organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-tert-butyl-5-phenyl-1H-pyrazole-4-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Manipal Institute of Technology, Manipal 576 104, India, cOrganic Chemistry Division, Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 July 2010; accepted 1 August 2010; online 11 August 2010)

In the title compound, C16H20N2O2, the pyrazole ring is essentially planar [maximum deviation = 0.008 (2) Å] and is inclined at an angle of 82.82 (10)° with respect to the phenyl ring. The crystal packing is consolidated by pairs of inter­molecular C—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers stacked along the a axis.

Related literature

For general background to pyrazole derivatives and their biological activity, see: Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Lambert & Fowler (2005[Lambert, D. M. & Fowler, C. J. (2005). J. Med. Chem. 48, 5059-5087.]); Lan et al. (1999[Lan, R., Liu, Q., Fan, P., Lin, S., Fernando, S. R., McCallion, D. Pertwee, R. & Makriyannis, A. (1999). J. Med. Chem. 42, 769-776.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Quah, C. K., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009). Acta Cryst. E65, o2707-o2708.]; 2010a[Fun, H.-K., Goh, J. H., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010a). Acta Cryst. E66, o1828-o1829.],b[Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010b). Acta Cryst. E66, o2282-o2283.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N2O2

  • Mr = 272.34

  • Triclinic, [P \overline 1]

  • a = 9.0665 (2) Å

  • b = 9.3351 (2) Å

  • c = 10.5408 (3) Å

  • α = 110.450 (1)°

  • β = 113.987 (1)°

  • γ = 97.645 (2)°

  • V = 723.22 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.41 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.990

  • 12406 measured reflections

  • 2655 independent reflections

  • 2179 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 1.04

  • 2655 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O2i 0.97 2.53 3.367 (2) 145
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole and its derivatives represent one of the most active classes of compounds possessing a wide spectrum of biological activities. During the past years, considerable evidences have been accumulated to demonstrate the efficacy of pyrazole derivatives including antibacterial (Isloor et al., 2009), antifungal (Lambert & Fowler, 2005), herbicidal (Lan et al., 1999), insecticidal and other biological activities. Keeping in view of the importance of the pyrazole derivatives, we have synthesized a new pyrazole molecule, with the aim of studying its single crystal structure.

The title molecule (Fig. 1) consists of a phenyl ring (C1-C6), a tert-butyl moiety (C10-C13) and a ethyl carboxylate moiety (O1/O2/C14-C16) attached to a pyrazole ring (N1/N2/C7-C9). The pyrazole ring is essentially planar (maximum deviation = 0.008 (2) Å for atom N2) and is inclined at an angle of 82.82 (10)° with the phenyl ring. Bond lengths and angles are within normal ranges, and comparable to closely related structures (Fun et al., 2009,2010a,b).

In the crystal structure (Fig. 2), the crystal packing is consolidated by pairs of intermolecular C15—H15B···O2 hydrogen bonds linking the molecules into centrosymmetric dimers which are stacked down the a axis.

Related literature top

For general background to pyrazole derivatives and their biological activity, see: Isloor et al. (2009); Lambert & Fowler (2005); Lan et al. (1999). For related structures, see: Fun et al. (2009; 2010a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of ethyl-3-(dimethylamino)-2-(phenylcarbonyl)prop-2-enoate (2.0 g, 0.0080 mol), tert-butyl hydrazine.HCl (1.09 g, 0.0088 mol) and sodium bicarbonate (2.05 g, 0.0240 mol) in absolute ethanol (25 ml) was refluxed for 2 h. Reaction completion was monitored through thin layer chromatography and the reaction mixture was evaporated under reduced pressure. The residue was stirred with 1.5N HCl and the solid separated was filtered and dried under vacuum. The solid obtained was purified by column chromatography using silica gel 60-120 mesh size and petroleum ether-ethyl acetate as eluent to afford title compound as yellow solid (1.5g, 71%); melting point 343-347 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C-H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Structure description top

Pyrazole and its derivatives represent one of the most active classes of compounds possessing a wide spectrum of biological activities. During the past years, considerable evidences have been accumulated to demonstrate the efficacy of pyrazole derivatives including antibacterial (Isloor et al., 2009), antifungal (Lambert & Fowler, 2005), herbicidal (Lan et al., 1999), insecticidal and other biological activities. Keeping in view of the importance of the pyrazole derivatives, we have synthesized a new pyrazole molecule, with the aim of studying its single crystal structure.

The title molecule (Fig. 1) consists of a phenyl ring (C1-C6), a tert-butyl moiety (C10-C13) and a ethyl carboxylate moiety (O1/O2/C14-C16) attached to a pyrazole ring (N1/N2/C7-C9). The pyrazole ring is essentially planar (maximum deviation = 0.008 (2) Å for atom N2) and is inclined at an angle of 82.82 (10)° with the phenyl ring. Bond lengths and angles are within normal ranges, and comparable to closely related structures (Fun et al., 2009,2010a,b).

In the crystal structure (Fig. 2), the crystal packing is consolidated by pairs of intermolecular C15—H15B···O2 hydrogen bonds linking the molecules into centrosymmetric dimers which are stacked down the a axis.

For general background to pyrazole derivatives and their biological activity, see: Isloor et al. (2009); Lambert & Fowler (2005); Lan et al. (1999). For related structures, see: Fun et al. (2009; 2010a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Ethyl 1-tert-butyl-5-phenyl-1H-pyrazole-4-carboxylate top
Crystal data top
C16H20N2O2Z = 2
Mr = 272.34F(000) = 292
Triclinic, P1Dx = 1.251 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0665 (2) ÅCell parameters from 6289 reflections
b = 9.3351 (2) Åθ = 2.4–34.3°
c = 10.5408 (3) ŵ = 0.08 mm1
α = 110.450 (1)°T = 100 K
β = 113.987 (1)°Needle, yellow
γ = 97.645 (2)°0.41 × 0.20 × 0.12 mm
V = 723.22 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2655 independent reflections
Radiation source: fine-focus sealed tube2179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.967, Tmax = 0.990k = 1111
12406 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.3388P]
where P = (Fo2 + 2Fc2)/3
2655 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H20N2O2γ = 97.645 (2)°
Mr = 272.34V = 723.22 (3) Å3
Triclinic, P1Z = 2
a = 9.0665 (2) ÅMo Kα radiation
b = 9.3351 (2) ŵ = 0.08 mm1
c = 10.5408 (3) ÅT = 100 K
α = 110.450 (1)°0.41 × 0.20 × 0.12 mm
β = 113.987 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2655 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2179 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.990Rint = 0.038
12406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2655 reflectionsΔρmin = 0.20 e Å3
185 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53056 (13)0.32289 (13)0.13622 (12)0.0190 (3)
O20.52454 (14)0.14419 (13)0.23468 (13)0.0247 (3)
N10.85134 (17)0.68033 (16)0.57591 (15)0.0199 (3)
N20.87235 (16)0.58254 (15)0.64872 (15)0.0169 (3)
C10.8628 (2)0.18877 (19)0.56614 (19)0.0203 (4)
H1A0.93340.20790.52590.024*
C20.8544 (2)0.0604 (2)0.60345 (19)0.0223 (4)
H2A0.92060.00530.58950.027*
C30.7477 (2)0.02988 (19)0.66145 (19)0.0216 (4)
H3A0.74300.05570.68720.026*
C40.6484 (2)0.12657 (19)0.68093 (19)0.0209 (4)
H4A0.57540.10500.71830.025*
C50.65692 (19)0.25632 (19)0.64487 (18)0.0187 (4)
H5A0.58990.32130.65830.022*
C60.76584 (19)0.28886 (19)0.58869 (18)0.0166 (4)
C70.77480 (19)0.42591 (18)0.54764 (18)0.0160 (3)
C80.69038 (19)0.42220 (19)0.40266 (18)0.0166 (4)
C90.7435 (2)0.58270 (19)0.42835 (19)0.0190 (4)
H9A0.70700.61630.35070.023*
C100.98019 (19)0.66369 (19)0.82223 (18)0.0178 (4)
C110.8627 (2)0.6922 (2)0.89211 (19)0.0233 (4)
H11A0.79590.75350.85270.035*
H11B0.92990.75081.00300.035*
H11C0.78840.59020.86460.035*
C121.0849 (2)0.5612 (2)0.87611 (19)0.0213 (4)
H12A1.14840.53650.82190.032*
H12B1.01010.46280.85480.032*
H12C1.16230.61990.98560.032*
C131.1020 (2)0.8262 (2)0.8701 (2)0.0232 (4)
H13A1.03760.89440.84280.035*
H13B1.16780.80910.81750.035*
H13C1.17710.87680.98020.035*
C140.57491 (19)0.2808 (2)0.25368 (19)0.0178 (4)
C150.4271 (2)0.19063 (19)0.01920 (18)0.0204 (4)
H15A0.32690.12720.02750.024*
H15B0.49210.12060.04220.024*
C160.3759 (2)0.2633 (2)0.1304 (2)0.0261 (4)
H16A0.31370.17880.23480.039*
H16B0.47590.33130.11640.039*
H16C0.30510.32630.11120.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0228 (6)0.0165 (6)0.0116 (6)0.0008 (5)0.0054 (5)0.0054 (5)
O20.0322 (6)0.0163 (7)0.0189 (7)0.0002 (5)0.0098 (5)0.0070 (5)
N10.0249 (7)0.0164 (7)0.0176 (8)0.0037 (6)0.0089 (6)0.0094 (6)
N20.0197 (7)0.0145 (7)0.0143 (7)0.0020 (6)0.0070 (6)0.0070 (6)
C10.0222 (8)0.0189 (9)0.0181 (9)0.0033 (7)0.0100 (7)0.0075 (7)
C20.0250 (8)0.0169 (9)0.0211 (9)0.0067 (7)0.0085 (8)0.0076 (7)
C30.0262 (8)0.0142 (9)0.0164 (9)0.0001 (7)0.0043 (7)0.0080 (7)
C40.0222 (8)0.0193 (9)0.0156 (9)0.0014 (7)0.0075 (7)0.0069 (7)
C50.0191 (8)0.0159 (9)0.0159 (9)0.0021 (7)0.0069 (7)0.0047 (7)
C60.0179 (7)0.0134 (8)0.0098 (8)0.0009 (6)0.0022 (6)0.0035 (6)
C70.0163 (7)0.0142 (9)0.0161 (8)0.0028 (6)0.0088 (7)0.0049 (7)
C80.0185 (8)0.0170 (9)0.0151 (8)0.0046 (7)0.0088 (7)0.0077 (7)
C90.0227 (8)0.0189 (9)0.0153 (9)0.0044 (7)0.0082 (7)0.0095 (7)
C100.0192 (8)0.0158 (9)0.0124 (8)0.0013 (7)0.0057 (7)0.0039 (7)
C110.0243 (8)0.0228 (10)0.0180 (9)0.0039 (7)0.0099 (7)0.0061 (8)
C120.0230 (8)0.0194 (9)0.0140 (9)0.0025 (7)0.0051 (7)0.0059 (7)
C130.0220 (8)0.0198 (9)0.0189 (9)0.0001 (7)0.0058 (7)0.0067 (7)
C140.0182 (7)0.0201 (9)0.0168 (9)0.0050 (7)0.0093 (7)0.0095 (7)
C150.0224 (8)0.0170 (9)0.0135 (9)0.0013 (7)0.0059 (7)0.0034 (7)
C160.0282 (9)0.0258 (10)0.0173 (9)0.0050 (8)0.0076 (8)0.0079 (8)
Geometric parameters (Å, º) top
O1—C141.3511 (18)C8—C141.467 (2)
O1—C151.4550 (18)C9—H9A0.93
O2—C141.2116 (18)C10—C121.524 (2)
N1—C91.320 (2)C10—C111.524 (2)
N1—N21.3695 (17)C10—C131.530 (2)
N2—C71.363 (2)C11—H11A0.96
N2—C101.502 (2)C11—H11B0.96
C1—C21.388 (2)C11—H11C0.96
C1—C61.391 (2)C12—H12A0.96
C1—H1A0.93C12—H12B0.96
C2—C31.386 (2)C12—H12C0.96
C2—H2A0.93C13—H13A0.96
C3—C41.380 (2)C13—H13B0.96
C3—H3A0.93C13—H13C0.96
C4—C51.392 (2)C15—C161.499 (2)
C4—H4A0.93C15—H15A0.97
C5—C61.393 (2)C15—H15B0.97
C5—H5A0.93C16—H16A0.96
C6—C71.489 (2)C16—H16B0.96
C7—C81.388 (2)C16—H16C0.96
C8—C91.403 (2)
C14—O1—C15115.77 (12)C12—C10—C13108.71 (13)
C9—N1—N2105.07 (12)C11—C10—C13109.39 (14)
C7—N2—N1111.67 (12)C10—C11—H11A109.5
C7—N2—C10131.06 (13)C10—C11—H11B109.5
N1—N2—C10116.93 (12)H11A—C11—H11B109.5
C2—C1—C6120.21 (15)C10—C11—H11C109.5
C2—C1—H1A119.9H11A—C11—H11C109.5
C6—C1—H1A119.9H11B—C11—H11C109.5
C3—C2—C1120.18 (16)C10—C12—H12A109.5
C3—C2—H2A119.9C10—C12—H12B109.5
C1—C2—H2A119.9H12A—C12—H12B109.5
C4—C3—C2119.92 (15)C10—C12—H12C109.5
C4—C3—H3A120.0H12A—C12—H12C109.5
C2—C3—H3A120.0H12B—C12—H12C109.5
C3—C4—C5120.25 (15)C10—C13—H13A109.5
C3—C4—H4A119.9C10—C13—H13B109.5
C5—C4—H4A119.9H13A—C13—H13B109.5
C4—C5—C6120.01 (15)C10—C13—H13C109.5
C4—C5—H5A120.0H13A—C13—H13C109.5
C6—C5—H5A120.0H13B—C13—H13C109.5
C1—C6—C5119.40 (14)O2—C14—O1123.37 (14)
C1—C6—C7119.91 (14)O2—C14—C8126.18 (14)
C5—C6—C7120.65 (14)O1—C14—C8110.45 (13)
N2—C7—C8106.22 (13)O1—C15—C16107.43 (13)
N2—C7—C6125.57 (14)O1—C15—H15A110.2
C8—C7—C6128.21 (14)C16—C15—H15A110.2
C7—C8—C9105.09 (14)O1—C15—H15B110.2
C7—C8—C14127.70 (14)C16—C15—H15B110.2
C9—C8—C14127.19 (14)H15A—C15—H15B108.5
N1—C9—C8111.93 (14)C15—C16—H16A109.5
N1—C9—H9A124.0C15—C16—H16B109.5
C8—C9—H9A124.0H16A—C16—H16B109.5
N2—C10—C12110.47 (13)C15—C16—H16C109.5
N2—C10—C11108.18 (12)H16A—C16—H16C109.5
C12—C10—C11111.78 (13)H16B—C16—H16C109.5
N2—C10—C13108.24 (12)
C9—N1—N2—C71.56 (17)C6—C7—C8—C9179.96 (15)
C9—N1—N2—C10175.57 (13)N2—C7—C8—C14177.44 (15)
C6—C1—C2—C30.9 (2)C6—C7—C8—C141.8 (3)
C1—C2—C3—C40.5 (2)N2—N1—C9—C81.04 (18)
C2—C3—C4—C51.0 (2)C7—C8—C9—N10.18 (18)
C3—C4—C5—C60.1 (2)C14—C8—C9—N1178.40 (15)
C2—C1—C6—C51.8 (2)C7—N2—C10—C1244.2 (2)
C2—C1—C6—C7179.70 (15)N1—N2—C10—C12143.23 (13)
C4—C5—C6—C11.3 (2)C7—N2—C10—C1178.5 (2)
C4—C5—C6—C7179.20 (14)N1—N2—C10—C1194.12 (15)
N1—N2—C7—C81.46 (17)C7—N2—C10—C13163.07 (15)
C10—N2—C7—C8174.38 (15)N1—N2—C10—C1324.31 (18)
N1—N2—C7—C6179.31 (14)C15—O1—C14—O24.6 (2)
C10—N2—C7—C66.4 (3)C15—O1—C14—C8175.15 (12)
C1—C6—C7—N297.7 (2)C7—C8—C14—O25.7 (3)
C5—C6—C7—N284.4 (2)C9—C8—C14—O2176.47 (16)
C1—C6—C7—C881.3 (2)C7—C8—C14—O1174.06 (14)
C5—C6—C7—C896.5 (2)C9—C8—C14—O13.8 (2)
N2—C7—C8—C90.76 (17)C14—O1—C15—C16173.80 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.972.533.367 (2)145
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H20N2O2
Mr272.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.0665 (2), 9.3351 (2), 10.5408 (3)
α, β, γ (°)110.450 (1), 113.987 (1), 97.645 (2)
V3)723.22 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.41 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.967, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12406, 2655, 2179
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.04
No. of reflections2655
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.972.533.367 (2)145
Symmetry code: (i) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ also thanks USM for the award of a USM fellowship. AMI is thankful to the Director, National Institute of Technology-Karnataka, Surathkal, India, for providing research facilities and for his encouragement.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010a). Acta Cryst. E66, o1828–o1829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010b). Acta Cryst. E66, o2282-o2283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009). Acta Cryst. E65, o2707–o2708.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLambert, D. M. & Fowler, C. J. (2005). J. Med. Chem. 48, 5059–5087.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLan, R., Liu, Q., Fan, P., Lin, S., Fernando, S. R., McCallion, D. Pertwee, R. & Makriyannis, A. (1999). J. Med. Chem. 42, 769–776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds