metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­[4-(methyl­amino)benzoato-κO]nickel(II)

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 15 April 2010; accepted 22 April 2010; online 28 April 2010)

The title complex, [Ni(C8H8NO2)2(H2O)4], is centrosymmetric with the NiII ion located on a centre of symmetry. It contains two 4-(methyl­amino)benzoate (PMAB) anions and four coordinated water mol­ecules. The four O atoms in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by two O atoms of the PMAB anions in the axial positions. In the crystal structure, inter­molecular O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For structure–function–coordination relationships of the aryl­carboxyl­ate ion in transition-metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For studies of transition-metal complexes with biochemical model systems, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). For the coordination modes of benzoic acid derivatives, see: Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]); Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]). For related structures, see: Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545-m546.]); Necefoğlu et al. (2010[Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361-m362.]); Sertçelik et al. (2009[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326-m327.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H8NO2)2(H2O)4]

  • Mr = 431.06

  • Monoclinic, P 21 /n

  • a = 7.5466 (2) Å

  • b = 6.1811 (2) Å

  • c = 19.4802 (3) Å

  • β = 98.628 (3)°

  • V = 898.40 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.718, Tmax = 0.863

  • 8475 measured reflections

  • 2242 independent reflections

  • 2085 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.06

  • 2242 reflections

  • 145 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O2 2.0537 (10)
Ni1—O3 2.0662 (10)
Ni1—O4 2.0772 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.85 (2) 2.55 (2) 3.3902 (16) 170 (2)
O3—H31⋯N1ii 0.91 (2) 1.97 (2) 2.8780 (16) 172 (2)
O3—H32⋯O1iii 0.87 (2) 1.90 (2) 2.7131 (15) 155 (2)
O4—H41⋯O1iv 0.96 (2) 1.68 (2) 2.6240 (14) 165 (3)
O4—H42⋯O1iii 0.92 (2) 2.11 (2) 2.8781 (15) 139 (2)
C8—H8A⋯O3v 0.96 2.43 3.2583 (18) 144
C8—H8C⋯O1vi 0.96 2.47 3.4105 (19) 168
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) -x, -y+1, -z; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure-function-coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change, depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemical molecules frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound was synthesized and its crystal structure is reported herein.

The title compound is a monomeric complex, with the NiII ion on a centre of symmetry. It contains two 4-(methylamino)benzoate (PMAB) ligands and four coordinated water molecules. The PMAB ligands are monodentate. The four O atoms (O3, O4, and the symmetry-related atoms O3' and O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the carboxylate O atoms (O2 and O2') of the symmetry related PMAB ligands (Fig. 1 and Table 1).

The C1—O1 [1.2761 (17) Å] and C1—O2 [1.2561 (18) Å] bonds in the carboxylate groups may be compared with the corresponding distances: 1.263 (4) and 1.249 (4) Å in [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009), 1.267 (3) and 1.258 (3) Å in [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), 1.2616 (17) and 1.2435 (18) Å in [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009b), and 1.2678 (17) and 1.2654 (17) Å in [Ni(C8H7O2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2010).

The Ni atom is displaced out of the least-square plane of the carboxylate group (O1/C1/O2) by 0.0728 (1) Å. On the other hand, O1, O2, N1 and C1 atoms are 0.0061 (11), 0.0549 (10), -0.0636 (13) and 0.0163 (13) Å away from the plane of the benzene ring A (C2—C7), respectively.

In the crystal structure, intermolecular O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network.

Related literature top

For structure–function–coordination relationships of the arylcarboxylate ion in transition-metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981); Shnulin et al. (1981). For the biological applications of transition-metal complexes with biochemical molecules, see: Antolini et al. (1982). For the coordination modes of benzoic acid derivatives, see: Chen & Chen (2002); Amiraslanov et al. (1979); Hauptmann et al. (2000). For related structures, see: Hökelek et al. (2009a,b); Necefoğlu et al. (2010); Sertçelik et al. (2009).

Experimental top

The title compound was prepared by the reaction of Ni(SO4).6(H2O) (1.31 g, 5 mmol) in H2O (50 ml) and sodium 4-(methylamino)benzoate (1.74 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving green single crystals.

Refinement top

H atoms of NH group and water molecules were located in difference maps and refined isotropically; the O–H and and H···H distances in the water molecules were restrained to 0.95 (2) Å and 1.46 (4) Å, respectively. The remaining H atoms were positioned geometrically with C–H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms.

Structure description top

The structure-function-coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change, depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemical molecules frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound was synthesized and its crystal structure is reported herein.

The title compound is a monomeric complex, with the NiII ion on a centre of symmetry. It contains two 4-(methylamino)benzoate (PMAB) ligands and four coordinated water molecules. The PMAB ligands are monodentate. The four O atoms (O3, O4, and the symmetry-related atoms O3' and O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the carboxylate O atoms (O2 and O2') of the symmetry related PMAB ligands (Fig. 1 and Table 1).

The C1—O1 [1.2761 (17) Å] and C1—O2 [1.2561 (18) Å] bonds in the carboxylate groups may be compared with the corresponding distances: 1.263 (4) and 1.249 (4) Å in [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009), 1.267 (3) and 1.258 (3) Å in [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), 1.2616 (17) and 1.2435 (18) Å in [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009b), and 1.2678 (17) and 1.2654 (17) Å in [Ni(C8H7O2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2010).

The Ni atom is displaced out of the least-square plane of the carboxylate group (O1/C1/O2) by 0.0728 (1) Å. On the other hand, O1, O2, N1 and C1 atoms are 0.0061 (11), 0.0549 (10), -0.0636 (13) and 0.0163 (13) Å away from the plane of the benzene ring A (C2—C7), respectively.

In the crystal structure, intermolecular O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network.

For structure–function–coordination relationships of the arylcarboxylate ion in transition-metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981); Shnulin et al. (1981). For the biological applications of transition-metal complexes with biochemical molecules, see: Antolini et al. (1982). For the coordination modes of benzoic acid derivatives, see: Chen & Chen (2002); Amiraslanov et al. (1979); Hauptmann et al. (2000). For related structures, see: Hökelek et al. (2009a,b); Necefoğlu et al. (2010); Sertçelik et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The primed atoms are generated by the symmetry operation (-x, 1 - y, -z).
Tetraaquabis[4-(methylamino)benzoato-κO]nickel(II) top
Crystal data top
[Ni(C8H8NO2)2(H2O)4]F(000) = 452
Mr = 431.06Dx = 1.594 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5176 reflections
a = 7.5466 (2) Åθ = 2.7–28.4°
b = 6.1811 (2) ŵ = 1.13 mm1
c = 19.4802 (3) ÅT = 100 K
β = 98.628 (3)°Block, green
V = 898.40 (4) Å30.35 × 0.25 × 0.13 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2242 independent reflections
Radiation source: fine-focus sealed tube2085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.718, Tmax = 0.863k = 88
8475 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.032P)2 + 0.3955P]
where P = (Fo2 + 2Fc2)/3
2242 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.41 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Ni(C8H8NO2)2(H2O)4]V = 898.40 (4) Å3
Mr = 431.06Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.5466 (2) ŵ = 1.13 mm1
b = 6.1811 (2) ÅT = 100 K
c = 19.4802 (3) Å0.35 × 0.25 × 0.13 mm
β = 98.628 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2242 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2085 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.863Rint = 0.019
8475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0236 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.41 e Å3
2242 reflectionsΔρmin = 0.33 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.00000.01094 (9)
O10.12315 (14)0.95272 (17)0.08266 (5)0.0166 (2)
O20.00352 (13)0.63206 (17)0.09653 (5)0.0153 (2)
O30.23373 (13)0.34113 (17)0.03994 (5)0.0150 (2)
H310.327 (2)0.418 (3)0.0632 (10)0.031 (5)*
H320.220 (3)0.227 (3)0.0651 (11)0.044 (7)*
O40.15665 (13)0.25462 (17)0.03223 (5)0.0146 (2)
H410.163 (4)0.167 (4)0.0089 (11)0.070 (9)*
H420.090 (3)0.178 (4)0.0679 (10)0.046 (7)*
N10.05050 (17)1.0577 (2)0.39282 (6)0.0155 (2)
H10.133 (3)0.984 (3)0.4069 (11)0.022 (5)*
C10.04946 (17)0.8156 (2)0.11841 (7)0.0130 (3)
C20.02308 (17)0.8804 (2)0.19011 (7)0.0126 (3)
C30.05536 (18)0.7378 (2)0.23236 (7)0.0149 (3)
H30.09020.60070.21590.018*
C40.08175 (18)0.7983 (2)0.29847 (7)0.0156 (3)
H40.13420.70150.32600.019*
C50.03016 (18)1.0039 (2)0.32435 (7)0.0137 (3)
C60.04875 (18)1.1470 (2)0.28224 (7)0.0147 (3)
H60.08401.28400.29870.018*
C70.07450 (18)1.0852 (2)0.21607 (7)0.0142 (3)
H70.12691.18170.18850.017*
C80.0564 (2)1.2874 (3)0.41124 (7)0.0182 (3)
H8A0.08381.30090.45760.027*
H8B0.14731.35890.37950.027*
H8C0.05781.35260.40870.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01233 (13)0.00929 (13)0.01089 (13)0.00098 (9)0.00076 (9)0.00030 (8)
O10.0221 (5)0.0123 (5)0.0157 (5)0.0032 (4)0.0035 (4)0.0001 (4)
O20.0192 (5)0.0124 (5)0.0140 (4)0.0025 (4)0.0015 (4)0.0013 (4)
O30.0151 (5)0.0128 (5)0.0163 (5)0.0011 (4)0.0001 (4)0.0012 (4)
O40.0162 (5)0.0130 (5)0.0144 (4)0.0015 (4)0.0011 (4)0.0005 (4)
N10.0159 (6)0.0170 (6)0.0143 (5)0.0006 (5)0.0043 (4)0.0006 (5)
C10.0118 (6)0.0125 (6)0.0138 (6)0.0023 (5)0.0009 (4)0.0013 (5)
C20.0115 (5)0.0122 (6)0.0134 (6)0.0004 (5)0.0003 (4)0.0003 (5)
C30.0145 (6)0.0122 (6)0.0171 (6)0.0014 (5)0.0002 (5)0.0003 (5)
C40.0159 (6)0.0151 (7)0.0160 (6)0.0013 (5)0.0026 (5)0.0033 (5)
C50.0107 (6)0.0158 (7)0.0141 (6)0.0021 (5)0.0001 (5)0.0008 (5)
C60.0143 (6)0.0132 (6)0.0163 (6)0.0014 (5)0.0017 (5)0.0014 (5)
C70.0142 (6)0.0134 (7)0.0151 (6)0.0013 (5)0.0021 (5)0.0005 (5)
C80.0196 (6)0.0185 (7)0.0172 (6)0.0005 (6)0.0055 (5)0.0018 (5)
Geometric parameters (Å, º) top
Ni1—O22.0537 (10)C2—C31.3969 (19)
Ni1—O2i2.0537 (10)C3—H30.93
Ni1—O32.0662 (10)C4—C31.3839 (19)
Ni1—O3i2.0662 (10)C4—C51.401 (2)
Ni1—O42.0772 (10)C4—H40.93
Ni1—O4i2.0772 (10)C6—C51.3987 (19)
O1—C11.2761 (17)C6—H60.93
O2—C11.2561 (18)C7—C21.396 (2)
O3—H310.909 (16)C7—C61.3858 (19)
O3—H320.873 (17)C7—H70.93
O4—H410.964 (17)C8—N11.466 (2)
O4—H420.926 (17)C8—H8A0.96
N1—C51.4052 (18)C8—H8B0.96
N1—H10.85 (2)C8—H8C0.96
C2—C11.4948 (18)
O2—Ni1—O388.38 (4)O2—C1—O1123.87 (13)
O2i—Ni1—O391.62 (4)O2—C1—C2118.61 (12)
O2—Ni1—O2i180.00 (2)C3—C2—C1120.60 (13)
O2—Ni1—O3i91.62 (4)C7—C2—C1120.83 (12)
O2i—Ni1—O3i88.38 (4)C7—C2—C3118.57 (12)
O2—Ni1—O485.83 (4)C2—C3—H3119.6
O2i—Ni1—O494.17 (4)C4—C3—C2120.71 (13)
O2—Ni1—O4i94.17 (4)C4—C3—H3119.6
O2i—Ni1—O4i85.83 (4)C3—C4—C5120.60 (13)
O3i—Ni1—O3180.00 (5)C3—C4—H4119.7
O3—Ni1—O491.81 (4)C5—C4—H4119.7
O3i—Ni1—O488.19 (4)C4—C5—N1119.48 (13)
O3—Ni1—O4i88.19 (4)C6—C5—N1121.60 (13)
O3i—Ni1—O4i91.81 (4)C6—C5—C4118.84 (13)
O4—Ni1—O4i180.00 (5)C5—C6—H6119.9
C1—O2—Ni1128.50 (9)C7—C6—C5120.18 (13)
Ni1—O3—H31119.5 (15)C7—C6—H6119.9
Ni1—O3—H32115.3 (16)C2—C7—H7119.4
H31—O3—H32106.7 (19)C6—C7—C2121.11 (13)
Ni1—O4—H4196.8 (18)C6—C7—H7119.4
Ni1—O4—H42109.2 (15)N1—C8—H8A109.5
H42—O4—H41107 (2)N1—C8—H8B109.5
C5—N1—C8118.22 (12)N1—C8—H8C109.5
C5—N1—H1111.6 (14)H8A—C8—H8B109.5
C8—N1—H1113.0 (13)H8A—C8—H8C109.5
O1—C1—C2117.52 (12)H8B—C8—H8C109.5
O3—Ni1—O2—C198.00 (11)C7—C2—C1—O2177.98 (12)
O3i—Ni1—O2—C182.00 (11)C1—C2—C3—C4179.27 (12)
O4—Ni1—O2—C1170.07 (12)C7—C2—C3—C40.1 (2)
O4i—Ni1—O2—C19.93 (12)C5—C4—C3—C20.0 (2)
Ni1—O2—C1—O12.6 (2)C3—C4—C5—N1176.96 (13)
Ni1—O2—C1—C2176.51 (8)C3—C4—C5—C60.1 (2)
C8—N1—C5—C4159.10 (13)C7—C6—C5—N1176.96 (13)
C8—N1—C5—C624.13 (19)C7—C6—C5—C40.2 (2)
C3—C2—C1—O1179.47 (12)C6—C7—C2—C1179.34 (12)
C3—C2—C1—O21.36 (19)C6—C7—C2—C30.0 (2)
C7—C2—C1—O11.19 (19)C2—C7—C6—C50.1 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4ii0.85 (2)2.55 (2)3.3902 (16)170 (2)
O3—H31···N1iii0.91 (2)1.97 (2)2.8780 (16)172 (2)
O3—H32···O1iv0.87 (2)1.90 (2)2.7131 (15)155 (2)
O4—H41···O1i0.96 (2)1.68 (2)2.6240 (14)165 (3)
O4—H42···O1iv0.92 (2)2.11 (2)2.8781 (15)139 (2)
C8—H8A···O3v0.962.433.2583 (18)144
C8—H8C···O1vi0.962.473.4105 (19)168
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y1, z; (v) x1/2, y+3/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H8NO2)2(H2O)4]
Mr431.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.5466 (2), 6.1811 (2), 19.4802 (3)
β (°) 98.628 (3)
V3)898.40 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.35 × 0.25 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.718, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
8475, 2242, 2085
Rint0.019
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.06
No. of reflections2242
No. of parameters145
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni1—O22.0537 (10)Ni1—O42.0772 (10)
Ni1—O32.0662 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.85 (2)2.55 (2)3.3902 (16)170 (2)
O3—H31···N1ii0.91 (2)1.97 (2)2.8780 (16)172 (2)
O3—H32···O1iii0.87 (2)1.90 (2)2.7131 (15)155 (2)
O4—H41···O1iv0.96 (2)1.68 (2)2.6240 (14)165 (3)
O4—H42···O1iii0.92 (2)2.11 (2)2.8781 (15)139 (2)
C8—H8A···O3v0.962.433.2583 (18)144
C8—H8C···O1vi0.962.473.4105 (19)168
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x1/2, y+3/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545–m546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361–m362.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326–m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds