Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Ru2(O2CCH3)4(C9H7N)2]PF6·C9H7N, shows a binuclear cage structure having an inversion center. There are weak intramolecular C—H...O interactions between the quinoline ligands and the bridging acetate O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801016063/ci6061sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801016063/ci6061Isup2.hkl
Contains datablock I

CCDC reference: 175968

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • Disorder in solvent or counter-ion
  • R factor = 0.043
  • wR factor = 0.131
  • Data-to-parameter ratio = 11.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
CELLV_02 Alert C The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 2 Calculated cell volume su = 7.12 Cell volume su given = 11.00 THETM_01 Alert C The value of sine(theta_max)/wavelength is less than 0.590 Calculated sin(theta_max)/wavelength = 0.5872 PLAT_301 Alert C Main Residue Disorder ........................ 7.00 Perc. PLAT_302 Alert C Anion/Solvent Disorder ....................... 50.00 Perc. General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.104 Tmax scaled 0.104 Tmin scaled 0.046
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

Only a few N-donor heterocycle axial diadducts of diruthenium(II,III) tetracarboxylate, [Ru2(O2CR)4(N-heterocycle)2]X (R = alkyl or aryl, X = counter-ion), have been structurally characterized. Most of these involve pyridine or pyridine derivatives (Cotton et al., 1998; Vamvounis et al., 2000) and one example of biological relevance employing 2-methylimidazole as the axial ligand (Sudha & Chakravarty, 1998). This latter complex displayed a weak intermolecular hydrogen bonding interaction between the non-bound nitrogen and an oxygen on the perchlorate counterion.

As Ru2(O2CR)4Cl (R = CH3 and CH2CH3) complexes have shown small but significant antitumor activity (Keppler et al., 1989), we sought to investigate the binding of various nucleoside bases to the diruthenium(II,III) tetracarboxylate core and focus on the structural aspects of this binding, in particular, any intramolcular hydrogen bonding. In addition to looking at nucleoside base adducts, we wanted to study similar and simpler diadducts that were soluble in non-aqueous media. Molecule (I) is one such complex. While it contains typical Ru—Ru, Ru—O and Ru—N bond lengths and angles (Table 1), it displays trans-oriented axially bound quinoline rings with weak intramolecular interactions between the acetate O atoms and C—H bonds of bound quinolines. Four of these are given in Table 2, the strongest of which is C12—H12···O3.

Experimental top

Quinoline (0.64 mmol) was added dropwise to a 5 ml solution of [Ru2(O2CCH3)4(H2O)2]PF6 (0.16 mmol) in 2-propanol. The solution was stirred for 5 min and the gold–brown product filtered and dried. Crystals could be grown by slow evaporation from dichloromethane.

Refinement top

H atoms were allowed to ride on the heavy atoms to which they were bonded with Uiso equal to 1.2Ueq of the heavy atom (1.5Ueq for methyl H atoms). The PF6- anion was found to be disordered and each fluoride ligand was allowed to occupy two positions, each with an occupancy of 1/2, and with equal atomic displacement parameters for each A/B pair. The fluoride A/B distances were dfixed to 0.80 (2) Å and the P—F distances to 1.58 (2) Å. The incorporated solvent molecule of quinoline was also found to be disordered. The N atom of the solvent was allowed to occupy each of the four possible positions equally, each with an occupancy of 0.25. The bonds across the top of the solvent rings were made equal in length, while the edge bonds (those not involving nitrogen), were DFIXed to 1.39 (1) Å. Similarly, in the coordinated quinoline molecule the C—C bond lengths were dfixed to 1.39 (1) Å. The highest peaks and deepest holes in the final difference map were located at distances less than 1.1 Å from the heavy metal atom.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN for Windows; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 50% probability level. The quinoline molecule of solvation and the heaxafluorophosphate counterion have been omitted.
tetra-mu-acetato-O:O'-bis(quinoline-N)diruthenium(II,III)hexafluorophosphate quinoline solvate top
Crystal data top
[Ru(C2H3O2)4(C9H7N)2]PF6·C9H7NZ = 1
Mr = 970.75F(000) = 485
Triclinic, P1Dx = 1.689 Mg m3
a = 12.180 (7) ÅCu Kα radiation, λ = 1.5418 Å
b = 10.980 (3) ÅCell parameters from 25 reflections
c = 7.729 (3) Åθ = 39.5–40.0°
α = 99.75 (1)°µ = 7.54 mm1
β = 108.70 (2)°T = 293 K
γ = 79.0 (3)°Block, red–brown
V = 954.6 (11) Å30.55 × 0.35 × 0.30 mm
Data collection top
Rigaku AFC-5R
diffractometer
2555 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.078
Graphite monochromatorθmax = 64.9°, θmin = 3.9°
ω–2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.446, Tmax = 1.000l = 88
3253 measured reflections3 standard reflections every 150 reflections
3089 independent reflections intensity decay: 8.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0655P)2 + 3.3237P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3089 reflectionsΔρmax = 1.10 e Å3
260 parametersΔρmin = 0.71 e Å3
61 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (3)
Crystal data top
[Ru(C2H3O2)4(C9H7N)2]PF6·C9H7Nγ = 79.0 (3)°
Mr = 970.75V = 954.6 (11) Å3
Triclinic, P1Z = 1
a = 12.180 (7) ÅCu Kα radiation
b = 10.980 (3) ŵ = 7.54 mm1
c = 7.729 (3) ÅT = 293 K
α = 99.75 (1)°0.55 × 0.35 × 0.30 mm
β = 108.70 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
2555 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.078
Tmin = 0.446, Tmax = 1.0003 standard reflections every 150 reflections
3253 measured reflections intensity decay: 8.4%
3089 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04361 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.05Δρmax = 1.10 e Å3
3089 reflectionsΔρmin = 0.71 e Å3
260 parameters
Special details top

Experimental. The scan width was (1.73 + 0.35tanθ)° with an ω scan speed of 16° per minute (up to 7 scans to achieve I/σ(I) > 15). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.48727 (4)0.09331 (4)0.44470 (6)0.0378 (2)
P1A1.00000.00000.50000.0850 (11)0.50
F1A0.943 (2)0.0298 (16)0.2958 (19)0.143 (5)0.50
F2A1.1261 (14)0.013 (2)0.487 (4)0.157 (7)0.50
F3A0.984 (2)0.1451 (15)0.568 (3)0.195 (9)0.50
P1B1.00000.00000.50000.0850 (11)0.50
F1B0.967 (2)0.0372 (14)0.2858 (19)0.143 (5)0.50
F2B1.1313 (14)0.0506 (19)0.523 (4)0.157 (7)0.50
F3B1.015 (2)0.1332 (14)0.483 (3)0.195 (9)0.50
O10.3916 (4)0.1713 (4)0.6166 (6)0.0464 (10)
O20.3397 (4)0.0487 (4)0.2505 (6)0.0501 (11)
O30.5811 (4)0.0102 (4)0.2723 (6)0.0459 (10)
O40.6330 (4)0.1352 (4)0.6462 (6)0.0485 (10)
N10.4585 (4)0.2862 (5)0.3388 (7)0.0406 (11)
C10.3767 (6)0.1058 (6)0.7253 (8)0.0461 (14)
C20.3067 (8)0.1655 (8)0.8497 (12)0.072 (2)
H2A0.30270.10530.92340.108*0.50
H2B0.22900.19650.77830.108*0.50
H2C0.34280.23360.92820.108*0.50
H2D0.28030.25160.82990.108*0.50
H2E0.35400.16040.97500.108*0.50
H2F0.24020.12330.82510.108*0.50
C30.3088 (6)0.0586 (7)0.2436 (8)0.0478 (15)
C40.2026 (7)0.0911 (8)0.0983 (10)0.068 (2)
H4A0.16830.02300.02560.102*0.50
H4B0.14730.10710.15350.102*0.50
H4C0.22290.16450.02110.102*0.50
H4D0.19070.17340.10780.102*0.50
H4E0.21180.08930.02000.102*0.50
H4F0.13610.03190.11240.102*0.50
C50.3515 (5)0.3478 (6)0.3135 (9)0.0477 (15)
H50.29530.30800.33010.057*
C60.3174 (5)0.4674 (6)0.2640 (9)0.0534 (17)
H60.24090.50700.24990.064*
C70.3984 (5)0.5264 (6)0.2362 (9)0.0526 (16)
H70.37730.60680.20200.063*
C80.5129 (5)0.4655 (5)0.2592 (8)0.0435 (14)
C90.5993 (6)0.5233 (7)0.2324 (10)0.0586 (18)
H90.58060.60320.19630.070*
C100.7116 (6)0.4601 (6)0.2604 (11)0.064 (2)
H100.76920.49840.24550.077*
C110.7399 (6)0.3397 (6)0.3108 (10)0.0586 (18)
H110.81590.29810.32770.070*
C120.6567 (5)0.2817 (6)0.3357 (9)0.0495 (15)
H120.67650.20090.36880.059*
C130.5424 (5)0.3437 (5)0.3116 (7)0.0372 (13)
C141.0363 (12)0.3005 (18)1.133 (3)0.161 (7)
H141.04890.21751.15480.194*
C161.0042 (9)0.4505 (10)0.9312 (14)0.111 (3)
C180.9694 (14)0.6052 (18)0.724 (3)0.166 (7)
H180.95830.62350.60570.199*
C170.9918 (10)0.4850 (16)0.7636 (19)0.137 (4)0.75
H170.99910.42180.66960.164*0.75
C151.0236 (10)0.3275 (13)0.961 (2)0.140 (4)0.75
H151.02810.26400.86590.168*0.75
N2A0.9918 (10)0.4850 (16)0.7636 (19)0.137 (4)0.25
N2B1.0236 (10)0.3275 (13)0.961 (2)0.140 (4)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0416 (3)0.0422 (3)0.0304 (3)0.01320 (19)0.00602 (19)0.00727 (18)
P1A0.076 (2)0.095 (2)0.0535 (17)0.0136 (18)0.0057 (15)0.0055 (16)
F1A0.153 (12)0.161 (16)0.066 (4)0.017 (13)0.012 (5)0.013 (8)
F2A0.099 (6)0.23 (2)0.133 (12)0.004 (10)0.026 (6)0.034 (13)
F3A0.256 (19)0.118 (8)0.155 (19)0.012 (9)0.002 (14)0.002 (10)
P1B0.076 (2)0.095 (2)0.0535 (17)0.0136 (18)0.0057 (15)0.0055 (16)
F1B0.153 (12)0.161 (16)0.066 (4)0.017 (13)0.012 (5)0.013 (8)
F2B0.099 (6)0.23 (2)0.133 (12)0.004 (10)0.026 (6)0.034 (13)
F3B0.256 (19)0.118 (8)0.155 (19)0.012 (9)0.002 (14)0.002 (10)
O10.056 (3)0.048 (2)0.043 (2)0.015 (2)0.020 (2)0.0053 (19)
O20.049 (2)0.057 (3)0.041 (2)0.014 (2)0.0031 (19)0.010 (2)
O30.055 (3)0.052 (3)0.037 (2)0.016 (2)0.0187 (19)0.0051 (19)
O40.049 (2)0.054 (3)0.044 (2)0.019 (2)0.007 (2)0.009 (2)
N10.037 (3)0.044 (3)0.037 (3)0.009 (2)0.005 (2)0.003 (2)
C10.051 (4)0.050 (4)0.039 (3)0.016 (3)0.012 (3)0.000 (3)
C20.094 (6)0.069 (5)0.064 (5)0.020 (4)0.041 (5)0.007 (4)
C30.047 (4)0.063 (4)0.034 (3)0.020 (3)0.006 (3)0.002 (3)
C40.063 (5)0.078 (5)0.051 (4)0.035 (4)0.016 (4)0.012 (4)
C50.035 (3)0.061 (4)0.043 (3)0.010 (3)0.000 (3)0.012 (3)
C60.037 (3)0.058 (4)0.056 (4)0.000 (3)0.001 (3)0.019 (3)
C70.054 (4)0.046 (4)0.047 (4)0.001 (3)0.000 (3)0.016 (3)
C80.051 (4)0.046 (3)0.030 (3)0.012 (3)0.004 (3)0.004 (3)
C90.067 (5)0.058 (4)0.055 (4)0.019 (4)0.015 (4)0.015 (3)
C100.065 (5)0.072 (5)0.072 (5)0.031 (4)0.028 (4)0.014 (4)
C110.049 (4)0.070 (5)0.070 (5)0.012 (3)0.031 (4)0.015 (4)
C120.044 (4)0.054 (4)0.051 (4)0.007 (3)0.013 (3)0.008 (3)
C130.042 (3)0.042 (3)0.027 (3)0.013 (3)0.004 (2)0.006 (2)
C140.063 (7)0.192 (16)0.223 (15)0.056 (9)0.010 (12)0.030 (13)
C160.049 (4)0.151 (7)0.118 (6)0.027 (5)0.024 (5)0.040 (5)
C180.082 (10)0.261 (18)0.167 (15)0.051 (14)0.036 (10)0.030 (14)
C170.057 (6)0.225 (13)0.121 (8)0.043 (9)0.028 (7)0.031 (8)
C150.063 (7)0.156 (8)0.181 (11)0.033 (8)0.029 (9)0.041 (8)
N2A0.057 (6)0.225 (13)0.121 (8)0.043 (9)0.028 (7)0.031 (8)
N2B0.063 (7)0.156 (8)0.181 (11)0.033 (8)0.029 (9)0.041 (8)
Geometric parameters (Å, º) top
Ru1—O22.020 (5)C4—H4D0.96
Ru1—O32.020 (5)C4—H4E0.96
Ru1—O12.020 (5)C4—H4F0.96
Ru1—O42.021 (5)C5—C61.379 (7)
Ru1—Ru1i2.2816 (17)C5—H50.93
Ru1—N12.323 (5)C6—C71.366 (7)
P1A—F1Aii1.570 (14)C6—H60.93
P1A—F1A1.570 (14)C7—C81.395 (8)
P1A—F3Aii1.586 (15)C7—H70.93
P1A—F3A1.586 (15)C8—C131.409 (7)
P1A—F2Aii1.605 (15)C8—C91.413 (7)
P1A—F2A1.605 (15)C9—C101.377 (8)
O1—C11.269 (8)C9—H90.93
O2—C31.292 (8)C10—C111.389 (8)
O3—C1i1.280 (8)C10—H100.93
O4—C3i1.250 (8)C11—C121.372 (7)
N1—C51.319 (8)C11—H110.93
N1—C131.385 (8)C12—C131.397 (7)
C1—O3i1.280 (8)C12—H120.93
C1—C21.476 (10)C14—C151.366 (9)
C2—H2A0.96C14—C18iii1.39 (3)
C2—H2B0.96C14—H140.93
C2—H2C0.96C16—C171.365 (9)
C2—H2D0.96C16—C151.372 (9)
C2—H2E0.96C16—C16iii1.399 (10)
C2—H2F0.96C18—C171.363 (9)
C3—O4i1.250 (8)C18—C14iii1.39 (3)
C3—C41.474 (9)C18—H180.93
C4—H4A0.96C17—H170.93
C4—H4B0.96C15—H150.93
C4—H4C0.96
O2—Ru1—O389.5 (2)C3—C4—H4A109.5
O2—Ru1—O189.6 (2)C3—C4—H4B109.5
O3—Ru1—O1178.2 (4)H4A—C4—H4B109.5
O2—Ru1—O4177.8 (4)C3—C4—H4C109.5
O3—Ru1—O492.0 (2)H4A—C4—H4C109.5
O1—Ru1—O488.9 (2)H4B—C4—H4C109.5
O2—Ru1—Ru1i89.6 (2)C3—C4—H4D109.5
O3—Ru1—Ru1i89.1 (2)H4A—C4—H4D141.1
O1—Ru1—Ru1i89.4 (2)H4B—C4—H4D56.3
O4—Ru1—Ru1i88.7 (2)H4C—C4—H4D56.3
O2—Ru1—N190.5 (3)C3—C4—H4E109.5
O3—Ru1—N192.6 (2)H4A—C4—H4E56.3
O1—Ru1—N188.9 (2)H4B—C4—H4E141.1
O4—Ru1—N191.1 (3)H4C—C4—H4E56.3
Ru1i—Ru1—N1178.24 (13)H4D—C4—H4E109.5
F1Aii—P1A—F1A180.000 (1)C3—C4—H4F109.5
F1Aii—P1A—F3Aii89.5 (9)H4A—C4—H4F56.3
F1A—P1A—F3Aii90.5 (9)H4B—C4—H4F56.3
F1Aii—P1A—F3A90.5 (9)H4C—C4—H4F141.1
F1A—P1A—F3A89.5 (9)H4D—C4—H4F109.5
F3Aii—P1A—F3A180.000 (2)H4E—C4—H4F109.5
F1Aii—P1A—F2Aii89.6 (9)N1—C5—C6124.3 (6)
F1A—P1A—F2Aii90.4 (9)N1—C5—H5117.9
F3Aii—P1A—F2Aii88.0 (10)C6—C5—H5117.9
F3A—P1A—F2Aii92.0 (10)C7—C6—C5118.6 (6)
F1Aii—P1A—F2A90.4 (9)C7—C6—H6120.7
F1A—P1A—F2A89.6 (9)C5—C6—H6120.7
F3Aii—P1A—F2A92.0 (10)C6—C7—C8119.8 (6)
F3A—P1A—F2A88.0 (10)C6—C7—H7120.1
F2Aii—P1A—F2A180.000 (2)C8—C7—H7120.1
C1—O1—Ru1119.8 (4)C7—C8—C13118.9 (6)
C3—O2—Ru1118.8 (4)C7—C8—C9121.5 (5)
C1i—O3—Ru1119.8 (4)C13—C8—C9119.6 (6)
C3i—O4—Ru1120.7 (4)C10—C9—C8119.2 (6)
C5—N1—C13118.4 (5)C10—C9—H9120.4
C5—N1—Ru1114.6 (5)C8—C9—H9120.4
C13—N1—Ru1126.9 (4)C9—C10—C11120.9 (6)
O1—C1—O3i121.9 (6)C9—C10—H10119.6
O1—C1—C2118.6 (6)C11—C10—H10119.6
O3i—C1—C2119.5 (6)C12—C11—C10120.7 (6)
C1—C2—H2A109.5C12—C11—H11119.7
C1—C2—H2B109.5C10—C11—H11119.7
H2A—C2—H2B109.5C11—C12—C13120.1 (6)
C1—C2—H2C109.5C11—C12—H12120.0
H2A—C2—H2C109.5C13—C12—H12120.0
H2B—C2—H2C109.5N1—C13—C12120.3 (5)
C1—C2—H2D109.5N1—C13—C8120.1 (5)
H2A—C2—H2D141.1C12—C13—C8119.6 (6)
H2B—C2—H2D56.3C15—C14—C18iii121.3 (18)
H2C—C2—H2D56.3C15—C14—H14119.4
C1—C2—H2E109.5C18iii—C14—H14119.4
H2A—C2—H2E56.3C17—C16—C15121.9 (10)
H2B—C2—H2E141.1C17—C16—C16iii115.1 (15)
H2C—C2—H2E56.3C15—C16—C16iii123.0 (16)
H2D—C2—H2E109.5C17—C18—C14iii117.3 (18)
C1—C2—H2F109.5C17—C18—H18121.3
H2A—C2—H2F56.3C14iii—C18—H18121.3
H2B—C2—H2F56.3C18—C17—C16124.8 (16)
H2C—C2—H2F141.1C18—C17—H17117.6
H2D—C2—H2F109.5C16—C17—H17117.6
H2E—C2—H2F109.5C14—C15—C16118.4 (16)
O4i—C3—O2122.1 (6)C14—C15—H15120.8
O4i—C3—C4119.7 (6)C16—C15—H15120.8
O2—C3—C4118.2 (6)
O2—Ru1—O1—C191.1 (5)C13—N1—C5—C61.0 (9)
O4—Ru1—O1—C187.3 (5)Ru1—N1—C5—C6175.2 (5)
Ru1i—Ru1—O1—C11.5 (4)N1—C5—C6—C71.1 (10)
N1—Ru1—O1—C1178.3 (5)C5—C6—C7—C80.4 (10)
O3—Ru1—O2—C387.6 (5)C6—C7—C8—C130.2 (9)
O1—Ru1—O2—C390.9 (5)C6—C7—C8—C9179.8 (6)
Ru1i—Ru1—O2—C31.5 (5)C7—C8—C9—C10178.7 (7)
N1—Ru1—O2—C3179.8 (5)C13—C8—C9—C100.8 (10)
O2—Ru1—O3—C1i90.4 (5)C8—C9—C10—C111.3 (12)
O4—Ru1—O3—C1i88.0 (5)C9—C10—C11—C120.7 (12)
Ru1i—Ru1—O3—C1i0.7 (4)C10—C11—C12—C130.3 (11)
N1—Ru1—O3—C1i179.1 (5)C5—N1—C13—C12179.6 (6)
O3—Ru1—O4—C3i87.1 (5)Ru1—N1—C13—C124.7 (8)
O1—Ru1—O4—C3i91.4 (5)C5—N1—C13—C80.4 (8)
Ru1i—Ru1—O4—C3i2.0 (5)Ru1—N1—C13—C8175.3 (4)
N1—Ru1—O4—C3i179.7 (5)C11—C12—C13—N1179.2 (6)
O2—Ru1—N1—C548.0 (4)C11—C12—C13—C80.8 (9)
O3—Ru1—N1—C5137.5 (4)C7—C8—C13—N10.2 (8)
O1—Ru1—N1—C541.6 (5)C9—C8—C13—N1179.8 (6)
O4—Ru1—N1—C5130.5 (4)C7—C8—C13—C12179.8 (6)
O2—Ru1—N1—C13136.2 (5)C9—C8—C13—C120.2 (9)
O3—Ru1—N1—C1346.7 (5)C14iii—C18—C17—C163 (2)
O1—Ru1—N1—C13134.2 (5)C15—C16—C17—C18178.2 (13)
O4—Ru1—N1—C1345.4 (5)C16iii—C16—C17—C182 (2)
Ru1—O1—C1—O3i1.3 (8)C18iii—C14—C15—C161 (2)
Ru1—O1—C1—C2179.8 (5)C17—C16—C15—C14179.4 (11)
Ru1—O2—C3—O4i0.4 (9)C16iii—C16—C15—C141 (2)
Ru1—O2—C3—C4178.5 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.713.150 (7)110
C5—H5···O20.932.793.261 (8)112
C12—H12···O30.932.483.199 (9)135
C12—H12···O40.932.613.218 (8)124

Experimental details

Crystal data
Chemical formula[Ru(C2H3O2)4(C9H7N)2]PF6·C9H7N
Mr970.75
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.180 (7), 10.980 (3), 7.729 (3)
α, β, γ (°)99.75 (1), 108.70 (2), 79.0 (3)
V3)954.6 (11)
Z1
Radiation typeCu Kα
µ (mm1)7.54
Crystal size (mm)0.55 × 0.35 × 0.30
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.446, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3253, 3089, 2555
Rint0.078
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.05
No. of reflections3089
No. of parameters260
No. of restraints61
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.71

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1997-1999), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), TEXSAN for Windows, SHELXL97.

Selected geometric parameters (Å, º) top
Ru1—O22.020 (5)Ru1—O42.021 (5)
Ru1—O32.020 (5)Ru1—Ru1i2.2816 (17)
Ru1—O12.020 (5)Ru1—N12.323 (5)
O2—Ru1—O389.5 (2)Ru1i—Ru1—N1178.24 (13)
O3—Ru1—O1178.2 (4)C1—O1—Ru1119.8 (4)
O3—Ru1—O492.0 (2)C1i—O3—Ru1119.8 (4)
O2—Ru1—Ru1i89.6 (2)C5—N1—C13118.4 (5)
O1—Ru1—Ru1i89.4 (2)C5—N1—Ru1114.6 (5)
O2—Ru1—N190.5 (3)C13—N1—Ru1126.9 (4)
O1—Ru1—N188.9 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.713.150 (7)110.2
C5—H5···O20.932.793.261 (8)112.2
C12—H12···O30.932.483.199 (9)134.6
C12—H12···O40.932.613.218 (8)123.8
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds