metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[zinc(II)-bis­­[μ-2-(2,4-di­chloro­phen­­oxy)acetato]]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: liushizhu521@126.com

(Received 18 April 2010; accepted 30 April 2010; online 8 May 2010)

The title polymeric compound, [Zn(C8H5Cl2O3)2]n, was prepared by reaction of zinc(II) chloride with 2,4-dichloro­phenoxy­acetic acid and sodium hydroxide under hydro­thermal conditions. The ZnII atom is coordinated in a distorted tetra­hedral environment by four O atoms from four 2,4-dichloro­phenoxy­acetate ligands. Each ligand bridges two ZnII atoms, forming a polymeric chain along the a axis. Adjacent chains are connected via C—H⋯Cl hydrogen bonds.

Related literature

For metal-organic coordination polymers, see: Qin et al. (2009[Qin, J., Ma, J.-P., Liu, L.-L., Huang, R.-Q. & Dong, Y.-B. (2009). Acta Cryst. C65, m66-m68.]); Huang et al. (2008[Huang, F.-P., Yu, Q., Bian, H. D. & Yan, S.-P. (2008). Polyhedron, 27, 3160-3166.]); Reineke et al. (1999[Reineke, T. M., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590-2594.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800-3805.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H5Cl2O3)2]

  • Mr = 505.43

  • Triclinic, [P \overline 1]

  • a = 4.7322 (10) Å

  • b = 10.459 (2) Å

  • c = 18.979 (4) Å

  • α = 79.340 (2)°

  • β = 89.838 (2)°

  • γ = 82.847 (3)°

  • V = 915.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 296 K

  • 0.56 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.617, Tmax = 0.731

  • 4737 measured reflections

  • 3255 independent reflections

  • 2849 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.091

  • S = 0.94

  • 3255 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯Cl2i 0.97 2.73 3.610 (3) 151
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For metal-organic coordination polymers, see: Qin et al. (2009); Huang et al. (2008); Reineke et al. (1999); Xiong et al. (2002).

Experimental top

A mixture of ZnCl2 (0.068 g, 0.5 mmol), H2O (6 ml), 2,4-dichlorophenoxyacetic acid (0.22 g, 1 mmol) was stirred vigorously for 10 min and then sodium hydroxide solution (1.0 mol/L) was added to adjust the pH value to 7.0. The mixture was then sealed in a 25 ml Teflon-lined stainless-steel autoclave. The autoclave was heated at 413 K for 3 d and then slowly cooled to room temperature at 6 K/h. The product was collected by filtration, washed with water and air-dried. Colourless needle-shaped crystals were obtained in ca. 42.3% yield based on Zn.

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

For metal-organic coordination polymers, see: Qin et al. (2009); Huang et al. (2008); Reineke et al. (1999); Xiong et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of a polymeric chain in the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (a) 1+x, y, z; (b) 1-x, 1-y, 1-z.
[Figure 2] Fig. 2. Part of the crystal packing, showing a polymeric chain viewed along the a axis. H atoms have been omitted for clarity.
catena-Poly[zinc(II)-bis[µ-2-(2,4-dichlorophenoxy)acetato]] top
Crystal data top
[Zn(C8H5Cl2O3)2]Z = 2
Mr = 505.43F(000) = 504
Triclinic, P1Dx = 1.833 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7322 (10) ÅCell parameters from 2642 reflections
b = 10.459 (2) Åθ = 2.5–27.7°
c = 18.979 (4) ŵ = 1.96 mm1
α = 79.340 (2)°T = 296 K
β = 89.838 (2)°Needle, colourless
γ = 82.847 (3)°0.56 × 0.21 × 0.16 mm
V = 915.8 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3255 independent reflections
Radiation source: fine-focus sealed tube2849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.617, Tmax = 0.731k = 128
4737 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0663P)2]
where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max = 0.024
244 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(C8H5Cl2O3)2]γ = 82.847 (3)°
Mr = 505.43V = 915.8 (3) Å3
Triclinic, P1Z = 2
a = 4.7322 (10) ÅMo Kα radiation
b = 10.459 (2) ŵ = 1.96 mm1
c = 18.979 (4) ÅT = 296 K
α = 79.340 (2)°0.56 × 0.21 × 0.16 mm
β = 89.838 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3255 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2849 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.731Rint = 0.021
4737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.94Δρmax = 0.34 e Å3
3255 reflectionsΔρmin = 0.39 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.66929 (6)0.53465 (3)0.409892 (14)0.02622 (12)
Cl20.46808 (18)1.18539 (7)0.33205 (4)0.0500 (2)
Cl30.18417 (19)1.02366 (8)0.14274 (4)0.0538 (2)
O10.5602 (4)0.69621 (17)0.44411 (10)0.0354 (4)
C20.2487 (7)0.8626 (2)0.48725 (14)0.0368 (6)
H2A0.04250.86860.48580.044*
H2B0.30340.88540.53210.044*
C10.3707 (5)0.7213 (2)0.48733 (13)0.0283 (5)
O20.3338 (4)0.95654 (17)0.43021 (10)0.0381 (4)
C80.2572 (6)1.0724 (2)0.31164 (15)0.0344 (6)
C30.2031 (6)0.9673 (2)0.36461 (14)0.0336 (6)
C70.1426 (6)1.0904 (3)0.24305 (15)0.0374 (6)
H70.18461.15930.20770.045*
C40.0218 (6)0.8825 (3)0.34807 (15)0.0370 (6)
H40.01980.81290.38300.044*
C60.0369 (6)1.0027 (3)0.22834 (15)0.0381 (6)
C50.0982 (6)0.9003 (3)0.27995 (16)0.0409 (7)
H50.21990.84290.26930.049*
O50.4663 (4)0.5250 (2)0.32238 (10)0.0379 (4)
C90.2002 (5)0.5268 (2)0.32394 (13)0.0285 (5)
C100.0513 (6)0.4985 (3)0.25952 (14)0.0365 (6)
H10A0.06370.42830.27520.044*
H10B0.07620.57590.23830.044*
O60.2391 (4)0.46218 (19)0.20660 (10)0.0394 (5)
C110.3544 (6)0.5571 (3)0.16035 (14)0.0335 (6)
C120.5536 (6)0.5123 (3)0.11352 (14)0.0371 (6)
C140.6058 (7)0.7315 (3)0.05874 (16)0.0440 (7)
C150.4104 (7)0.7786 (3)0.10480 (18)0.0481 (7)
H150.36230.86840.10180.058*
C130.6794 (7)0.5995 (3)0.06313 (15)0.0457 (7)
H130.81350.56850.03230.055*
C160.2865 (7)0.6908 (3)0.15540 (17)0.0452 (7)
H160.15520.72240.18660.054*
Cl50.6472 (2)0.34585 (8)0.11910 (5)0.0616 (3)
Cl40.7620 (2)0.84005 (10)0.00545 (5)0.0660 (3)
O70.0604 (4)0.54895 (18)0.37772 (9)0.0331 (4)
O80.2660 (4)0.64018 (18)0.53311 (11)0.0449 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02447 (18)0.02421 (18)0.02907 (18)0.00534 (12)0.00625 (12)0.00117 (12)
Cl20.0636 (5)0.0330 (4)0.0527 (5)0.0225 (4)0.0055 (4)0.0049 (3)
Cl30.0667 (5)0.0505 (5)0.0438 (4)0.0079 (4)0.0080 (4)0.0074 (3)
O10.0368 (10)0.0253 (9)0.0450 (11)0.0078 (8)0.0112 (9)0.0070 (8)
C20.0508 (17)0.0239 (13)0.0339 (14)0.0042 (12)0.0067 (12)0.0011 (11)
C10.0325 (14)0.0239 (12)0.0274 (13)0.0053 (10)0.0012 (10)0.0002 (10)
O20.0522 (12)0.0239 (9)0.0361 (10)0.0091 (8)0.0002 (9)0.0025 (8)
C80.0348 (15)0.0244 (13)0.0427 (15)0.0077 (11)0.0036 (12)0.0007 (11)
C30.0385 (15)0.0225 (13)0.0383 (14)0.0022 (11)0.0054 (12)0.0030 (11)
C70.0443 (17)0.0260 (13)0.0390 (15)0.0049 (12)0.0062 (12)0.0018 (11)
C40.0425 (16)0.0223 (13)0.0433 (15)0.0063 (11)0.0061 (12)0.0026 (11)
C60.0412 (16)0.0328 (14)0.0388 (15)0.0008 (12)0.0007 (12)0.0063 (12)
C50.0425 (16)0.0291 (14)0.0518 (17)0.0075 (12)0.0023 (13)0.0070 (12)
O50.0200 (9)0.0564 (12)0.0392 (10)0.0081 (8)0.0039 (8)0.0116 (9)
C90.0257 (13)0.0277 (13)0.0306 (13)0.0048 (10)0.0023 (10)0.0011 (10)
C100.0277 (14)0.0499 (17)0.0334 (14)0.0084 (12)0.0027 (11)0.0091 (12)
O60.0429 (11)0.0428 (11)0.0352 (10)0.0103 (9)0.0099 (8)0.0117 (9)
C110.0323 (14)0.0419 (15)0.0277 (13)0.0034 (12)0.0028 (11)0.0107 (11)
C120.0402 (16)0.0382 (15)0.0320 (14)0.0038 (12)0.0012 (11)0.0105 (12)
C140.0419 (17)0.0481 (18)0.0391 (16)0.0075 (14)0.0001 (13)0.0007 (13)
C150.0489 (18)0.0373 (16)0.0570 (19)0.0018 (14)0.0011 (15)0.0080 (14)
C130.0485 (18)0.0522 (19)0.0352 (15)0.0003 (15)0.0085 (13)0.0096 (14)
C160.0443 (17)0.0421 (17)0.0506 (17)0.0006 (14)0.0137 (14)0.0152 (14)
Cl50.0829 (7)0.0394 (4)0.0605 (5)0.0066 (4)0.0191 (5)0.0135 (4)
Cl40.0775 (6)0.0650 (6)0.0514 (5)0.0220 (5)0.0086 (4)0.0081 (4)
O70.0256 (9)0.0427 (11)0.0335 (10)0.0108 (8)0.0070 (8)0.0095 (8)
O80.0527 (13)0.0266 (10)0.0495 (12)0.0031 (9)0.0156 (10)0.0071 (9)
Geometric parameters (Å, º) top
Zn1—O11.9315 (18)C5—H50.93
Zn1—O8i1.9335 (18)O5—C91.258 (3)
Zn1—O51.9458 (18)C9—O71.256 (3)
Zn1—O7ii1.9622 (18)C9—C101.507 (3)
Cl2—C81.735 (3)C10—O61.412 (3)
Cl3—C61.735 (3)C10—H10A0.97
O1—C11.250 (3)C10—H10B0.97
C2—O21.415 (3)O6—C111.365 (3)
C2—C11.518 (3)C11—C161.382 (4)
C2—H2A0.97C11—C121.392 (4)
C2—H2B0.97C12—C131.382 (4)
C1—O81.245 (3)C12—Cl51.726 (3)
O2—C31.372 (3)C14—C131.369 (4)
C8—C31.395 (4)C14—C151.380 (5)
C8—C71.383 (4)C14—Cl41.735 (3)
C3—C41.383 (4)C15—C161.383 (4)
C7—C61.389 (4)C15—H150.93
C7—H70.93C13—H130.93
C4—C51.385 (4)C16—H160.93
C4—H40.93O7—Zn1iii1.9622 (17)
C6—C51.371 (4)O8—Zn1i1.9335 (18)
O1—Zn1—O8i126.97 (8)C6—C5—H5120.1
O1—Zn1—O5113.18 (8)C4—C5—H5120.1
O8i—Zn1—O5107.88 (9)C9—O5—Zn1118.61 (16)
O1—Zn1—O7ii103.55 (8)O7—C9—O5121.7 (2)
O8i—Zn1—O7ii98.21 (8)O7—C9—C10120.3 (2)
O5—Zn1—O7ii103.04 (7)O5—C9—C10118.0 (2)
C1—O1—Zn1128.96 (17)O6—C10—C9113.7 (2)
O2—C2—C1115.7 (2)O6—C10—H10A108.8
O2—C2—H2A108.4C9—C10—H10A108.8
C1—C2—H2A108.4O6—C10—H10B108.8
O2—C2—H2B108.4C9—C10—H10B108.8
C1—C2—H2B108.4H10A—C10—H10B107.7
H2A—C2—H2B107.4C11—O6—C10119.4 (2)
O8—C1—O1126.4 (2)O6—C11—C16125.9 (2)
O8—C1—C2113.8 (2)O6—C11—C12115.7 (2)
O1—C1—C2119.8 (2)C16—C11—C12118.4 (3)
C3—O2—C2117.3 (2)C13—C12—C11120.8 (3)
C3—C8—C7121.6 (2)C13—C12—Cl5119.6 (2)
C3—C8—Cl2119.6 (2)C11—C12—Cl5119.6 (2)
C7—C8—Cl2118.8 (2)C13—C14—C15120.7 (3)
O2—C3—C8116.8 (2)C13—C14—Cl4119.3 (2)
O2—C3—C4124.7 (2)C15—C14—Cl4120.0 (3)
C8—C3—C4118.5 (3)C16—C15—C14119.4 (3)
C8—C7—C6118.2 (3)C16—C15—H15120.3
C8—C7—H7120.9C14—C15—H15120.3
C6—C7—H7120.9C14—C13—C12119.7 (3)
C3—C4—C5120.6 (3)C14—C13—H13120.2
C3—C4—H4119.7C12—C13—H13120.2
C5—C4—H4119.7C15—C16—C11121.1 (3)
C5—C6—C7121.3 (3)C15—C16—H16119.5
C5—C6—Cl3119.7 (2)C11—C16—H16119.5
C7—C6—Cl3119.0 (2)C9—O7—Zn1iii135.66 (16)
C6—C5—C4119.8 (3)C1—O8—Zn1i144.34 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cl2iv0.972.733.610 (3)151
Symmetry code: (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H5Cl2O3)2]
Mr505.43
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.7322 (10), 10.459 (2), 18.979 (4)
α, β, γ (°)79.340 (2), 89.838 (2), 82.847 (3)
V3)915.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.56 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.617, 0.731
No. of measured, independent and
observed [I > 2σ(I)] reflections
4737, 3255, 2849
Rint0.021
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.091, 0.94
No. of reflections3255
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cl2i0.972.733.610 (3)151
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationHuang, F.-P., Yu, Q., Bian, H. D. & Yan, S.-P. (2008). Polyhedron, 27, 3160–3166.  Web of Science CSD CrossRef CAS Google Scholar
First citationQin, J., Ma, J.-P., Liu, L.-L., Huang, R.-Q. & Dong, Y.-B. (2009). Acta Cryst. C65, m66–m68.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReineke, T. M., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590–2594.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800–3805.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds