Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, 2C5H9NO2·H+·ClO4, two proline residues are linked by a strong O—H...O hydrogen bond with an O...O distance of 2.474 (6) Å. Conformational disorder is observed in the pyrrolidine rings of the two proline residues. In one of the residues, both the major and minor conformers adopt conformations intermediate between half-chair and envelope, whereas in the other residue, they adopt envelope conformations. The crystal structure is stabilized by a number of N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801021304/ci6056sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801021304/ci6056Isup2.hkl
Contains datablock I

CCDC reference: 180553

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • Disorder in solvent or counterion
  • R factor = 0.051
  • wR factor = 0.145
  • Data-to-parameter ratio = 7.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
PLAT_202 Alert C Isotropic non-H Atoms in Anion/Solvent = 1 PLAT_302 Alert C Anion/Solvent Disorder ....................... 9.00 Perc. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C10 H19 Cl1 N2 O8 Atom count from _chemical_formula_moiety:C10 H18 Cl1 N2 O8 REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.97 From the CIF: _reflns_number_total 1420 Count of symmetry unique reflns 1422 Completeness (_total/calc) 99.86% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Proline is a very important amino acid due to its unique conformation, which may affect the structure of proteins, in particular, collagen. The crystal structures of L-proline monohydrate (Kayushina & Vainshtein, 1965), DL-proline hydrochloride (Mitsui et al., 1969), DL-homoproline tetrahydrate (Bhattacharjee & Chacko, 1979) and DL-proline monohydrate (Padmanabhan et al., 1995) have been reported. The crystal structure determination of L-proline perchloric acid was undertaken to study the effect of the inorganic acid on the conformation of the proline residue.

The asymmetric unit of the title compound, (I), consists of two crystallographically independent proline residues A and B, a H+ cation and a ClO4- ion. The conformation angles ψ1 for A and B are 3.9 (6) and 7.8 (9)°, respectively. The twisting of the carboxyl plane away from the C—N bond is observed in various amino acids (Lakshminarayanan et al., 1967). The conformation angles χ1, χ2, χ3, χ4 and θ of the pyrrolidine ring for both A and B, respectively, are 33.3 (8) and 40.7 (10), -37.6 (10) and -31.8 (11), 26.8 (10) and 10.0 (10)°, -6.1 (8) and 16.8 (9), and -16.6 (7) and -35.5 (8)° (Prasad & Vijayan, 1993).

The conformation of the pyrrolidine ring, in general, is intermediate between half-chair and envelope (Prasad & Vijayan, 1993; Padmanabhan et al., 1995). In the present case, the Cγ atom of residue A and Cβ of residue B are disordered. Both the major and minor conformers of the pyrrolidine ring adopt conformations intermediate between half-chair and envelope in residue A, whereas in residue B, they adopt half-chair conformations (Cremer & Pople, 1975; Nardelli, 1983).

The two proline residues in the asymmetric unit are linked through a strong O-==H···O hydrogen bond [2.474 (6) Å]. The equality of the C—O distances within significant limits [1.219 (7) and 1.184 (7), and 1.283 (6) and 1.280 (8) Å] indicates that atom H2B is equally shared by residues A and B. Hence, this hydrogen bond may be termed as a symmetric hydrogen bond. The O2B—H2B and O1B—H2B distances are 1.23 (10) and 1.34 (11) Å, respectively. This symmetrically hydrogen-bonded proline dimer is positively charged, as found in L-phenylalanine L-phenylalaninium perchlorate (Srinivasan & Rajaram, 1997) and L-lysine L-lysinium dichloride nitrate (Srinivasan et al., 2001).

The perchlorate anion form hydrogen bonds with the amino N atoms of both proline residues (Table 2). An intramolecular hydrogen bond, N11—H11A···O1A, is observed in residue A. The N atoms of both A and B are involved in three-centred hydrogen bonds with O atoms of the carbonyl groups and the perchlorate anion. Residues A and B are engaged in a head-to-tail sequence, since the N11—H11A···O1A(-x + 1, y + 1/2, -z + 1) (Z1 sequence), –N11–H11A···O2A(-x + 1, y + 1/2, -z + 1) (as a three-centred hydrogen bond) and N21—H21A···O1B(x, y - 1, z) hydrogen bonds connect them (Vijayan, 1988).

Experimental top

The title compound was crystallized by slow evaporation from an aqueous solution of L-proline and perchloric acid in a 2:1 stoichiometric ratio.

Refinement top

Atoms C14 and C23 were found to be disordered, suggesting conformational disorder in the pyrrolidine rings of both proline residues. The population of the major conformation was found to be 76% for proline residue A and 72% for residue B. The corresponding C—C distances in the major and minor conformers were restrained to be equal, with an effective standard deviation of 0.01 Å. Due to large ADP max/min ratio, the disordered positions C23 and C23' were isotropically refined. Atom H2B was located in a difference Fourier map and refined isotropically; all other H atoms were geometrically fixed and allowed to ride on their attached atoms. Since the crystal belongs to a non-centrosymmetric space group and the diffracted intensities are rather low, the data-to-parameter ratio (6.63) is poor.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976). For clarity, only the major conformers (76 and 72%) of the pyrrolidine rings are shown.
[Figure 2] Fig. 2. Packing of the molecules viewed down the b axis (for clarity, only the major conformers of the pyrrolidine rings are shown).
Bis(L-proline) H + perchlorate top
Crystal data top
2C5H9NO2·H+.ClO4F(000) = 348
Mr = 330.72Dx = 1.475 Mg m3
Dm = 1.472 Mg m3
Dm measured by flotation in a mixture of carbon tetrachloride and xylene
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.848 (6) ÅCell parameters from 25 reflections
b = 7.3951 (14) Åθ = 8.3–11.6°
c = 12.834 (5) ŵ = 0.30 mm1
β = 90.95 (4)°T = 293 K
V = 744.7 (5) Å3Needle, colorless
Z = 20.5 × 0.3 × 0.2 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
1181 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.009
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ω–2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.899, Tmax = 0.942l = 1515
1528 measured reflections3 standard reflections every 60 min
1420 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.4916P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
1420 reflectionsΔρmax = 0.29 e Å3
204 parametersΔρmin = 0.29 e Å3
19 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (17)
Crystal data top
2C5H9NO2·H+.ClO4V = 744.7 (5) Å3
Mr = 330.72Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.848 (6) ŵ = 0.30 mm1
b = 7.3951 (14) ÅT = 293 K
c = 12.834 (5) Å0.5 × 0.3 × 0.2 mm
β = 90.95 (4)°
Data collection top
Enraf-Nonius sealed tube
diffractometer
1181 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.009
Tmin = 0.899, Tmax = 0.9423 standard reflections every 60 min
1528 measured reflections intensity decay: none
1420 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145Δρmax = 0.29 e Å3
S = 1.12Δρmin = 0.29 e Å3
1420 reflectionsAbsolute structure: Flack (1983)
204 parametersAbsolute structure parameter: 0.07 (17)
19 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.25414 (18)0.3333 (2)0.78695 (10)0.0558 (4)
O10.1316 (7)0.1989 (8)0.8086 (4)0.0846 (16)
O20.2853 (9)0.4403 (12)0.8744 (5)0.117 (2)
O30.1820 (12)0.4414 (14)0.7083 (5)0.155 (4)
O40.4024 (8)0.2560 (12)0.7501 (7)0.143 (3)
O1A0.3298 (5)0.4238 (5)0.4672 (3)0.0534 (11)
O1B0.2380 (5)0.5672 (5)0.3241 (3)0.0503 (10)
C110.2930 (6)0.5605 (8)0.4187 (4)0.0383 (11)
O2A0.3390 (8)0.1049 (8)0.2919 (5)0.104 (2)
O2B0.1743 (7)0.3035 (6)0.2113 (4)0.0757 (15)
H2B0.229 (10)0.402 (15)0.281 (6)0.114*
C210.2427 (7)0.1478 (8)0.2243 (4)0.0465 (13)
C120.3080 (7)0.7429 (8)0.4713 (4)0.0405 (12)
H120.38420.81990.43090.049*
C130.1430 (8)0.8433 (11)0.4895 (5)0.0701 (19)
H13A0.11120.91520.42900.084*0.76 (2)
H13B0.05140.75950.50410.084*0.76 (2)
H13C0.04920.77380.46200.084*0.24 (2)
H13D0.14420.95800.45440.084*0.24 (2)
C140.1797 (14)0.9616 (15)0.5814 (6)0.064 (4)0.76 (2)
H14A0.07540.99390.61640.077*0.76 (2)
H14B0.23761.07130.56050.077*0.76 (2)
C14'0.1192 (16)0.857 (5)0.6027 (8)0.064 (9)0.24 (2)
H14C0.04940.75780.62730.077*0.24 (2)
H14D0.06410.97000.62020.077*0.24 (2)
C150.2924 (8)0.8481 (11)0.6506 (4)0.0610 (16)
H15A0.22520.78250.70090.073*0.76 (2)
H15B0.37430.92320.68800.073*0.76 (2)
H15C0.28430.79860.71950.073*0.24 (2)
H15D0.35170.96160.65440.073*0.24 (2)
N110.3818 (5)0.7193 (6)0.5794 (3)0.0455 (11)
H11A0.36660.60480.60110.055*
H11B0.49430.74290.57960.055*
C220.1845 (8)0.0128 (8)0.1437 (5)0.0515 (15)
H220.06090.01740.13220.062*0.72 (3)
H22'0.06130.00650.15440.062*0.28 (3)
C230.2814 (18)0.0425 (14)0.0419 (7)0.069 (4)*0.72 (3)
H23A0.22930.13800.00050.083*0.72 (3)
H23B0.39980.07300.05600.083*0.72 (3)
C23'0.183 (5)0.034 (3)0.0271 (8)0.069 (10)*0.28 (3)
H23C0.24650.13990.00660.083*0.28 (3)
H23D0.06680.04460.00020.083*0.28 (3)
C240.2662 (15)0.1378 (11)0.0128 (5)0.104 (3)
H24A0.16270.14280.05500.125*0.72 (3)
H24B0.36300.15780.05740.125*0.72 (3)
H24C0.19600.17780.07120.125*0.28 (3)
H24D0.38180.12180.03690.125*0.28 (3)
C250.2621 (12)0.2753 (10)0.0714 (5)0.075 (2)
H25A0.36670.34510.07310.090*
H25B0.16680.35720.06080.090*
N210.2428 (7)0.1712 (8)0.1701 (3)0.0601 (13)
H21A0.16630.22580.21110.072*
H21B0.34320.16620.20490.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0636 (8)0.0499 (8)0.0541 (7)0.0035 (8)0.0036 (6)0.0007 (8)
O10.092 (3)0.074 (4)0.087 (3)0.017 (3)0.005 (3)0.013 (3)
O20.147 (6)0.117 (6)0.086 (4)0.019 (5)0.006 (4)0.051 (4)
O30.225 (9)0.131 (7)0.107 (5)0.042 (7)0.054 (5)0.059 (5)
O40.075 (3)0.129 (6)0.228 (8)0.010 (4)0.037 (4)0.087 (6)
O1A0.074 (3)0.034 (2)0.053 (2)0.007 (2)0.0083 (19)0.002 (2)
O1B0.077 (3)0.0305 (19)0.0426 (19)0.001 (2)0.0133 (18)0.0051 (17)
C110.037 (2)0.033 (3)0.044 (3)0.000 (2)0.004 (2)0.000 (2)
O2A0.133 (5)0.070 (4)0.106 (4)0.040 (4)0.079 (4)0.042 (3)
O2B0.119 (4)0.037 (3)0.069 (3)0.015 (3)0.033 (3)0.012 (2)
C210.052 (3)0.041 (3)0.047 (3)0.002 (3)0.009 (3)0.002 (3)
C120.047 (3)0.034 (3)0.039 (3)0.001 (2)0.010 (2)0.003 (2)
C130.067 (4)0.062 (4)0.081 (4)0.029 (4)0.024 (3)0.022 (4)
C140.068 (6)0.058 (6)0.065 (6)0.013 (5)0.003 (5)0.010 (5)
C14'0.041 (12)0.056 (19)0.095 (18)0.000 (13)0.023 (11)0.033 (16)
C150.074 (4)0.065 (4)0.045 (3)0.012 (4)0.006 (3)0.010 (4)
N110.048 (2)0.041 (3)0.048 (2)0.001 (2)0.0103 (19)0.006 (2)
C220.055 (3)0.037 (3)0.062 (4)0.004 (3)0.012 (3)0.009 (3)
C240.194 (10)0.067 (6)0.053 (4)0.013 (6)0.010 (5)0.004 (4)
C250.111 (6)0.054 (5)0.061 (4)0.014 (5)0.003 (4)0.014 (4)
N210.097 (4)0.038 (2)0.045 (2)0.003 (4)0.002 (2)0.007 (3)
Geometric parameters (Å, º) top
Cl1—O41.386 (6)C15—H15A0.97
Cl1—O21.391 (6)C15—H15B0.97
Cl1—O31.400 (7)C15—H15C0.96
Cl1—O11.414 (6)C15—H15D0.96
O1A—C111.219 (7)N11—H11A0.90
O1B—C111.283 (6)N11—H11B0.90
O1B—H2B1.34 (11)C22—N211.473 (8)
C11—C121.512 (7)C22—C23'1.504 (11)
O2A—C211.184 (7)C22—C231.539 (9)
O2B—C211.280 (8)C22—H220.98
O2B—H2B1.23 (10)C22—H22'0.98
C21—C221.503 (8)C23—C241.510 (9)
C12—C131.515 (8)C23—H23A0.97
C12—N111.504 (7)C23—H23B0.97
C12—H120.98C23'—C241.522 (11)
C13—C14'1.472 (10)C23'—H23C0.97
C13—C141.493 (8)C23'—H23D0.97
C13—H13A0.97C24—C251.484 (11)
C13—H13B0.97C24—H24A0.97
C13—H13C0.96C24—H24B0.97
C13—H13D0.96C24—H24C0.97
C14—C151.500 (8)C24—H24D0.97
C14—H14A0.97C25—N211.493 (8)
C14—H14B0.97C25—H25A0.97
C14'—C151.484 (10)C25—H25B0.97
C14'—H14C0.97N21—H21A0.90
C14'—H14D0.97N21—H21B0.90
C15—N111.502 (8)
O4—Cl1—O2111.8 (4)N11—C15—H15D110.7
O4—Cl1—O3108.7 (6)H15A—C15—H15D132.3
O2—Cl1—O3108.6 (6)H15B—C15—H15D32.7
O4—Cl1—O1110.8 (5)H15C—C15—H15D109.1
O2—Cl1—O1110.7 (4)C15—N11—C12108.1 (4)
O3—Cl1—O1106.0 (4)C15—N11—H11A110.1
C11—O1B—H2B112 (4)C12—N11—H11A110.1
O1A—C11—O1B126.0 (5)C15—N11—H11B110.1
O1A—C11—C12119.7 (4)C12—N11—H11B110.1
O1B—C11—C12114.3 (4)H11A—N11—H11B108.4
C21—O2B—H2B107 (5)N21—C22—C21111.5 (5)
O2A—C21—O2B126.7 (6)N21—C22—C23'108.8 (7)
O2A—C21—C22120.6 (6)C21—C22—C23'127.9 (13)
O2B—C21—C22112.7 (5)N21—C22—C2399.9 (6)
C13—C12—C11116.5 (5)C21—C22—C23109.9 (6)
C13—C12—N11103.4 (4)C23'—C22—C2330.4 (11)
C11—C12—N11109.6 (4)N21—C22—H22111.7
C13—C12—H12109.0C21—C22—H22111.7
C11—C12—H12109.0C23'—C22—H2281.5
N11—C12—H12109.0C23—C22—H22111.7
C14'—C13—C1437.4 (12)N21—C22—H22'103.1
C14'—C13—C12107.9 (9)C21—C22—H22'102.9
C14—C13—C12104.8 (5)C23'—C22—H22'98.7
C14'—C13—H13A135.9C23—C22—H22'128.9
C14—C13—H13A110.8H22—C22—H22'17.4
C12—C13—H13A110.8C24—C23—C22103.4 (7)
C14'—C13—H13B75.3C24—C23—H23A111.1
C14—C13—H13B110.8C22—C23—H23A111.1
C12—C13—H13B110.8C24—C23—H23B111.1
H13A—C13—H13B108.9C22—C23—H23B111.1
C14'—C13—H13C106.8H23A—C23—H23B109.0
C14—C13—H13C137.8C22—C23'—C24104.5 (9)
C12—C13—H13C109.5C22—C23'—H23C110.8
H13A—C13—H13C79.3C24—C23'—H23C110.8
H13B—C13—H13C33.1C22—C23'—H23D110.8
C14'—C13—H13D113.9C24—C23'—H23D110.8
C14—C13—H13D81.3H23C—C23'—H23D108.9
C12—C13—H13D110.2C25—C24—C23105.6 (6)
H13A—C13—H13D31.3C25—C24—C23'108.2 (8)
H13B—C13—H13D131.9C23—C24—C23'30.5 (11)
H13C—C13—H13D108.3C25—C24—H24A110.6
C13—C14—C15104.2 (6)C23—C24—H24A110.6
C13—C14—H14A110.9C23'—C24—H24A81.8
C15—C14—H14A110.9C25—C24—H24B110.6
C13—C14—H14B110.9C23—C24—H24B110.6
C15—C14—H14B110.9C23'—C24—H24B132.2
H14A—C14—H14B108.9H24A—C24—H24B108.7
C13—C14'—C15106.0 (9)C25—C24—H24C109.5
C13—C14'—H14C110.5C23—C24—H24C131.9
C15—C14'—H14C110.5C23'—C24—H24C105.8
C13—C14'—H14D110.5H24A—C24—H24C25.3
C15—C14'—H14D110.5H24B—C24—H24C86.4
H14C—C14'—H14D108.7C25—C24—H24D110.3
C14'—C15—C1437.2 (12)C23—C24—H24D88.5
C14'—C15—N11102.1 (11)C23'—C24—H24D114.6
C14—C15—N11105.7 (5)H24A—C24—H24D127.2
C14'—C15—H15A78.0H24B—C24—H24D23.8
C14—C15—H15A110.6H24C—C24—H24D108.2
N11—C15—H15A110.6C24—C25—N21105.6 (6)
C14'—C15—H15B140.8C24—C25—H25A110.6
C14—C15—H15B110.6N21—C25—H25A110.6
N11—C15—H15B110.6C24—C25—H25B110.6
H15A—C15—H15B108.7N21—C25—H25B110.6
C14'—C15—H15C108.9H25A—C25—H25B108.8
C14—C15—H15C135.4C22—N21—C25108.5 (5)
N11—C15—H15C110.9C22—N21—H21A110.0
H15A—C15—H15C32.0C25—N21—H21A110.0
H15B—C15—H15C79.4C22—N21—H21B110.0
C14'—C15—H15D115.0C25—N21—H21B110.0
C14—C15—H15D79.7H21A—N21—H21B108.4
O1A—C11—C12—C13112.9 (6)O2B—C21—C22—N21170.7 (6)
O1B—C11—C12—C1366.0 (7)O2A—C21—C22—C23'130.3 (15)
O1A—C11—C12—N113.9 (6)O2B—C21—C22—C23'51.2 (16)
O1B—C11—C12—N11177.1 (4)O2A—C21—C22—C23102.0 (9)
C11—C12—C13—C14'114.6 (15)O2B—C21—C22—C2379.5 (8)
N11—C12—C13—C14'5.6 (16)N21—C22—C23—C2440.7 (10)
C11—C12—C13—C14153.5 (7)C21—C22—C23—C24157.9 (8)
N11—C12—C13—C1433.3 (8)C23'—C22—C23—C2469.8 (11)
C14'—C13—C14—C1562.8 (11)N21—C22—C23'—C248 (3)
C12—C13—C14—C1537.6 (10)C21—C22—C23'—C24131.2 (14)
C14—C13—C14'—C1565.1 (12)C23—C22—C23'—C2469.4 (11)
C12—C13—C14'—C1526 (3)C22—C23—C24—C2531.8 (11)
C13—C14'—C15—C1465.1 (12)C22—C23—C24—C23'67.6 (10)
C13—C14'—C15—N1135 (2)C22—C23'—C24—C2518 (3)
C13—C14—C15—C14'62.5 (11)C22—C23'—C24—C2371.8 (12)
C13—C14—C15—N1126.8 (10)C23—C24—C25—N2110.0 (10)
C14'—C15—N11—C1232.0 (14)C23'—C24—C25—N2121.8 (18)
C14—C15—N11—C126.1 (8)C21—C22—N21—C25151.7 (6)
C13—C12—N11—C1516.6 (7)C23'—C22—N21—C255.5 (17)
C11—C12—N11—C15141.4 (5)C23—C22—N21—C2535.5 (8)
O2A—C21—C22—N217.8 (9)C24—C25—N21—C2216.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···O1B1.23 (10)1.34 (11)2.474 (6)149 (8)
N11—H11B···O1Ai0.902.022.795 (6)143
N11—H11B···O2Ai0.902.322.851 (7)117
N11—H11A···O1A0.902.192.645 (6)110
N11—H11A···O30.902.353.083 (9)139
N21—H21A···O1Bii0.902.182.766 (6)123
N21—H21A···O1iii0.902.413.108 (8)134
N21—H21B···O4iv0.902.153.000 (9)158
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1, z; (iii) x, y1/2, z+1; (iv) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formula2C5H9NO2·H+.ClO4
Mr330.72
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.848 (6), 7.3951 (14), 12.834 (5)
β (°) 90.95 (4)
V3)744.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.5 × 0.3 × 0.2
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.899, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
1528, 1420, 1181
Rint0.009
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.12
No. of reflections1420
No. of parameters204
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.29
Absolute structureFlack (1983)
Absolute structure parameter0.07 (17)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1A—C111.219 (7)O2A—C211.184 (7)
O1B—C111.283 (6)O2B—C211.280 (8)
O1A—C11—C12—N113.9 (6)O2A—C21—C22—N217.8 (9)
N11—C12—C13—C1433.3 (8)N21—C22—C23—C2440.7 (10)
C12—C13—C14—C1537.6 (10)C22—C23—C24—C2531.8 (11)
C13—C14—C15—N1126.8 (10)C23—C24—C25—N2110.0 (10)
C14—C15—N11—C126.1 (8)C23—C22—N21—C2535.5 (8)
C13—C12—N11—C1516.6 (7)C24—C25—N21—C2216.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···O1B1.23 (10)1.34 (11)2.474 (6)149 (8)
N11—H11B···O1Ai0.902.022.795 (6)143.3
N11—H11B···O2Ai0.902.322.851 (7)117.3
N11—H11A···O1A0.902.192.645 (6)110.4
N11—H11A···O30.902.353.083 (9)138.7
N21—H21A···O1Bii0.902.182.766 (6)122.5
N21—H21A···O1iii0.902.413.108 (8)134.2
N21—H21B···O4iv0.902.153.000 (9)157.6
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1, z; (iii) x, y1/2, z+1; (iv) x+1, y1/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds