organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{3-[(2-Chloro-1,3-thia­zol-4-yl)meth­yl]-1,3-thia­zolidin-2-yl­­idene­amino}­formo­nitrile

aVocational–Technical Institute, Xiangtan University, Xiangtan 411100, People's Republic of China
*Correspondence e-mail: liyingqi01@163.com

(Received 26 August 2010; accepted 3 September 2010; online 11 September 2010)

In the title compound, C8H7ClN4S2, the dihedral angle between the thia­zolidine ring (r.m.s. deviation = 0.028 Å) and the thia­zole ring (r.m.s. deviation = 0.004 Å) is 74.74 (6)°. The formonitrile group is almost coplanar with the attached ring [C—N—C—N torsion angle = 167 (2)°.

Related literature

For the biological activity of compounds containing a thia­zole ring, see: Ehrenfreund et al. (2003[Ehrenfreund, J., Tobler, H. & Walter, H. (2003). WO Patent No. 2003074491.]); Kim et al. (2002[Kim, K. S., Kimball, S. D., Misra, R. N. & Ranlins, B. D. (2002). J. Med. Chem. 45, 3905-3927.]); Maienfisch & Gsell (1998[Maienfisch, P. & Gsell, L. (1998). WO Patent No. 9806710.]); Shiga et al. (2003[Shiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310-312.]); Smith & Hunter (2001[Smith, F. D. & Hunter, R. (2001). Eur. Patent No. 1112688.]); Tanaka et al. (2005[Tanaka, A., Tamura, T. & Haramura, M. (2005). WO Patent No. 2005054216.]). For the bioactivity of 1,3-thia­zolidine derivatives, see: Albrecht et al. (2005[Albrecht, U., Gördes, D., Schmidt, E., Thurow, K., Lalk, M. & Langer, P. (2005). Bioorg. Med. Chem. 13, 4402-4407.]); Liu & Li (2000[Liu, H. L. & Li, Z. C. (2000). Molecules, 5, 1055-1061.]); Ueda et al. (2004[Ueda, S., Terauchi, H., Yano, A., Matsumoto, M., Kubo, T., Kyoya, Y., Suzuki, K., Ido, M. & Kawasaki, M. (2004). Bioorg. Med. Chem. 12, 4101-4116.]); Yeh & Chen (2002[Yeh, C. L. & Chen, C. H. (2002). US Patent No. 6465492.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClN4S2

  • Mr = 258.75

  • Monoclinic, P 21 /n

  • a = 6.1731 (9) Å

  • b = 16.807 (2) Å

  • c = 10.9057 (14) Å

  • β = 105.846 (2)°

  • V = 1088.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 294 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.860, Tmax = 0.884

  • 6141 measured reflections

  • 2220 independent reflections

  • 1862 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.05

  • 2220 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, compounds containing thiazole ring have been reported to possess various biological activities such as fungicidal, insecticidal, and anticancer activities (Maienfisch & Gsell, 1998; Smith et al., 2001; Kim et al., 2002; Ehrenfreund et al., 2003; Shiga et al., 2003; Tanaka et al., 2005). In addition, 1,3-thiazolidine ring is an important heterocycle scaffold among thiazole compounds. In the past few years lots of 1,3-thiazolidine derivatives have attracted intense attention in medicinal research due to their broad spectrum bioactivities (Liu et al., 2000; Yeh et al., 2002; Ueda et al., 2004;Albrecht et al., 2005). In order to discover more biologically active thiazole compounds, we synthesized thiazole compounds containing 1,3-thiazolidine ring and we report here the crystal structure of the title compound.

The molecule of the title compound (Fig.1) contains two planar rings, the substituted 1,3-thiazolidine ring (S1/C1/C2/N1/C3, r.m.s. deviation 0.028 Å) and the thiazole ring (S2/C8/N4/C6/C7, r.m.s. deviation 0.004 Å). The dihedral angle between the planes of 1,3-thiazolidine ring and thiazole ring is 74.74 (6)°.

Related literature top

For the biological activity of compounds containing a thiazole ring, see: Ehrenfreund et al. (2003); Kim et al. (2002); Maienfisch & Gsell (1998); Shiga et al. (2003); Smith & Hunter (2001); Tanaka et al. (2005). For the bioactivity of 1,3-thiazolidine derivatives, see: Albrecht et al. (2005); Liu & Li (2000); Ueda et al. (2004); Yeh & Chen (2002).

Experimental top

To a stirred solution of 2-cyanoimino-1,3-thiazolidine (1.27 g, 0.01 mol), potassium carbonate (1.66 g,0.012 mol) in 20 ml of acetonitrile was added dropwise a solution of 2-chloro-4-(chloromethyl)thiazole (1.68 g, 0.01 mol) in 15 ml of acetonitrile. The reaction mixture was heated to 333 K for 12 h and then filtered. The solvent was removed to give a solid product, which was recrystallized from ethyl acetate to afford colourless crystals.

Refinement top

All H atoms were placed in calculated positions, with C–H = 0.93 and 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
{3-[(2-Chloro-1,3-thiazol-4-yl)methyl]-1,3-thiazolidin-2- ylideneamino}formonitrile top
Crystal data top
C8H7ClN4S2F(000) = 528
Mr = 258.75Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3431 reflections
a = 6.1731 (9) Åθ = 2.4–26.2°
b = 16.807 (2) ŵ = 0.70 mm1
c = 10.9057 (14) ÅT = 294 K
β = 105.846 (2)°Monoclinic, colourless
V = 1088.5 (3) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2220 independent reflections
Radiation source: fine-focus sealed tube1862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.860, Tmax = 0.884k = 1521
6141 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.3256P]
where P = (Fo2 + 2Fc2)/3
2220 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C8H7ClN4S2V = 1088.5 (3) Å3
Mr = 258.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1731 (9) ŵ = 0.70 mm1
b = 16.807 (2) ÅT = 294 K
c = 10.9057 (14) Å0.22 × 0.20 × 0.18 mm
β = 105.846 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2220 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1862 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.884Rint = 0.021
6141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
2220 reflectionsΔρmin = 0.34 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27073 (11)0.02267 (4)0.65605 (6)0.0705 (2)
S10.70384 (10)0.09234 (4)1.21031 (5)0.0588 (2)
S20.07788 (10)0.10824 (3)0.56567 (5)0.05097 (18)
N10.4957 (3)0.15672 (9)0.99768 (14)0.0389 (4)
N20.3327 (3)0.18765 (11)1.15862 (15)0.0466 (4)
N30.3408 (4)0.18457 (14)1.38596 (19)0.0669 (6)
N40.0452 (3)0.11665 (10)0.79535 (15)0.0410 (4)
C10.8149 (4)0.07222 (18)1.0769 (2)0.0660 (7)
H1A0.97240.08731.09750.079*
H1B0.80340.01591.05710.079*
C20.6843 (4)0.11841 (17)0.9667 (2)0.0631 (7)
H2A0.78010.15830.94400.076*
H2B0.62960.08340.89420.076*
C30.4872 (3)0.15132 (11)1.11773 (17)0.0370 (4)
C40.3448 (4)0.18300 (13)1.2819 (2)0.0478 (5)
C50.3492 (3)0.20877 (12)0.90364 (17)0.0426 (4)
H5A0.43940.24990.87900.051*
H5B0.24280.23460.94170.051*
C60.2233 (3)0.16430 (11)0.78796 (17)0.0378 (4)
C70.2661 (4)0.16624 (12)0.67255 (17)0.0451 (5)
H70.38180.19510.65410.054*
C80.0433 (3)0.08538 (11)0.68491 (19)0.0428 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0659 (4)0.0730 (4)0.0743 (4)0.0187 (3)0.0221 (3)0.0253 (3)
S10.0642 (4)0.0707 (4)0.0407 (3)0.0175 (3)0.0133 (3)0.0086 (3)
S20.0674 (4)0.0577 (3)0.0290 (3)0.0066 (3)0.0152 (2)0.0030 (2)
N10.0391 (8)0.0492 (9)0.0307 (8)0.0022 (7)0.0131 (6)0.0022 (7)
N20.0483 (9)0.0586 (10)0.0382 (9)0.0007 (8)0.0208 (7)0.0049 (7)
N30.0869 (15)0.0758 (14)0.0499 (11)0.0106 (11)0.0390 (11)0.0082 (10)
N40.0470 (9)0.0462 (9)0.0335 (8)0.0025 (7)0.0174 (7)0.0024 (7)
C10.0546 (13)0.0878 (18)0.0591 (14)0.0197 (13)0.0218 (11)0.0030 (13)
C20.0664 (15)0.0811 (17)0.0517 (13)0.0266 (13)0.0328 (12)0.0063 (12)
C30.0369 (9)0.0420 (10)0.0328 (9)0.0068 (8)0.0108 (7)0.0030 (7)
C40.0526 (12)0.0519 (12)0.0465 (12)0.0061 (9)0.0264 (9)0.0056 (9)
C50.0517 (11)0.0417 (10)0.0356 (9)0.0012 (8)0.0140 (8)0.0005 (8)
C60.0448 (10)0.0398 (10)0.0310 (9)0.0074 (8)0.0141 (7)0.0027 (7)
C70.0549 (12)0.0498 (11)0.0345 (10)0.0026 (9)0.0191 (9)0.0019 (8)
C80.0470 (10)0.0435 (10)0.0397 (10)0.0051 (8)0.0149 (8)0.0041 (8)
Geometric parameters (Å, º) top
Cl1—C81.715 (2)N4—C61.380 (2)
S1—C31.7471 (19)C1—C21.472 (3)
S1—C11.801 (2)C1—H1A0.97
S2—C71.709 (2)C1—H1B0.97
S2—C81.711 (2)C2—H2A0.97
N1—C31.328 (2)C2—H2B0.97
N1—C21.448 (3)C5—C61.490 (3)
N1—C51.459 (2)C5—H5A0.97
N2—C31.309 (2)C5—H5B0.97
N2—C41.328 (3)C6—C71.355 (3)
N3—C41.142 (3)C7—H70.93
N4—C81.291 (2)
C3—S1—C192.29 (10)N2—C3—N1122.18 (17)
C7—S2—C888.08 (10)N2—C3—S1125.57 (14)
C3—N1—C2116.74 (17)N1—C3—S1112.25 (14)
C3—N1—C5123.40 (16)N3—C4—N2173.6 (3)
C2—N1—C5119.09 (15)N1—C5—C6111.98 (15)
C3—N2—C4118.19 (18)N1—C5—H5A109.2
C8—N4—C6108.81 (16)C6—C5—H5A109.2
C2—C1—S1108.40 (16)N1—C5—H5B109.2
C2—C1—H1A110.0C6—C5—H5B109.2
S1—C1—H1A110.0H5A—C5—H5B107.9
C2—C1—H1B110.0C7—C6—N4115.37 (17)
S1—C1—H1B110.0C7—C6—C5125.85 (19)
H1A—C1—H1B108.4N4—C6—C5118.78 (16)
N1—C2—C1109.89 (18)C6—C7—S2110.57 (16)
N1—C2—H2A109.7C6—C7—H7124.7
C1—C2—H2A109.7S2—C7—H7124.7
N1—C2—H2B109.7N4—C8—S2117.15 (16)
C1—C2—H2B109.7N4—C8—Cl1122.55 (16)
H2A—C2—H2B108.2S2—C8—Cl1120.29 (12)
C3—S1—C1—C24.2 (2)C3—N1—C5—C6124.90 (19)
C3—N1—C2—C16.9 (3)C2—N1—C5—C665.5 (2)
C5—N1—C2—C1177.2 (2)C8—N4—C6—C71.2 (2)
S1—C1—C2—N16.7 (3)C8—N4—C6—C5178.42 (17)
C4—N2—C3—N1175.95 (18)N1—C5—C6—C7106.0 (2)
C4—N2—C3—S13.3 (3)N1—C5—C6—N474.4 (2)
C2—N1—C3—N2175.7 (2)N4—C6—C7—S20.9 (2)
C5—N1—C3—N25.9 (3)C5—C6—C7—S2178.68 (15)
C2—N1—C3—S13.7 (2)C8—S2—C7—C60.28 (16)
C5—N1—C3—S1173.46 (14)C6—N4—C8—S21.0 (2)
C1—S1—C3—N2179.83 (19)C6—N4—C8—Cl1179.65 (14)
C1—S1—C3—N10.49 (17)C7—S2—C8—N40.42 (17)
C3—N2—C4—N3167 (2)C7—S2—C8—Cl1179.83 (14)

Experimental details

Crystal data
Chemical formulaC8H7ClN4S2
Mr258.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)6.1731 (9), 16.807 (2), 10.9057 (14)
β (°) 105.846 (2)
V3)1088.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.860, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
6141, 2220, 1862
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.05
No. of reflections2220
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationAlbrecht, U., Gördes, D., Schmidt, E., Thurow, K., Lalk, M. & Langer, P. (2005). Bioorg. Med. Chem. 13, 4402–4407.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEhrenfreund, J., Tobler, H. & Walter, H. (2003). WO Patent No. 2003074491.  Google Scholar
First citationKim, K. S., Kimball, S. D., Misra, R. N. & Ranlins, B. D. (2002). J. Med. Chem. 45, 3905–3927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, H. L. & Li, Z. C. (2000). Molecules, 5, 1055–1061.  Web of Science CrossRef CAS Google Scholar
First citationMaienfisch, P. & Gsell, L. (1998). WO Patent No. 9806710.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310–312.  Web of Science CrossRef CAS Google Scholar
First citationSmith, F. D. & Hunter, R. (2001). Eur. Patent No. 1112688.  Google Scholar
First citationTanaka, A., Tamura, T. & Haramura, M. (2005). WO Patent No. 2005054216.  Google Scholar
First citationUeda, S., Terauchi, H., Yano, A., Matsumoto, M., Kubo, T., Kyoya, Y., Suzuki, K., Ido, M. & Kawasaki, M. (2004). Bioorg. Med. Chem. 12, 4101–4116.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYeh, C. L. & Chen, C. H. (2002). US Patent No. 6465492.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds