Download citation
Download citation
link to html
In the title compound, 2C8H10NO2+·SO42−·H2O, the cations exist as two crystallographically independent mol­ecules in the asymmetric unit. In the crystal, these mol­ecules are linked by the sulfate ion through strong O—H...O hydrogen bonds; the phenyl­glycinium cations, sulfate anion and water mol­ecule are held together by N—H...O and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011941/ci6028sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011941/ci6028Isup2.hkl
Contains datablock I

CCDC reference: 170917

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.043
  • wR factor = 0.133
  • Data-to-parameter ratio = 7.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 1877 Count of symmetry unique reflns 1890 Completeness (_total/calc) 99.31% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

D-Phenylglycine is an important starting material in the production of semisynthetic penicillins and cephalosporins and its derivatives are used in the synthesis of antitumor drugs and other pharmacological applications (Satyam et al., 1996; Jayasinghe et al., 1994). The crystal structure of D-phenylglycine hydrochloride (Ravichandran et al., 1998) has been reported. In the present study, the phenylglycine with sulfuric acid was undertaken.

The asymmetric unit of the title compound, (I), consists of two crystallographically independent protonated phenylglycinium cations, a sulfate anion and a water molecule. In the phenylglycinium molecules, the O1—C11—C12—N11 and O3—C21—C22—N21 torsion angle of 25.0 (5) and 30.7 (5)°, respectively, show that the orientation of the carboxyl group is influenced by the phenyl substitution at the Cα atoms. In α-glycine (Marsh, 1958) and diglycine hydrochloride (Natarajan et al., 1992), the O1—C11—C12—N11 values are 19.1 and 0.3°, and 16.5°, respectively. The aggregation of hydrophillic zone is along (101) and the hydrophobic zone is along (202).

All the O atoms of the sulfate ion are involved in hydrogen bonding. One of the O atoms (O1D), as acceptor, links two crystallographically independent phenylglycinium molecules through strong hydrogen bonds [2.610 (5) and 2.578 (4) Å], resulting in an increased S1—O1D bond distance [1.505 (3) Å]. A bifurcated hydrogen bond is observed in a amino N atom and water molecule with sulfate O atoms (Jeffrey & Saenger, 1991). A zigzag (Z1) head-to-tail sequence is observed, since N11—H11B···O1(-x + 2, y + 1/2, -z) and N21—H21A···O3(-x + 1, y - 1/2, -z + 1) connects two 21-related amino acids (Vijayan, 1988).

Experimental top

The title compound was crystallized by the slow evaporation of an aqueous solution of D-phenylglycine and sulfuric acid in a stoichiometric ratio of 2:1. Colourless needle-shaped transparent crystals were obtained.

Refinement top

The H atoms of the water molecule were located from difference Fourier maps and refined, while all the other H atoms were fixed by geometric constraints using HFIX. 91 Friedel pairs were used to determine the Flack parameter.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
[Figure 2] Fig. 2. Packing diagram of the molecules viewed down the b axis.
Bis(D-phenylglycinium) sulfate monohydrate top
Crystal data top
2C8H10NO2+·SO42·H2OF(000) = 440
Mr = 418.42Dx = 1.427 Mg m3
Dm = 1.429 Mg m3
Dm measured by flotation
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
a = 12.3201 (12) ÅCell parameters from 25 reflections
b = 5.9377 (15) Åθ = 8.3–13.6°
c = 14.2908 (16) ŵ = 0.22 mm1
β = 111.369 (10)°T = 293 K
V = 973.5 (3) Å3Needles, colorless
Z = 20.25 × 0.20 × 0.15 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
1778 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
ω–2θ scansh = 1413
Absorption correction: ψ scan
(North et.al.,1968)
k = 07
Tmin = 0.949, Tmax = 0.968l = 016
1968 measured reflections3 standard reflections every 60 min
1877 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.1005P)2 + 0.3547P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1877 reflectionsΔρmax = 0.40 e Å3
263 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 91 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (14)
Crystal data top
2C8H10NO2+·SO42·H2OV = 973.5 (3) Å3
Mr = 418.42Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.3201 (12) ŵ = 0.22 mm1
b = 5.9377 (15) ÅT = 293 K
c = 14.2908 (16) Å0.25 × 0.20 × 0.15 mm
β = 111.369 (10)°
Data collection top
Enraf-Nonius sealed tube
diffractometer
1778 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et.al.,1968)
Rint = 0.044
Tmin = 0.949, Tmax = 0.9683 standard reflections every 60 min
1968 measured reflections intensity decay: none
1877 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133Δρmax = 0.40 e Å3
S = 1.07Δρmin = 0.38 e Å3
1877 reflectionsAbsolute structure: Flack (1983), 91 Friedel pairs
263 parametersAbsolute structure parameter: 0.05 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81961 (7)0.97758 (17)0.74803 (6)0.0317 (3)
O1A0.7916 (3)0.8243 (8)0.6634 (2)0.0597 (10)
O1B0.8547 (3)1.1969 (6)0.7224 (3)0.0544 (9)
O1C0.9136 (2)0.8889 (6)0.8370 (2)0.0426 (7)
O1D0.7121 (2)1.0069 (5)0.77330 (19)0.0384 (7)
O10.8619 (3)0.2951 (6)0.0271 (2)0.0485 (8)
O20.6907 (2)0.3879 (7)0.1440 (2)0.0506 (8)
H20.69680.26340.16650.076*
C110.7837 (3)0.4299 (8)0.0651 (3)0.0373 (10)
C120.7852 (3)0.6639 (8)0.0240 (3)0.0352 (9)
H120.75300.76810.08060.042*
N110.9091 (3)0.7255 (7)0.0319 (3)0.0414 (8)
H11A0.91270.86340.05730.062*
H11B0.94810.72220.00970.062*
H11C0.94080.62770.08160.062*
C130.7140 (3)0.6849 (8)0.0432 (3)0.0351 (9)
C140.6449 (4)0.8740 (9)0.0342 (4)0.0524 (11)
H140.64130.98420.01310.063*
C150.5812 (4)0.8982 (12)0.0960 (5)0.0706 (17)
H150.53381.02370.08930.085*
C160.5878 (4)0.7371 (13)0.1672 (4)0.0649 (17)
H160.54600.75510.20940.078*
C170.6557 (4)0.5509 (13)0.1756 (4)0.0649 (16)
H170.65920.44120.22310.078*
C180.7193 (4)0.5241 (10)0.1142 (3)0.0510 (13)
H180.76580.39720.12080.061*
OW10.0318 (3)0.5103 (7)0.8120 (3)0.0501 (8)
HW10.030 (6)0.419 (14)0.773 (5)0.08 (2)*
HW20.005 (6)0.612 (17)0.829 (5)0.09 (3)*
O30.5245 (3)0.6447 (6)0.4267 (2)0.0465 (8)
O40.4780 (2)0.3180 (7)0.3419 (2)0.0491 (8)
H40.41950.38580.30640.074*
C210.5420 (3)0.4508 (8)0.4145 (3)0.0347 (9)
C220.6484 (3)0.3243 (7)0.4858 (2)0.0296 (8)
H220.62660.16650.48870.036*
N210.6792 (2)0.4244 (6)0.5883 (2)0.0345 (8)
H21A0.61800.41590.60710.052*
H21B0.69930.56800.58690.052*
H21C0.73870.34880.63170.052*
C230.7482 (3)0.3319 (8)0.4479 (3)0.0331 (8)
C240.7621 (4)0.1522 (9)0.3928 (3)0.0461 (10)
H240.71360.02760.38340.055*
C250.8476 (4)0.1540 (11)0.3512 (4)0.0580 (13)
H250.85720.03100.31470.070*
C260.9190 (4)0.3433 (12)0.3648 (3)0.0563 (14)
H260.97580.34770.33620.068*
C270.9058 (4)0.5224 (11)0.4201 (3)0.0548 (14)
H270.95460.64670.42990.066*
C280.8195 (3)0.5195 (9)0.4617 (3)0.0439 (11)
H280.80990.64220.49840.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0309 (4)0.0326 (5)0.0258 (4)0.0008 (4)0.0034 (3)0.0018 (4)
O1A0.0614 (19)0.072 (2)0.0495 (18)0.014 (2)0.0249 (16)0.026 (2)
O1B0.0408 (15)0.050 (2)0.0562 (18)0.0052 (15)0.0017 (14)0.0155 (17)
O1C0.0360 (13)0.0475 (17)0.0379 (14)0.0128 (14)0.0058 (11)0.0084 (14)
O1D0.0274 (12)0.0449 (18)0.0343 (12)0.0043 (13)0.0010 (10)0.0141 (14)
O10.0356 (14)0.052 (2)0.0464 (16)0.0065 (14)0.0012 (12)0.0110 (15)
O20.0347 (14)0.057 (2)0.0454 (16)0.0087 (15)0.0024 (12)0.0173 (16)
C110.0282 (17)0.054 (3)0.0301 (17)0.0003 (18)0.0110 (14)0.0067 (18)
C120.0310 (18)0.043 (2)0.0291 (17)0.0008 (18)0.0086 (14)0.0014 (18)
N110.0346 (17)0.044 (2)0.0471 (18)0.0116 (16)0.0167 (14)0.0114 (18)
C130.0288 (17)0.041 (2)0.0327 (17)0.0006 (17)0.0082 (14)0.0034 (17)
C140.048 (2)0.043 (3)0.068 (3)0.013 (2)0.024 (2)0.007 (3)
C150.048 (3)0.074 (4)0.095 (4)0.023 (3)0.032 (3)0.006 (4)
C160.044 (2)0.103 (5)0.053 (3)0.009 (3)0.024 (2)0.009 (3)
C170.062 (3)0.090 (5)0.049 (2)0.018 (3)0.028 (2)0.017 (3)
C180.051 (2)0.059 (4)0.047 (2)0.017 (2)0.024 (2)0.009 (2)
OW10.0441 (16)0.052 (2)0.0509 (17)0.0055 (17)0.0132 (14)0.0097 (17)
O30.0408 (15)0.0454 (19)0.0465 (16)0.0071 (15)0.0077 (12)0.0034 (15)
O40.0352 (14)0.056 (2)0.0389 (15)0.0081 (15)0.0067 (12)0.0056 (15)
C210.0265 (16)0.047 (3)0.0301 (17)0.0017 (18)0.0100 (14)0.0019 (18)
C220.0255 (15)0.0303 (19)0.0283 (16)0.0032 (15)0.0042 (13)0.0027 (15)
N210.0310 (14)0.040 (2)0.0289 (14)0.0008 (13)0.0071 (12)0.0003 (13)
C230.0268 (16)0.040 (2)0.0265 (16)0.0061 (16)0.0025 (13)0.0036 (16)
C240.047 (2)0.042 (2)0.049 (2)0.002 (2)0.0172 (19)0.004 (2)
C250.058 (3)0.064 (3)0.060 (3)0.015 (3)0.031 (2)0.009 (3)
C260.040 (2)0.088 (4)0.045 (2)0.010 (3)0.0211 (19)0.000 (3)
C270.037 (2)0.074 (4)0.052 (2)0.012 (2)0.0149 (19)0.001 (3)
C280.041 (2)0.050 (3)0.041 (2)0.003 (2)0.0144 (17)0.004 (2)
Geometric parameters (Å, º) top
S1—O1A1.451 (4)C18—H180.9300
S1—O1B1.460 (4)OW1—HW10.94 (8)
S1—O1C1.470 (3)OW1—HW20.84 (9)
S1—O1D1.505 (3)O3—C211.196 (6)
O1—C111.218 (5)O4—C211.312 (5)
O2—C111.305 (5)O4—H40.8200
O2—H20.8200C21—C221.533 (5)
C11—C121.506 (6)C22—N211.495 (5)
C12—N111.488 (5)C22—C231.514 (5)
C12—C131.523 (5)C22—H220.9800
C12—H120.9800N21—H21A0.8900
N11—H11A0.8900N21—H21B0.8900
N11—H11B0.8900N21—H21C0.8900
N11—H11C0.8900C23—C241.374 (6)
C13—C181.376 (7)C23—C281.388 (6)
C13—C141.387 (7)C24—C251.385 (6)
C14—C151.386 (7)C24—H240.9300
C14—H140.9300C25—C261.396 (9)
C15—C161.377 (9)C25—H250.9300
C15—H150.9300C26—C271.369 (8)
C16—C171.366 (9)C26—H260.9300
C16—H160.9300C27—C281.394 (6)
C17—C181.383 (6)C27—H270.9300
C17—H170.9300C28—H280.9300
O1A—S1—O1B110.6 (2)C13—C18—H18119.9
O1A—S1—O1C111.6 (2)C17—C18—H18119.9
O1B—S1—O1C108.95 (19)HW1—OW1—HW2100 (6)
O1A—S1—O1D108.06 (17)C21—O4—H4109.5
O1B—S1—O1D108.89 (19)O3—C21—O4127.3 (4)
O1C—S1—O1D108.60 (16)O3—C21—C22122.0 (4)
C11—O2—H2109.5O4—C21—C22110.7 (4)
O1—C11—O2124.2 (4)N21—C22—C23112.9 (3)
O1—C11—C12122.4 (3)N21—C22—C21107.9 (3)
O2—C11—C12113.3 (4)C23—C22—C21110.9 (3)
N11—C12—C11107.5 (3)N21—C22—H22108.3
N11—C12—C13110.8 (3)C23—C22—H22108.3
C11—C12—C13113.2 (3)C21—C22—H22108.3
N11—C12—H12108.4C22—N21—H21A109.5
C11—C12—H12108.4C22—N21—H21B109.5
C13—C12—H12108.4H21A—N21—H21B109.5
C12—N11—H11A109.5C22—N21—H21C109.5
C12—N11—H11B109.5H21A—N21—H21C109.5
H11A—N11—H11B109.5H21B—N21—H21C109.5
C12—N11—H11C109.5C24—C23—C28120.0 (4)
H11A—N11—H11C109.5C24—C23—C22118.0 (4)
H11B—N11—H11C109.5C28—C23—C22121.9 (4)
C18—C13—C14119.5 (4)C23—C24—C25120.9 (5)
C18—C13—C12121.6 (4)C23—C24—H24119.6
C14—C13—C12118.9 (4)C25—C24—H24119.6
C15—C14—C13119.7 (5)C24—C25—C26119.0 (5)
C15—C14—H14120.1C24—C25—H25120.5
C13—C14—H14120.1C26—C25—H25120.5
C16—C15—C14120.3 (5)C27—C26—C25120.3 (4)
C16—C15—H15119.9C27—C26—H26119.9
C14—C15—H15119.9C25—C26—H26119.9
C17—C16—C15119.8 (4)C26—C27—C28120.4 (5)
C17—C16—H16120.1C26—C27—H27119.8
C15—C16—H16120.1C28—C27—H27119.8
C16—C17—C18120.5 (5)C23—C28—C27119.4 (4)
C16—C17—H17119.7C23—C28—H28120.3
C18—C17—H17119.7C27—C28—H28120.3
C13—C18—C17120.1 (5)
O1—C11—C12—N1125.0 (5)O3—C21—C22—N2130.7 (5)
O2—C11—C12—N11155.6 (3)O4—C21—C22—N21149.7 (3)
O1—C11—C12—C1397.7 (5)O3—C21—C22—C2393.4 (4)
O2—C11—C12—C1381.8 (4)O4—C21—C22—C2386.1 (4)
N11—C12—C13—C1877.3 (5)N21—C22—C23—C24142.7 (4)
C11—C12—C13—C1843.6 (5)C21—C22—C23—C2496.1 (4)
N11—C12—C13—C14100.9 (5)N21—C22—C23—C2841.6 (5)
C11—C12—C13—C14138.3 (4)C21—C22—C23—C2879.6 (4)
C18—C13—C14—C150.6 (7)C28—C23—C24—C250.6 (7)
C12—C13—C14—C15178.8 (5)C22—C23—C24—C25176.3 (4)
C13—C14—C15—C161.0 (9)C23—C24—C25—C260.8 (7)
C14—C15—C16—C171.2 (9)C24—C25—C26—C271.1 (8)
C15—C16—C17—C180.9 (9)C25—C26—C27—C281.2 (8)
C14—C13—C18—C170.3 (7)C24—C23—C28—C270.6 (6)
C12—C13—C18—C17178.4 (5)C22—C23—C28—C27176.2 (4)
C16—C17—C18—C130.5 (8)C26—C27—C28—C231.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1Di0.821.792.610 (5)174
O4—H4···O1Dii0.821.762.578 (4)175
N11—H11A···OW1iii0.891.952.680 (6)139
N11—H11B···O1iv0.892.252.877 (6)128
N11—H11B···O1Cv0.892.302.969 (5)132
N11—H11C···O1Cvi0.892.253.049 (5)149
N21—H21A···O3ii0.892.302.951 (5)130
N21—H21B···O1A0.891.972.761 (5)147
N21—H21C···O1Bvii0.891.782.674 (5)178
OW1—HW2···O1Cviii0.84 (9)1.95 (9)2.771 (5)164 (7)
OW1—HW1···O1Bix0.94 (7)1.88 (8)2.798 (6)167 (7)
Symmetry codes: (i) x, y1, z1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x+2, y+1/2, z; (v) x, y, z1; (vi) x+2, y1/2, z+1; (vii) x, y1, z; (viii) x1, y, z; (ix) x1, y1, z.

Experimental details

Crystal data
Chemical formula2C8H10NO2+·SO42·H2O
Mr418.42
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)12.3201 (12), 5.9377 (15), 14.2908 (16)
β (°) 111.369 (10)
V3)973.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et.al.,1968)
Tmin, Tmax0.949, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
1968, 1877, 1778
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.133, 1.07
No. of reflections1877
No. of parameters263
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.38
Absolute structureFlack (1983), 91 Friedel pairs
Absolute structure parameter0.05 (14)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
S1—O1A1.451 (4)O1—C111.218 (5)
S1—O1B1.460 (4)O2—C111.305 (5)
S1—O1C1.470 (3)O3—C211.196 (6)
S1—O1D1.505 (3)O4—C211.312 (5)
O1—C11—C12—N1125.0 (5)O3—C21—C22—N2130.7 (5)
N11—C12—C13—C1877.3 (5)N21—C22—C23—C2841.6 (5)
C11—C12—C13—C1843.6 (5)C21—C22—C23—C2879.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1Di0.821.792.610 (5)174
O4—H4···O1Dii0.821.762.578 (4)175
N11—H11A···OW1iii0.891.952.680 (6)139
N11—H11B···O1iv0.892.252.877 (6)128
N11—H11B···O1Cv0.892.302.969 (5)132
N11—H11C···O1Cvi0.892.253.049 (5)149
N21—H21A···O3ii0.892.302.951 (5)130
N21—H21B···O1A0.891.972.761 (5)147
N21—H21C···O1Bvii0.891.782.674 (5)178
OW1—HW2···O1Cviii0.84 (9)1.95 (9)2.771 (5)164 (7)
OW1—HW1···O1Bix0.94 (7)1.88 (8)2.798 (6)167 (7)
Symmetry codes: (i) x, y1, z1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x+2, y+1/2, z; (v) x, y, z1; (vi) x+2, y1/2, z+1; (vii) x, y1, z; (viii) x1, y, z; (ix) x1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds