Download citation
Download citation
link to html
The title compound, C15H14O2S, adopts an extended conformation that enables the formation of π...π and C—H...O contacts in the crystal structure, leading to the formation of columns.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680101008X/ci6036sup1.cif
Contains datablocks general, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680101008X/ci6036Isup2.hkl
Contains datablock I

CCDC reference: 170774

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.099
  • Data-to-parameter ratio = 17.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, (I) (Fig. 1), adopts an extended conformation as seen in the value of the C4—S4—C41—C42 torsion angle of -172.08 (14)°. The dihedral angle between the least-squares plane through the two aromatic rings is 72.52 (9)°. The observed molecular conformation allows for the formation of columns of molecules, running parallel to b, that are stabilized by π···π interactions occurring between the C1—C6 aromatic rings. Within the columns, the closest contact between the ring centroids of 3.508 (3) Å occurs between centrosymmetrically related molecules (symmetry code: 1 - x, 1 - y, 1 - z). This pair of molecules forms weaker π···π interactions to adjacent pairs so that the separation between the ring centroids is 3.764 (3) Å (symmetry code: 1 - x, 2 - y, 1 - z). Additional stabilization within the columns is provided by C—H···O contacts so that H41A···O11 is 2.57 Å, C41···O11 is 3.496 (4) Å and the angle at H41A is 155° (symmetry code: 1 - x, 2 - y, 1 - z). Links between the columns are afforded by C—H···π contacts involving H44 and the second aromatic ring C42—C47 at -1/2 - x, -1/2 + y, 1/2 - z with a H44···ring centroid distance of 3.10 Å and the angle at H44 of 136°.

Experimental top

The title compound was obtained by addition of the potassium salt of (4-methoxyphenyl)methane-1-thiol to 4-fluorobenzaldehyde. The product was recrystallized from ethyl acetate/hexane; m.p. 377–378 K. 1H NMR (CDCl3, 300 MHz): δ 3.80, s, 3H; 4.20, s, 2H; 6.86, d, J 8.7 Hz, 2H; 7.30, d, J 9.0 Hz, 2H; 7.37, d, J 8.4 Hz, 2H; 7.75, d, J 8.7 Hz, 2H; 9.91, s, 1H.

Refinement top

The C-bound H atoms were placed in geometrically calculated positions and included in the final refinement in the riding-model approximation with an overall displacement parameter.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
(I) top
Crystal data top
C15H14O2SF(000) = 544
Mr = 258.33Dx = 1.345 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 21 reflections
a = 7.648 (3) Åθ = 8.4–13.4°
b = 6.872 (6) ŵ = 0.24 mm1
c = 24.314 (2) ÅT = 173 K
β = 93.10 (2)°Plate, colourless
V = 1276.0 (12) Å30.40 × 0.32 × 0.03 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.064
Radiation source: Rigaku rotating anodeθmax = 27.5°, θmin = 3.1°
Graphite monochromatorh = 99
ω scansk = 08
6267 measured reflectionsl = 031
2921 independent reflections3 standard reflections every 400 reflections
1671 reflections with I > 2σ(I) intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
2921 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H14O2SV = 1276.0 (12) Å3
Mr = 258.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.648 (3) ŵ = 0.24 mm1
b = 6.872 (6) ÅT = 173 K
c = 24.314 (2) Å0.40 × 0.32 × 0.03 mm
β = 93.10 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.064
6267 measured reflections3 standard reflections every 400 reflections
2921 independent reflections intensity decay: 1.2%
1671 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.97Δρmax = 0.26 e Å3
2921 reflectionsΔρmin = 0.26 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S40.07660 (7)0.66559 (9)0.451215 (19)0.03843 (16)
O110.7886 (2)0.8163 (3)0.62435 (6)0.0542 (4)
O450.58167 (17)0.6666 (2)0.28187 (6)0.0444 (4)
C10.5984 (3)0.7729 (3)0.54431 (8)0.0331 (5)
C20.5914 (3)0.7668 (3)0.48715 (8)0.0338 (5)
H20.69570.78600.46830.0412 (16)*
C30.4367 (3)0.7335 (3)0.45742 (8)0.0330 (5)
H30.43470.72760.41840.0412 (16)*
C40.2824 (3)0.7084 (3)0.48455 (7)0.0300 (4)
C50.2877 (3)0.7141 (3)0.54238 (7)0.0336 (5)
H50.18320.69650.56120.0412 (16)*
C60.4439 (3)0.7450 (3)0.57159 (8)0.0341 (5)
H60.44710.74760.61070.0412 (16)*
C110.7660 (3)0.8110 (3)0.57467 (9)0.0427 (5)
H110.86500.83360.55360.0412 (16)*
C410.1102 (3)0.6878 (3)0.37787 (7)0.0354 (5)
H41A0.16830.81260.36990.0412 (16)*
H41B0.18350.57960.36520.0412 (16)*
C420.0711 (2)0.6798 (3)0.34977 (7)0.0332 (5)
C430.1315 (3)0.5118 (3)0.32327 (8)0.0379 (5)
H430.05600.40250.32130.0412 (16)*
C440.3018 (3)0.5014 (3)0.29952 (7)0.0374 (5)
H440.34150.38600.28130.0412 (16)*
C450.4120 (2)0.6594 (3)0.30274 (7)0.0343 (5)
C460.3519 (3)0.8297 (3)0.32859 (7)0.0385 (5)
H460.42690.93940.33030.0412 (16)*
C470.1830 (3)0.8383 (3)0.35165 (7)0.0362 (5)
H470.14280.95480.36910.0412 (16)*
C480.6549 (3)0.4943 (4)0.25854 (9)0.0478 (6)
H48A0.77630.51900.24540.0412 (16)*
H48B0.65250.39140.28650.0412 (16)*
H48C0.58670.45310.22760.0412 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S40.0334 (2)0.0539 (4)0.0283 (2)0.0054 (3)0.00475 (18)0.0024 (3)
O110.0606 (10)0.0511 (11)0.0489 (9)0.0040 (9)0.0144 (8)0.0030 (8)
O450.0394 (8)0.0484 (10)0.0446 (8)0.0017 (8)0.0035 (6)0.0051 (8)
C10.0372 (11)0.0227 (11)0.0392 (10)0.0004 (9)0.0005 (9)0.0020 (9)
C20.0340 (11)0.0274 (11)0.0408 (11)0.0042 (9)0.0078 (9)0.0015 (9)
C30.0396 (11)0.0302 (11)0.0297 (9)0.0043 (9)0.0075 (8)0.0014 (9)
C40.0352 (10)0.0250 (11)0.0297 (9)0.0015 (9)0.0026 (8)0.0007 (8)
C50.0369 (11)0.0328 (12)0.0319 (10)0.0006 (9)0.0079 (8)0.0007 (9)
C60.0451 (12)0.0279 (11)0.0293 (10)0.0010 (10)0.0030 (9)0.0022 (9)
C110.0427 (11)0.0315 (12)0.0534 (13)0.0002 (11)0.0033 (10)0.0033 (11)
C410.0386 (10)0.0409 (12)0.0273 (9)0.0038 (10)0.0067 (8)0.0006 (9)
C420.0388 (10)0.0388 (12)0.0225 (8)0.0036 (11)0.0060 (7)0.0032 (9)
C430.0424 (11)0.0382 (13)0.0338 (10)0.0009 (10)0.0068 (9)0.0034 (9)
C440.0455 (12)0.0368 (12)0.0303 (10)0.0040 (11)0.0056 (9)0.0079 (10)
C450.0372 (10)0.0418 (12)0.0242 (8)0.0034 (11)0.0047 (8)0.0006 (10)
C460.0475 (12)0.0357 (12)0.0329 (10)0.0023 (12)0.0058 (9)0.0007 (10)
C470.0469 (11)0.0333 (12)0.0285 (9)0.0047 (11)0.0012 (8)0.0011 (10)
C480.0415 (12)0.0592 (17)0.0423 (12)0.0025 (12)0.0012 (10)0.0083 (12)
Geometric parameters (Å, º) top
S4—C41.756 (2)C4—C51.405 (2)
S4—C411.8218 (18)C5—C61.373 (3)
O11—C111.212 (2)C41—C421.513 (3)
O45—C451.369 (2)C42—C471.387 (3)
O45—C481.416 (3)C42—C431.389 (3)
C1—C21.389 (3)C43—C441.398 (3)
C1—C61.400 (3)C44—C451.379 (3)
C1—C111.467 (3)C45—C461.394 (3)
C2—C31.372 (3)C46—C471.381 (3)
C3—C41.393 (3)
C4—S4—C41105.51 (9)O11—C11—C1125.5 (2)
C45—O45—C48117.70 (17)C42—C41—S4105.33 (12)
C2—C1—C6118.84 (18)C47—C42—C43118.54 (19)
C2—C1—C11119.6 (2)C47—C42—C41120.57 (19)
C6—C1—C11121.53 (18)C43—C42—C41120.85 (19)
C1—C2—C3121.18 (19)C42—C43—C44120.9 (2)
C2—C3—C4119.97 (17)C45—C44—C43119.6 (2)
C3—C4—C5119.43 (18)O45—C45—C44125.3 (2)
C3—C4—S4124.28 (15)O45—C45—C46114.80 (19)
C5—C4—S4116.29 (15)C44—C45—C46119.93 (19)
C6—C5—C4119.93 (18)C47—C46—C45119.8 (2)
C5—C6—C1120.64 (17)C46—C47—C42121.2 (2)

Experimental details

Crystal data
Chemical formulaC15H14O2S
Mr258.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.648 (3), 6.872 (6), 24.314 (2)
β (°) 93.10 (2)
V3)1276.0 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.32 × 0.03
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6267, 2921, 1671
Rint0.064
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 0.97
No. of reflections2921
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1997), SIR97 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds