)
C6—C1—C2—C31 (3)N2—C18—C19—N376.4 (14)
C7—C1—C2—C3178.9 (17)Hg1—O2—C20—O36 (2)
C1—C2—C3—C40 (3)Hg1—O2—C20—C21179.9 (17)
C2—C3—C4—C52 (3)Hg1—O3—C20—O26 (2)
C3—C4—C5—C63 (3)Hg1—O3—C20—C21179.3 (19)
C4—C5—C6—C12 (3)Hg1—O4—C22—O53.0 (15)
C2—C1—C6—C50 (2)Hg1—O4—C22—C23174.5 (12)
C7—C1—C6—C5178.0 (16)Hg1—O5—C22—O43.0 (15)
C10—N1—C7—C1143.6 (14)Hg1—O5—C22—C23174.5 (12)
C8—N1—C7—C146.5 (18)N3—Hg1—C22—O4137.9 (9)
C2—C1—C7—N160.3 (19)O1i—Hg1—C22—O430.9 (11)
C6—C1—C7—N1121.7 (15)O2—Hg1—C22—O472.0 (10)
C10—N1—C8—C911.2 (16)O5—Hg1—C22—O4177.1 (14)
C7—N1—C8—C9177.6 (14)O3—Hg1—C22—O4123.8 (10)
C10—N2—C9—C812.6 (16)N3—Hg1—C22—O539.2 (10)
C18—N2—C9—C8179.6 (12)O1i—Hg1—C22—O5146.2 (9)
N1—C8—C9—N213.2 (15)O2—Hg1—C22—O5110.9 (10)
C7—N1—C10—N2174.6 (14)O4—Hg1—C22—O5177.1 (14)
C8—N1—C10—N23.9 (17)O3—Hg1—C22—O559.1 (10)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Wii0.822.112.69 (2)128
O6—H6A···O30.821.892.71 (3)176
C12—H12···O6iii0.932.303.21 (3)164
C17—H17···O2Wiv0.932.413.33 (2)169
C18—H18A···O5iii0.972.413.18 (2)137
C18—H18B···O50.972.423.19 (2)136
Symmetry codes: (ii) x+1, y+1, z; (iii) x+2, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Hg2(C38H38Cl2N6O2)(C2H3O2)4]·4H2O·2C2H6O
Mr1483.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.1376 (1), 11.0131 (2), 13.4833 (2)
α, β, γ (°)87.599 (1), 71.388 (1), 79.135 (1)
V3)1400.79 (4)
Z1
Radiation typeMo Kα
µ (mm1)5.64
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.551, 0.661
No. of measured, independent and
observed [I > 2σ(I)] reflections
6734, 4735, 2923
Rint0.110
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.099, 0.238, 0.96
No. of reflections4735
No. of parameters330
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.46, 3.70

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Hg1—N32.239 (9)Hg1—O52.392 (16)
Hg1—O1i2.290 (9)Hg1—O32.594 (16)
Hg1—O22.322 (12)O1—Hg1i2.290 (9)
Hg1—O42.375 (12)
N3—Hg1—O1i82.3 (3)O2—Hg1—O5105.4 (5)
N3—Hg1—O2132.0 (5)O4—Hg1—O552.0 (5)
O1i—Hg1—O295.5 (4)N3—Hg1—O392.2 (5)
N3—Hg1—O4138.3 (5)O1i—Hg1—O3126.6 (5)
O1i—Hg1—O4105.7 (4)O2—Hg1—O351.2 (5)
O2—Hg1—O488.6 (5)O4—Hg1—O3112.5 (5)
N3—Hg1—O5100.3 (4)O5—Hg1—O385.4 (5)
O1i—Hg1—O5147.9 (4)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Wii0.822.112.69 (2)127.7
O6—H6A···O30.821.892.71 (3)175.5
C12—H12···O6iii0.932.303.21 (3)164.4
C17—H17···O2Wiv0.932.413.33 (2)169.3
C18—H18A···O5iii0.972.413.18 (2)136.5
C18—H18B···O50.972.423.19 (2)136.2
Symmetry codes: (ii) x+1, y+1, z; (iii) x+2, y, z; (iv) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds