organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-Acetyl-3-[2-oxo-1-phenyl-2-(3-pyrid­yl)ethyl­­idene]indolin-2-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 2 August 2010; accepted 2 August 2010; online 11 August 2010)

The title compound, C23H16N2O3, exists in a Z configuration with respect to the acyclic C=C bond. The pyridine and phenyl rings are oriented at dihedral angles of 72.97 (4) and 45.05 (4)°, respectively, with respect to the almost planar indoline ring system [maximum deviation 0.080 (1) Å]. The pyridine and phenyl rings are oriented almost perpendicular to each other [dihedral angle 88.93 (5)°]. In the crystal, mol­ecules are inter­connected into a three-dimensional framework via inter­molecular C—H⋯O and C—H⋯N hydrogen bonds and weak ππ inter­actions [centroid–centroid distance = 3.681 (1) Å].

Related literature

For general background and applications of indoline compounds, see: Aanandhi et al. (2008[Aanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588-4594.]); Lawrence et al. (2008[Lawrence, H. R., Pireddu, R., Chen, L., Luo, Y., Sung, S.-S., Szymanski, A. M., Yip, M. L. R., Guida, W. C., Sebti, S. M., Wu, J. & Lawrence, N. J. (2008). J. Med. Chem. 51, 4948-4956.]); Muthukumar et al. (2008[Muthukumar, V. A., George, S. & Vaidhyalingam, V. (2008). Biol. Pharm. Bull. 31, 1461-1464.]); Wang et al. (2005[Wang, L., Zhang, Y., Hu, H.-Y., Fun, H. K. & Xu, J.-X. (2005). J. Org. Chem. 70, 3850-3858.]); Xue et al. (2000[Xue, J., Zhang, Y., Wang, X.-L., Fun, H. K. & Xu, J.-X. (2000). Org. Lett. 2, 2583-2586.]); Yu et al. (2010[Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989-3001.]); Zhang & Panek (2009[Zhang, Y. & Panek, J. S. (2009). Org. Lett. 11, 3366-3369.]); Zhang et al. (2004a[Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004a). Org. Lett. 6, 4893-4895.],b[Zhang, Y., Wang, L., Zhu, Y. & Xu, J.-H. (2004b). Eur. J. Org. Chem. pp. 527-534.]). For related indoline structures, see: Fun et al. (2010a[Fun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010a). Acta Cryst. E66, o737-o738.],b[Fun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010b). Acta Cryst. E66, o2257-o2258.]); Usman et al. (2001[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2001). Acta Cryst. E57, o1070-o1072.],2002[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o511-o513.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H16N2O3

  • Mr = 368.38

  • Triclinic, [P \overline 1]

  • a = 7.9259 (19) Å

  • b = 9.086 (2) Å

  • c = 12.431 (3) Å

  • α = 84.804 (7)°

  • β = 87.064 (7)°

  • γ = 76.843 (6)°

  • V = 867.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.23 × 0.19 × 0.16 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.985

  • 19600 measured reflections

  • 5017 independent reflections

  • 4237 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.04

  • 5017 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O3i 0.93 2.37 3.2518 (16) 158
C14—H14A⋯O2ii 0.93 2.53 3.2381 (16) 133
C20—H20A⋯N2iii 0.93 2.58 3.3238 (17) 137
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y, z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole derivatives have a variety of biological activities and are synthetic precursors for many naturally occuring alkaloids (Aanandhi et al., 2008; Muthukumar et al., 2008; Lawrence et al., 2008). The C3 carbonyl group is the common reactive group in isatin (1H-indole-2,3-dione) for further derivation in either thermal reactions or photoreactions (Zhang et al., 2004b; 2009). Photoreactions of N-acetylisatin and alkenes or alkynes have provided a facile way to build various heterocyclic frameworks containing indole moieties (Wang et al., 2005; Zhang et al., 2004a; Xue et al., 2000). Azaaryl substituted acetylenes have been used to react with carbonyl groups which may lead to formation of various heterocyclic polycycles (Yu et al., 2010). In view of the importance of the title compound, (I), as a typical quinone methide product in photoreaction between carbonyl and acetylenes, this paper reports its crystal structure.

The title molecule exists in a cis configuration with respect to the acyclic C8C9 bond [C8C9 = 1.3510 (14) Å]. The indoline ring system (C1-C8/N1) is essentially planar, with a maximum deviation of 0.080 (1) Å at atom C7. The phenyl ring (C16-C21) and pyridine ring (C11-C15/N2) are almost perpendicular to each other, as indicated by the interplanar angle of 88.93 (5)° between them. These two rings form dihedral angles of 72.97 (4) and 45.05 (4)° with the indoline ring system, respectively. The bond lengths and angles are consistent to those observed in closely related indole structures (Fun et al., 2010a,b; Usman et al., 2001,2002).

In the crystal packing, intermolecular C12—H12A···O3, C14—H14A···O2 and C20—H20A···N2 hydrogen bonds (Table 1) interconnect adjacent molecules into a three-dimensional framework (Fig. 2). Weak intermolecular π-π interactions involving the pyrrolidine (C1/C6-C8/N1, centroid Cg1) and phenyl (C1-C6, centroid Cg2) rings [Cg1···Cg2* = 3.6812 (11) Å; symmetry code: (*) 2-x, 2-y, -z] further stabilize the crystal packing.

Related literature top

For general background and applications of indoline compounds, see: Aanandhi et al. (2008); Lawrence et al. (2008); Muthukumar et al. (2008); Wang et al. (2005); Xue et al. (2000); Yu et al. (2010); Zhang & Panek (2009); Zhang et al. (2004a,b). For related indoline structures, see: Fun et al. (2010a,b); Usman et al. (2001,2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained in the reaction between N-acetylisatin and 3-pyridinyl phenyl acetylene under photo-irradiation with light of wavelength > 400 nm. The compound was purified by flash column chromatography with ethyl acetate-petroleum ether (1:5) as eluents. X-ray quality single crystals of (I) were obtained by slow evaporation of a acetone-petroleum ether (1:2) solution (m.p. 568–571 K).

Refinement top

H atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl group.

Structure description top

Indole derivatives have a variety of biological activities and are synthetic precursors for many naturally occuring alkaloids (Aanandhi et al., 2008; Muthukumar et al., 2008; Lawrence et al., 2008). The C3 carbonyl group is the common reactive group in isatin (1H-indole-2,3-dione) for further derivation in either thermal reactions or photoreactions (Zhang et al., 2004b; 2009). Photoreactions of N-acetylisatin and alkenes or alkynes have provided a facile way to build various heterocyclic frameworks containing indole moieties (Wang et al., 2005; Zhang et al., 2004a; Xue et al., 2000). Azaaryl substituted acetylenes have been used to react with carbonyl groups which may lead to formation of various heterocyclic polycycles (Yu et al., 2010). In view of the importance of the title compound, (I), as a typical quinone methide product in photoreaction between carbonyl and acetylenes, this paper reports its crystal structure.

The title molecule exists in a cis configuration with respect to the acyclic C8C9 bond [C8C9 = 1.3510 (14) Å]. The indoline ring system (C1-C8/N1) is essentially planar, with a maximum deviation of 0.080 (1) Å at atom C7. The phenyl ring (C16-C21) and pyridine ring (C11-C15/N2) are almost perpendicular to each other, as indicated by the interplanar angle of 88.93 (5)° between them. These two rings form dihedral angles of 72.97 (4) and 45.05 (4)° with the indoline ring system, respectively. The bond lengths and angles are consistent to those observed in closely related indole structures (Fun et al., 2010a,b; Usman et al., 2001,2002).

In the crystal packing, intermolecular C12—H12A···O3, C14—H14A···O2 and C20—H20A···N2 hydrogen bonds (Table 1) interconnect adjacent molecules into a three-dimensional framework (Fig. 2). Weak intermolecular π-π interactions involving the pyrrolidine (C1/C6-C8/N1, centroid Cg1) and phenyl (C1-C6, centroid Cg2) rings [Cg1···Cg2* = 3.6812 (11) Å; symmetry code: (*) 2-x, 2-y, -z] further stabilize the crystal packing.

For general background and applications of indoline compounds, see: Aanandhi et al. (2008); Lawrence et al. (2008); Muthukumar et al. (2008); Wang et al. (2005); Xue et al. (2000); Yu et al. (2010); Zhang & Panek (2009); Zhang et al. (2004a,b). For related indoline structures, see: Fun et al. (2010a,b); Usman et al. (2001,2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50 % probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis, showing a three-dimensional framework. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
(Z)-1-Acetyl-3-[2-oxo-1-phenyl-2-(3-pyridyl)ethylidene]indolin-2-one top
Crystal data top
C23H16N2O3Z = 2
Mr = 368.38F(000) = 384
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9259 (19) ÅCell parameters from 7658 reflections
b = 9.086 (2) Åθ = 2.3–32.1°
c = 12.431 (3) ŵ = 0.10 mm1
α = 84.804 (7)°T = 100 K
β = 87.064 (7)°Block, yellow
γ = 76.843 (6)°0.23 × 0.19 × 0.16 mm
V = 867.7 (4) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5017 independent reflections
Radiation source: fine-focus sealed tube4237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.978, Tmax = 0.985k = 1212
19600 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.2808P]
where P = (Fo2 + 2Fc2)/3
5017 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H16N2O3γ = 76.843 (6)°
Mr = 368.38V = 867.7 (4) Å3
Triclinic, P1Z = 2
a = 7.9259 (19) ÅMo Kα radiation
b = 9.086 (2) ŵ = 0.10 mm1
c = 12.431 (3) ÅT = 100 K
α = 84.804 (7)°0.23 × 0.19 × 0.16 mm
β = 87.064 (7)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5017 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4237 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.028
19600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
5017 reflectionsΔρmin = 0.20 e Å3
254 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74656 (11)0.64928 (9)0.08150 (6)0.01988 (17)
O20.94194 (10)0.51863 (9)0.29214 (7)0.01842 (17)
O30.61891 (12)0.98853 (10)0.16758 (7)0.02319 (19)
N10.72823 (12)0.89175 (10)0.00538 (7)0.01472 (18)
N20.48355 (13)0.38455 (11)0.38814 (8)0.0208 (2)
C10.80969 (13)1.00838 (12)0.13505 (8)0.01429 (19)
C20.86200 (14)1.12405 (12)0.18121 (9)0.0175 (2)
H2A0.89581.11100.25260.021*
C30.86325 (15)1.25906 (13)0.11949 (10)0.0200 (2)
H3A0.89611.33750.15010.024*
C40.81564 (16)1.27772 (13)0.01211 (10)0.0220 (2)
H4A0.81601.36920.02790.026*
C50.76744 (15)1.16211 (13)0.03661 (9)0.0199 (2)
H5A0.73791.17420.10880.024*
C60.76495 (13)1.02835 (12)0.02614 (8)0.0149 (2)
C70.75826 (13)0.77964 (12)0.08245 (8)0.01466 (19)
C80.79925 (13)0.85485 (11)0.17647 (8)0.01383 (19)
C90.80773 (13)0.78123 (11)0.27615 (8)0.01317 (19)
C100.80593 (13)0.61403 (11)0.29125 (8)0.01361 (19)
C110.63598 (13)0.57473 (11)0.31789 (8)0.01344 (19)
C120.47958 (14)0.67902 (12)0.29924 (9)0.0165 (2)
H12A0.47840.77760.27110.020*
C130.32642 (14)0.63324 (13)0.32333 (9)0.0187 (2)
H13A0.22010.69960.31040.022*
C140.33486 (14)0.48613 (13)0.36719 (9)0.0192 (2)
H14A0.23120.45590.38310.023*
C150.63067 (14)0.42976 (12)0.36275 (9)0.0170 (2)
H15A0.73520.36060.37570.020*
C160.80906 (13)0.84819 (11)0.38002 (8)0.01300 (19)
C170.90394 (13)0.76491 (12)0.46632 (8)0.0148 (2)
H17A0.97280.66910.45680.018*
C180.89565 (14)0.82461 (12)0.56573 (9)0.0164 (2)
H18A0.95910.76880.62260.020*
C190.79292 (14)0.96743 (12)0.58082 (9)0.0173 (2)
H19A0.78941.00790.64720.021*
C200.69532 (14)1.04977 (12)0.49644 (9)0.0169 (2)
H20A0.62531.14480.50680.020*
C210.70218 (13)0.99052 (12)0.39705 (9)0.0150 (2)
H21A0.63551.04550.34120.018*
C220.66296 (14)0.87655 (13)0.10556 (9)0.0168 (2)
C230.65025 (17)0.72265 (14)0.13229 (10)0.0238 (2)
H23D0.60850.72880.20410.036*
H23A0.57150.68490.08170.036*
H23B0.76260.65520.12830.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (4)0.0142 (4)0.0177 (4)0.0079 (3)0.0024 (3)0.0016 (3)
O20.0157 (3)0.0153 (4)0.0234 (4)0.0011 (3)0.0024 (3)0.0019 (3)
O30.0304 (4)0.0212 (4)0.0168 (4)0.0038 (3)0.0049 (3)0.0021 (3)
N10.0193 (4)0.0125 (4)0.0125 (4)0.0037 (3)0.0008 (3)0.0007 (3)
N20.0205 (5)0.0161 (4)0.0260 (5)0.0057 (4)0.0015 (4)0.0014 (4)
C10.0149 (4)0.0134 (4)0.0147 (5)0.0037 (4)0.0014 (3)0.0010 (3)
C20.0196 (5)0.0168 (5)0.0175 (5)0.0067 (4)0.0016 (4)0.0029 (4)
C30.0230 (5)0.0148 (5)0.0239 (6)0.0076 (4)0.0035 (4)0.0038 (4)
C40.0262 (6)0.0145 (5)0.0250 (6)0.0062 (4)0.0030 (4)0.0016 (4)
C50.0248 (5)0.0167 (5)0.0176 (5)0.0048 (4)0.0002 (4)0.0017 (4)
C60.0166 (4)0.0132 (4)0.0147 (5)0.0035 (4)0.0015 (3)0.0017 (4)
C70.0167 (4)0.0141 (4)0.0130 (4)0.0033 (4)0.0004 (3)0.0008 (4)
C80.0150 (4)0.0129 (4)0.0141 (5)0.0038 (3)0.0006 (3)0.0017 (3)
C90.0121 (4)0.0126 (4)0.0151 (5)0.0032 (3)0.0010 (3)0.0015 (3)
C100.0157 (4)0.0128 (4)0.0122 (4)0.0028 (4)0.0022 (3)0.0006 (3)
C110.0149 (4)0.0126 (4)0.0131 (4)0.0035 (4)0.0015 (3)0.0009 (3)
C120.0168 (5)0.0135 (4)0.0182 (5)0.0022 (4)0.0006 (4)0.0017 (4)
C130.0142 (4)0.0191 (5)0.0213 (5)0.0015 (4)0.0010 (4)0.0013 (4)
C140.0177 (5)0.0207 (5)0.0204 (5)0.0074 (4)0.0001 (4)0.0010 (4)
C150.0159 (5)0.0129 (4)0.0213 (5)0.0020 (4)0.0024 (4)0.0007 (4)
C160.0136 (4)0.0130 (4)0.0130 (4)0.0048 (3)0.0002 (3)0.0004 (3)
C170.0154 (4)0.0135 (4)0.0154 (5)0.0031 (4)0.0007 (4)0.0003 (4)
C180.0181 (5)0.0175 (5)0.0138 (5)0.0047 (4)0.0028 (4)0.0009 (4)
C190.0213 (5)0.0176 (5)0.0139 (5)0.0059 (4)0.0013 (4)0.0028 (4)
C200.0194 (5)0.0138 (4)0.0169 (5)0.0026 (4)0.0025 (4)0.0024 (4)
C210.0159 (4)0.0139 (4)0.0145 (5)0.0030 (4)0.0004 (3)0.0006 (4)
C220.0169 (5)0.0194 (5)0.0136 (5)0.0023 (4)0.0002 (4)0.0030 (4)
C230.0328 (6)0.0205 (5)0.0189 (5)0.0051 (5)0.0066 (4)0.0047 (4)
Geometric parameters (Å, º) top
O1—C71.2100 (13)C11—C151.3919 (15)
O2—C101.2196 (13)C11—C121.3940 (14)
O3—C221.2146 (14)C12—C131.3807 (15)
N1—C221.4027 (14)C12—H12A0.93
N1—C71.4146 (13)C13—C141.3854 (16)
N1—C61.4293 (14)C13—H13A0.93
N2—C151.3360 (15)C14—H14A0.93
N2—C141.3421 (15)C15—H15A0.93
C1—C21.3920 (15)C16—C171.4020 (14)
C1—C61.4025 (15)C16—C211.4026 (14)
C1—C81.4614 (14)C17—C181.3866 (15)
C2—C31.3884 (16)C17—H17A0.93
C2—H2A0.93C18—C191.3890 (15)
C3—C41.3909 (17)C18—H18A0.93
C3—H3A0.93C19—C201.3914 (15)
C4—C51.3920 (17)C19—H19A0.93
C4—H4A0.93C20—C211.3855 (15)
C5—C61.3868 (15)C20—H20A0.93
C5—H5A0.93C21—H21A0.93
C7—C81.4911 (14)C22—C231.4925 (16)
C8—C91.3510 (14)C23—H23D0.96
C9—C161.4779 (14)C23—H23A0.96
C9—C101.5169 (15)C23—H23B0.96
C10—C111.4844 (15)
C22—N1—C7126.23 (9)C13—C12—H12A120.6
C22—N1—C6124.62 (9)C11—C12—H12A120.6
C7—N1—C6109.05 (8)C12—C13—C14118.45 (10)
C15—N2—C14116.88 (10)C12—C13—H13A120.8
C2—C1—C6119.44 (10)C14—C13—H13A120.8
C2—C1—C8132.38 (10)N2—C14—C13123.95 (10)
C6—C1—C8108.08 (9)N2—C14—H14A118.0
C3—C2—C1119.30 (10)C13—C14—H14A118.0
C3—C2—H2A120.3N2—C15—C11123.54 (10)
C1—C2—H2A120.3N2—C15—H15A118.2
C2—C3—C4120.41 (10)C11—C15—H15A118.2
C2—C3—H3A119.8C17—C16—C21118.84 (10)
C4—C3—H3A119.8C17—C16—C9120.64 (9)
C3—C4—C5121.29 (10)C21—C16—C9120.24 (9)
C3—C4—H4A119.4C18—C17—C16120.34 (10)
C5—C4—H4A119.4C18—C17—H17A119.8
C6—C5—C4117.78 (11)C16—C17—H17A119.8
C6—C5—H5A121.1C17—C18—C19120.29 (10)
C4—C5—H5A121.1C17—C18—H18A119.9
C5—C6—C1121.74 (10)C19—C18—H18A119.9
C5—C6—N1128.68 (10)C18—C19—C20119.87 (10)
C1—C6—N1109.51 (9)C18—C19—H19A120.1
O1—C7—N1126.06 (10)C20—C19—H19A120.1
O1—C7—C8127.05 (10)C21—C20—C19120.17 (10)
N1—C7—C8106.84 (9)C21—C20—H20A119.9
C9—C8—C1133.76 (10)C19—C20—H20A119.9
C9—C8—C7119.91 (10)C20—C21—C16120.45 (10)
C1—C8—C7106.16 (9)C20—C21—H21A119.8
C8—C9—C16126.82 (10)C16—C21—H21A119.8
C8—C9—C10120.64 (9)O3—C22—N1119.12 (10)
C16—C9—C10112.44 (9)O3—C22—C23122.22 (10)
O2—C10—C11122.38 (10)N1—C22—C23118.65 (10)
O2—C10—C9120.09 (9)C22—C23—H23D109.5
C11—C10—C9117.10 (9)C22—C23—H23A109.5
C15—C11—C12118.37 (10)H23D—C23—H23A109.5
C15—C11—C10119.66 (9)C22—C23—H23B109.5
C12—C11—C10121.97 (9)H23D—C23—H23B109.5
C13—C12—C11118.78 (10)H23A—C23—H23B109.5
C6—C1—C2—C32.16 (16)C16—C9—C10—O291.54 (12)
C8—C1—C2—C3177.86 (11)C8—C9—C10—C1195.54 (12)
C1—C2—C3—C41.10 (17)C16—C9—C10—C1181.14 (11)
C2—C3—C4—C50.66 (18)O2—C10—C11—C1510.99 (16)
C3—C4—C5—C61.30 (17)C9—C10—C11—C15161.52 (10)
C4—C5—C6—C10.20 (17)O2—C10—C11—C12168.92 (10)
C4—C5—C6—N1176.92 (10)C9—C10—C11—C1218.58 (15)
C2—C1—C6—C51.54 (16)C15—C11—C12—C131.65 (16)
C8—C1—C6—C5178.19 (10)C10—C11—C12—C13178.26 (10)
C2—C1—C6—N1175.75 (9)C11—C12—C13—C141.31 (16)
C8—C1—C6—N10.91 (12)C15—N2—C14—C131.21 (18)
C22—N1—C6—C59.52 (17)C12—C13—C14—N20.14 (18)
C7—N1—C6—C5173.99 (11)C14—N2—C15—C110.83 (17)
C22—N1—C6—C1173.44 (9)C12—C11—C15—N20.58 (17)
C7—N1—C6—C13.05 (12)C10—C11—C15—N2179.33 (10)
C22—N1—C7—O16.86 (17)C8—C9—C16—C17146.10 (11)
C6—N1—C7—O1176.72 (10)C10—C9—C16—C1737.46 (13)
C22—N1—C7—C8170.80 (9)C8—C9—C16—C2140.03 (15)
C6—N1—C7—C85.61 (11)C10—C9—C16—C21136.40 (10)
C2—C1—C8—C913.1 (2)C21—C16—C17—C181.83 (15)
C6—C1—C8—C9170.79 (11)C9—C16—C17—C18175.78 (9)
C2—C1—C8—C7171.80 (11)C16—C17—C18—C190.13 (16)
C6—C1—C8—C74.26 (11)C17—C18—C19—C201.24 (16)
O1—C7—C8—C97.79 (17)C18—C19—C20—C210.87 (17)
N1—C7—C8—C9169.84 (9)C19—C20—C21—C160.86 (16)
O1—C7—C8—C1176.33 (11)C17—C16—C21—C202.19 (15)
N1—C7—C8—C16.04 (11)C9—C16—C21—C20176.17 (10)
C1—C8—C9—C168.63 (19)C7—N1—C22—O3168.91 (10)
C7—C8—C9—C16165.88 (9)C6—N1—C22—O36.97 (16)
C1—C8—C9—C10175.20 (10)C7—N1—C22—C2311.15 (16)
C7—C8—C9—C1010.28 (15)C6—N1—C22—C23172.96 (10)
C8—C9—C10—O291.78 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O3i0.932.373.2518 (16)158
C14—H14A···O2ii0.932.533.2381 (16)133
C20—H20A···N2iii0.932.583.3238 (17)137
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H16N2O3
Mr368.38
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9259 (19), 9.086 (2), 12.431 (3)
α, β, γ (°)84.804 (7), 87.064 (7), 76.843 (6)
V3)867.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.19 × 0.16
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
19600, 5017, 4237
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.04
No. of reflections5017
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O3i0.932.373.2518 (16)158
C14—H14A···O2ii0.932.533.2381 (16)133
C20—H20A···N2iii0.932.583.3238 (17)137
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China on the Austria-China Cooperation project (2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

References

First citationAanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588–4594.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010a). Acta Cryst. E66, o737–o738.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010b). Acta Cryst. E66, o2257–o2258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLawrence, H. R., Pireddu, R., Chen, L., Luo, Y., Sung, S.-S., Szymanski, A. M., Yip, M. L. R., Guida, W. C., Sebti, S. M., Wu, J. & Lawrence, N. J. (2008). J. Med. Chem. 51, 4948–4956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuthukumar, V. A., George, S. & Vaidhyalingam, V. (2008). Biol. Pharm. Bull. 31, 1461–1464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2001). Acta Cryst. E57, o1070–o1072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o511–o513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L., Zhang, Y., Hu, H.-Y., Fun, H. K. & Xu, J.-X. (2005). J. Org. Chem. 70, 3850–3858.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXue, J., Zhang, Y., Wang, X.-L., Fun, H. K. & Xu, J.-X. (2000). Org. Lett. 2, 2583–2586.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y. & Panek, J. S. (2009). Org. Lett. 11, 3366–3369.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004a). Org. Lett. 6, 4893–4895.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y., Wang, L., Zhu, Y. & Xu, J.-H. (2004b). Eur. J. Org. Chem. pp. 527–534.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds