organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)-2,4-di­methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 March 2010; accepted 28 March 2010; online 2 April 2010)

The asymmetric unit of the title compound, C16H19NO2S, contains two independent mol­ecules: the dihedral angles between the sulfonyl and anilino benzene rings in the two mol­ecules are 41.5 (1) and 43.8 (1)°. The independent mol­ecules are linked into a dimer by a pair of inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o366.],b[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o576.],c[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009c). Acta Cryst. E65, o3275.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO2S

  • Mr = 289.38

  • Triclinic, [P \overline 1]

  • a = 8.3643 (7) Å

  • b = 10.975 (1) Å

  • c = 16.996 (2) Å

  • α = 83.034 (9)°

  • β = 80.100 (7)°

  • γ = 81.796 (9)°

  • V = 1513.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 299 K

  • 0.34 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.931, Tmax = 0.958

  • 11164 measured reflections

  • 6136 independent reflections

  • 4196 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.161

  • S = 1.03

  • 6136 reflections

  • 375 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.83 (3) 2.15 (3) 2.952 (3) 161 (3)
N2—H2N⋯O1 0.79 (3) 2.22 (3) 2.982 (3) 164 (3)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b,c), in the present work, the structure of 2,4-dimethyl-N-(2,3-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The asymmetric unit contains two independent molecules. Both molecules are bent at the N-atoms with C—SO2—NH—C torsion angles of 70.1 (2) and -66.0 (2)°, compared to the values of 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (II) (Gowda et al., 2009c), 71.0 (2)° in N-(2,3-dimethylphenyl)benzenesulfonamide (III) (Gowda et al., 2009a), and 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (IV) (Gowda et al., 2009b).

The sulfonyl and anilino benzene rings in the two molecules of (I) are tilted relative to each other by 41.5 (1) and 43.8 (1)° in (I), compared to the values of 82.1 (1)° in (II), 64.8 (1)° in (III), and 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in the two independent molecules of (IV), The remaining bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, pairs of intermolecular N—H···O hydrogen bonds (Table 1) link the independent molecules to form dimers as shown in Fig. 1 and Fig.2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009a,b,c). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of m-xylene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with a stoichiometric amount of 2,3-dimethylaniline and boiled for 10 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N- (2,3-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

H atoms of the NH groups were located in a difference map and their positional parameters were refined [N–H = 0.79 (3)–0.83 (3) Å]. The other H atoms were positioned with idealized geometry using a riding model with C–H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b,c), in the present work, the structure of 2,4-dimethyl-N-(2,3-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The asymmetric unit contains two independent molecules. Both molecules are bent at the N-atoms with C—SO2—NH—C torsion angles of 70.1 (2) and -66.0 (2)°, compared to the values of 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (II) (Gowda et al., 2009c), 71.0 (2)° in N-(2,3-dimethylphenyl)benzenesulfonamide (III) (Gowda et al., 2009a), and 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (IV) (Gowda et al., 2009b).

The sulfonyl and anilino benzene rings in the two molecules of (I) are tilted relative to each other by 41.5 (1) and 43.8 (1)° in (I), compared to the values of 82.1 (1)° in (II), 64.8 (1)° in (III), and 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in the two independent molecules of (IV), The remaining bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, pairs of intermolecular N—H···O hydrogen bonds (Table 1) link the independent molecules to form dimers as shown in Fig. 1 and Fig.2.

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009a,b,c). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2,3-Dimethylphenyl)-2,4-dimethylbenzenesulfonamide top
Crystal data top
C16H19NO2SZ = 4
Mr = 289.38F(000) = 616
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3643 (7) ÅCell parameters from 3007 reflections
b = 10.975 (1) Åθ = 2.5–28.0°
c = 16.996 (2) ŵ = 0.22 mm1
α = 83.034 (9)°T = 299 K
β = 80.100 (7)°Prism, yellow
γ = 81.796 (9)°0.34 × 0.30 × 0.20 mm
V = 1513.7 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
6136 independent reflections
Radiation source: fine-focus sealed tube4196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.931, Tmax = 0.958k = 1313
11164 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.9151P]
where P = (Fo2 + 2Fc2)/3
6136 reflections(Δ/σ)max = 0.002
375 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C16H19NO2Sγ = 81.796 (9)°
Mr = 289.38V = 1513.7 (3) Å3
Triclinic, P1Z = 4
a = 8.3643 (7) ÅMo Kα radiation
b = 10.975 (1) ŵ = 0.22 mm1
c = 16.996 (2) ÅT = 299 K
α = 83.034 (9)°0.34 × 0.30 × 0.20 mm
β = 80.100 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
6136 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4196 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.958Rint = 0.016
11164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.66 e Å3
6136 reflectionsΔρmin = 0.41 e Å3
375 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7579 (3)0.1917 (2)0.30498 (15)0.0439 (6)
C20.8079 (3)0.0826 (2)0.35144 (17)0.0487 (6)
C30.6896 (4)0.0046 (3)0.38031 (18)0.0559 (7)
H30.72000.06850.41100.067*
C40.5295 (4)0.0283 (3)0.36652 (18)0.0548 (7)
C50.4848 (4)0.1366 (3)0.32071 (19)0.0582 (8)
H50.37810.15500.31010.070*
C60.5965 (3)0.2167 (3)0.29087 (18)0.0532 (7)
H60.56420.28950.26050.064*
C70.9403 (3)0.3704 (2)0.40309 (15)0.0405 (6)
C81.1020 (3)0.3881 (2)0.40397 (16)0.0431 (6)
C91.1659 (4)0.3549 (3)0.47568 (18)0.0532 (7)
C101.0649 (5)0.3099 (3)0.54282 (18)0.0649 (9)
H101.10670.28880.59060.078*
C110.9048 (5)0.2950 (3)0.54161 (19)0.0664 (9)
H110.83970.26520.58800.080*
C120.8422 (4)0.3247 (3)0.47111 (18)0.0545 (7)
H120.73460.31420.46920.065*
C130.9783 (4)0.0452 (3)0.3710 (2)0.0703 (9)
H13A1.01480.11360.39020.084*
H13B1.05100.02200.32350.084*
H13C0.97780.02360.41160.084*
C140.4087 (4)0.0607 (3)0.4010 (2)0.0770 (10)
H14A0.46280.13130.42930.092*
H14B0.36400.08690.35840.092*
H14C0.32210.02060.43740.092*
C151.2017 (4)0.4467 (3)0.33078 (19)0.0594 (8)
H15A1.12990.49700.29800.071*
H15B1.26620.38330.30070.071*
H15C1.27250.49730.34690.071*
C161.3387 (4)0.3701 (4)0.4809 (2)0.0815 (11)
H16A1.35840.45340.46160.098*
H16B1.41230.31360.44860.098*
H16C1.35630.35310.53570.098*
N10.8735 (3)0.4042 (2)0.32974 (14)0.0487 (6)
H1N0.783 (4)0.447 (3)0.3348 (18)0.058*
O10.8196 (3)0.37379 (19)0.19753 (12)0.0638 (6)
O21.0524 (2)0.24770 (19)0.25134 (12)0.0596 (5)
S10.88758 (9)0.30509 (6)0.26408 (4)0.0484 (2)
C170.6666 (3)0.7822 (2)0.21219 (16)0.0459 (6)
C180.6232 (3)0.8894 (2)0.16309 (18)0.0503 (7)
C190.7455 (4)0.9638 (3)0.1334 (2)0.0621 (8)
H190.71991.03520.10020.075*
C200.9028 (4)0.9375 (3)0.1505 (2)0.0621 (8)
C210.9409 (4)0.8305 (3)0.1997 (2)0.0644 (9)
H211.04610.81070.21220.077*
C220.8243 (4)0.7539 (3)0.22987 (18)0.0552 (7)
H220.85120.68210.26250.066*
C230.4896 (3)0.6176 (2)0.10779 (15)0.0403 (6)
C240.6025 (3)0.6394 (2)0.03794 (16)0.0427 (6)
C250.5393 (4)0.6793 (2)0.03382 (17)0.0523 (7)
C260.3736 (4)0.6952 (3)0.0335 (2)0.0615 (8)
H260.33370.72130.08130.074*
C270.2650 (4)0.6736 (3)0.0354 (2)0.0628 (8)
H270.15310.68620.03420.075*
C280.3231 (3)0.6332 (3)0.10660 (18)0.0526 (7)
H280.25060.61660.15340.063*
C290.4565 (4)0.9307 (3)0.1406 (2)0.0710 (10)
H29A0.38030.95030.18780.085*
H29B0.42190.86560.11720.085*
H29C0.46091.00280.10260.085*
C301.0290 (5)1.0232 (4)0.1153 (3)0.0918 (12)
H30A1.07681.04700.15770.110*
H30B0.97751.09550.08750.110*
H30C1.11280.98130.07840.110*
C310.7824 (3)0.6221 (3)0.03934 (18)0.0588 (8)
H31A0.80490.57290.08780.071*
H31B0.81970.70140.03730.071*
H31C0.83820.58100.00620.071*
C320.6546 (5)0.7030 (3)0.11119 (19)0.0778 (10)
H32A0.72130.62730.12430.093*
H32B0.72320.76310.10490.093*
H32C0.59250.73370.15360.093*
N20.5434 (3)0.5754 (2)0.18338 (14)0.0469 (5)
H2N0.627 (4)0.532 (3)0.1814 (18)0.056*
O30.5930 (3)0.59831 (19)0.31781 (12)0.0651 (6)
O40.3674 (2)0.73252 (18)0.26308 (12)0.0575 (5)
S20.53042 (9)0.67152 (6)0.25099 (4)0.0487 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0468 (15)0.0455 (14)0.0409 (15)0.0010 (11)0.0121 (11)0.0104 (12)
C20.0506 (16)0.0447 (14)0.0516 (16)0.0046 (12)0.0169 (13)0.0076 (12)
C30.0653 (19)0.0428 (15)0.0594 (19)0.0036 (13)0.0149 (15)0.0011 (13)
C40.0581 (18)0.0546 (16)0.0546 (18)0.0077 (14)0.0093 (14)0.0154 (14)
C50.0461 (16)0.0651 (18)0.066 (2)0.0035 (14)0.0159 (14)0.0128 (16)
C60.0520 (16)0.0534 (16)0.0555 (18)0.0040 (13)0.0212 (13)0.0045 (13)
C70.0483 (15)0.0314 (12)0.0427 (14)0.0057 (10)0.0086 (11)0.0037 (10)
C80.0499 (15)0.0370 (13)0.0423 (15)0.0060 (11)0.0057 (11)0.0051 (11)
C90.0568 (17)0.0502 (15)0.0555 (18)0.0025 (13)0.0174 (14)0.0156 (14)
C100.100 (3)0.0516 (17)0.0416 (17)0.0086 (17)0.0207 (17)0.0049 (14)
C110.096 (3)0.0519 (17)0.0432 (18)0.0120 (17)0.0093 (16)0.0029 (14)
C120.0590 (18)0.0488 (15)0.0526 (18)0.0138 (13)0.0055 (13)0.0047 (13)
C130.061 (2)0.0565 (18)0.094 (3)0.0012 (15)0.0319 (18)0.0124 (17)
C140.073 (2)0.077 (2)0.086 (3)0.0253 (18)0.0081 (19)0.010 (2)
C150.0515 (17)0.0656 (18)0.0616 (19)0.0195 (14)0.0001 (14)0.0060 (15)
C160.065 (2)0.099 (3)0.089 (3)0.0086 (19)0.0332 (19)0.036 (2)
N10.0485 (13)0.0439 (12)0.0538 (14)0.0008 (10)0.0144 (11)0.0041 (11)
O10.0778 (14)0.0661 (13)0.0476 (12)0.0039 (11)0.0223 (10)0.0064 (10)
O20.0529 (12)0.0671 (13)0.0570 (13)0.0047 (10)0.0030 (9)0.0103 (10)
S10.0531 (4)0.0499 (4)0.0421 (4)0.0027 (3)0.0118 (3)0.0021 (3)
C170.0507 (16)0.0436 (14)0.0448 (15)0.0017 (12)0.0113 (12)0.0093 (12)
C180.0495 (16)0.0418 (14)0.0612 (18)0.0015 (12)0.0141 (13)0.0090 (13)
C190.064 (2)0.0461 (16)0.078 (2)0.0048 (14)0.0169 (16)0.0052 (15)
C200.0514 (18)0.0637 (19)0.075 (2)0.0111 (14)0.0056 (15)0.0245 (17)
C210.0495 (17)0.074 (2)0.075 (2)0.0061 (15)0.0213 (16)0.0271 (18)
C220.0545 (17)0.0564 (17)0.0567 (18)0.0027 (14)0.0185 (14)0.0110 (14)
C230.0491 (15)0.0332 (12)0.0379 (14)0.0036 (10)0.0058 (11)0.0042 (10)
C240.0499 (15)0.0365 (12)0.0429 (15)0.0088 (11)0.0066 (11)0.0058 (11)
C250.073 (2)0.0433 (14)0.0434 (16)0.0117 (13)0.0124 (14)0.0041 (12)
C260.080 (2)0.0523 (17)0.058 (2)0.0022 (15)0.0328 (17)0.0041 (14)
C270.0535 (18)0.0624 (19)0.079 (2)0.0035 (14)0.0242 (17)0.0161 (17)
C280.0459 (16)0.0538 (16)0.0580 (18)0.0101 (12)0.0029 (13)0.0086 (14)
C290.0588 (19)0.0538 (18)0.100 (3)0.0028 (15)0.0298 (18)0.0126 (18)
C300.067 (2)0.090 (3)0.124 (4)0.025 (2)0.008 (2)0.024 (2)
C310.0499 (17)0.0703 (19)0.0556 (18)0.0144 (14)0.0005 (13)0.0076 (15)
C320.109 (3)0.077 (2)0.0454 (19)0.022 (2)0.0035 (18)0.0044 (17)
N20.0525 (14)0.0437 (12)0.0413 (13)0.0003 (10)0.0061 (11)0.0001 (10)
O30.0854 (15)0.0675 (13)0.0381 (11)0.0013 (11)0.0128 (10)0.0030 (10)
O40.0536 (12)0.0617 (12)0.0523 (12)0.0006 (9)0.0027 (9)0.0089 (10)
S20.0574 (4)0.0501 (4)0.0362 (4)0.0020 (3)0.0062 (3)0.0025 (3)
Geometric parameters (Å, º) top
C1—C61.395 (4)C17—C221.386 (4)
C1—C21.405 (4)C17—C181.399 (4)
C1—S11.768 (3)C17—S21.775 (3)
C2—C31.387 (4)C18—C191.389 (4)
C2—C131.508 (4)C18—C291.501 (4)
C3—C41.382 (4)C19—C201.379 (4)
C3—H30.93C19—H190.93
C4—C51.381 (4)C20—C211.388 (4)
C4—C141.502 (4)C20—C301.512 (5)
C5—C61.366 (4)C21—C221.371 (4)
C5—H50.93C21—H210.93
C6—H60.93C22—H220.93
C7—C121.383 (4)C23—C281.382 (4)
C7—C81.397 (3)C23—C241.403 (4)
C7—N11.440 (3)C23—N21.437 (3)
C8—C91.402 (4)C24—C251.409 (4)
C8—C151.503 (4)C24—C311.493 (4)
C9—C101.382 (4)C25—C261.372 (4)
C9—C161.497 (4)C25—C321.509 (4)
C10—C111.376 (5)C26—C271.371 (5)
C10—H100.93C26—H260.93
C11—C121.374 (4)C27—C281.381 (4)
C11—H110.93C27—H270.93
C12—H120.93C28—H280.93
C13—H13A0.96C29—H29A0.96
C13—H13B0.96C29—H29B0.96
C13—H13C0.96C29—H29C0.96
C14—H14A0.96C30—H30A0.96
C14—H14B0.96C30—H30B0.96
C14—H14C0.96C30—H30C0.96
C15—H15A0.96C31—H31A0.96
C15—H15B0.96C31—H31B0.96
C15—H15C0.96C31—H31C0.96
C16—H16A0.96C32—H32A0.96
C16—H16B0.96C32—H32B0.96
C16—H16C0.96C32—H32C0.96
N1—S11.630 (2)N2—S21.632 (2)
N1—H1N0.83 (3)N2—H2N0.79 (3)
O1—S11.436 (2)O3—S21.439 (2)
O2—S11.424 (2)O4—S21.423 (2)
C6—C1—C2119.8 (3)C22—C17—C18120.8 (3)
C6—C1—S1116.4 (2)C22—C17—S2116.1 (2)
C2—C1—S1123.8 (2)C18—C17—S2123.0 (2)
C3—C2—C1116.4 (2)C19—C18—C17116.6 (3)
C3—C2—C13118.8 (3)C19—C18—C29117.8 (3)
C1—C2—C13124.8 (3)C17—C18—C29125.7 (3)
C4—C3—C2124.3 (3)C20—C19—C18123.6 (3)
C4—C3—H3117.9C20—C19—H19118.2
C2—C3—H3117.9C18—C19—H19118.2
C5—C4—C3117.7 (3)C19—C20—C21118.1 (3)
C5—C4—C14121.5 (3)C19—C20—C30120.2 (3)
C3—C4—C14120.8 (3)C21—C20—C30121.7 (3)
C6—C5—C4120.3 (3)C22—C21—C20120.3 (3)
C6—C5—H5119.8C22—C21—H21119.8
C4—C5—H5119.8C20—C21—H21119.8
C5—C6—C1121.5 (3)C21—C22—C17120.7 (3)
C5—C6—H6119.3C21—C22—H22119.7
C1—C6—H6119.3C17—C22—H22119.7
C12—C7—C8121.8 (3)C28—C23—C24121.7 (2)
C12—C7—N1119.5 (2)C28—C23—N2117.3 (2)
C8—C7—N1118.7 (2)C24—C23—N2120.9 (2)
C7—C8—C9118.3 (2)C23—C24—C25117.3 (2)
C7—C8—C15120.5 (2)C23—C24—C31121.6 (2)
C9—C8—C15121.1 (3)C25—C24—C31121.1 (3)
C10—C9—C8118.7 (3)C26—C25—C24120.0 (3)
C10—C9—C16120.1 (3)C26—C25—C32120.1 (3)
C8—C9—C16121.2 (3)C24—C25—C32119.8 (3)
C11—C10—C9122.5 (3)C25—C26—C27121.9 (3)
C11—C10—H10118.8C25—C26—H26119.1
C9—C10—H10118.8C27—C26—H26119.1
C12—C11—C10119.2 (3)C26—C27—C28119.5 (3)
C12—C11—H11120.4C26—C27—H27120.2
C10—C11—H11120.4C28—C27—H27120.2
C11—C12—C7119.5 (3)C27—C28—C23119.6 (3)
C11—C12—H12120.2C27—C28—H28120.2
C7—C12—H12120.2C23—C28—H28120.2
C2—C13—H13A109.5C18—C29—H29A109.5
C2—C13—H13B109.5C18—C29—H29B109.5
H13A—C13—H13B109.5H29A—C29—H29B109.5
C2—C13—H13C109.5C18—C29—H29C109.5
H13A—C13—H13C109.5H29A—C29—H29C109.5
H13B—C13—H13C109.5H29B—C29—H29C109.5
C4—C14—H14A109.5C20—C30—H30A109.5
C4—C14—H14B109.5C20—C30—H30B109.5
H14A—C14—H14B109.5H30A—C30—H30B109.5
C4—C14—H14C109.5C20—C30—H30C109.5
H14A—C14—H14C109.5H30A—C30—H30C109.5
H14B—C14—H14C109.5H30B—C30—H30C109.5
C8—C15—H15A109.5C24—C31—H31A109.5
C8—C15—H15B109.5C24—C31—H31B109.5
H15A—C15—H15B109.5H31A—C31—H31B109.5
C8—C15—H15C109.5C24—C31—H31C109.5
H15A—C15—H15C109.5H31A—C31—H31C109.5
H15B—C15—H15C109.5H31B—C31—H31C109.5
C9—C16—H16A109.5C25—C32—H32A109.5
C9—C16—H16B109.5C25—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C9—C16—H16C109.5C25—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C7—N1—S1121.05 (17)C23—N2—S2120.16 (17)
C7—N1—H1N115 (2)C23—N2—H2N116 (2)
S1—N1—H1N112 (2)S2—N2—H2N110 (2)
O2—S1—O1119.10 (13)O4—S2—O3118.80 (13)
O2—S1—N1107.81 (12)O4—S2—N2108.11 (12)
O1—S1—N1105.08 (12)O3—S2—N2104.97 (12)
O2—S1—C1109.11 (12)O4—S2—C17109.21 (12)
O1—S1—C1107.12 (13)O3—S2—C17107.64 (13)
N1—S1—C1108.16 (12)N2—S2—C17107.58 (12)
C6—C1—C2—C30.5 (4)C22—C17—C18—C190.3 (4)
S1—C1—C2—C3178.7 (2)S2—C17—C18—C19176.3 (2)
C6—C1—C2—C13179.9 (3)C22—C17—C18—C29179.1 (3)
S1—C1—C2—C131.8 (4)S2—C17—C18—C294.2 (4)
C1—C2—C3—C40.4 (4)C17—C18—C19—C200.6 (5)
C13—C2—C3—C4180.0 (3)C29—C18—C19—C20178.9 (3)
C2—C3—C4—C50.3 (4)C18—C19—C20—C210.3 (5)
C2—C3—C4—C14179.2 (3)C18—C19—C20—C30179.7 (3)
C3—C4—C5—C60.3 (4)C19—C20—C21—C220.1 (5)
C14—C4—C5—C6179.2 (3)C30—C20—C21—C22179.2 (3)
C4—C5—C6—C10.5 (4)C20—C21—C22—C170.4 (5)
C2—C1—C6—C50.6 (4)C18—C17—C22—C210.1 (4)
S1—C1—C6—C5178.9 (2)S2—C17—C22—C21177.0 (2)
C12—C7—C8—C91.9 (4)C28—C23—C24—C250.6 (4)
N1—C7—C8—C9180.0 (2)N2—C23—C24—C25179.3 (2)
C12—C7—C8—C15175.4 (2)C28—C23—C24—C31179.8 (2)
N1—C7—C8—C152.7 (4)N2—C23—C24—C311.2 (4)
C7—C8—C9—C102.0 (4)C23—C24—C25—C260.1 (4)
C15—C8—C9—C10175.2 (3)C31—C24—C25—C26179.6 (3)
C7—C8—C9—C16179.4 (3)C23—C24—C25—C32179.3 (3)
C15—C8—C9—C163.4 (4)C31—C24—C25—C321.1 (4)
C8—C9—C10—C110.9 (4)C24—C25—C26—C270.2 (4)
C16—C9—C10—C11179.4 (3)C32—C25—C26—C27179.5 (3)
C9—C10—C11—C120.6 (5)C25—C26—C27—C280.9 (5)
C10—C11—C12—C70.8 (4)C26—C27—C28—C231.4 (4)
C8—C7—C12—C110.4 (4)C24—C23—C28—C271.3 (4)
N1—C7—C12—C11178.5 (2)N2—C23—C28—C27180.0 (2)
C12—C7—N1—S191.8 (3)C28—C23—N2—S277.9 (3)
C8—C7—N1—S190.0 (3)C24—C23—N2—S2103.4 (2)
C7—N1—S1—O247.8 (2)C23—N2—S2—O451.8 (2)
C7—N1—S1—O1175.8 (2)C23—N2—S2—O3179.5 (2)
C7—N1—S1—C170.1 (2)C23—N2—S2—C1766.0 (2)
C6—C1—S1—O2154.2 (2)C22—C17—S2—O4152.1 (2)
C2—C1—S1—O227.5 (3)C18—C17—S2—O431.1 (3)
C6—C1—S1—O124.0 (2)C22—C17—S2—O321.9 (2)
C2—C1—S1—O1157.7 (2)C18—C17—S2—O3161.3 (2)
C6—C1—S1—N188.8 (2)C22—C17—S2—N290.8 (2)
C2—C1—S1—N189.5 (2)C18—C17—S2—N286.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.83 (3)2.15 (3)2.952 (3)161 (3)
N2—H2N···O10.79 (3)2.22 (3)2.982 (3)164 (3)

Experimental details

Crystal data
Chemical formulaC16H19NO2S
Mr289.38
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.3643 (7), 10.975 (1), 16.996 (2)
α, β, γ (°)83.034 (9), 80.100 (7), 81.796 (9)
V3)1513.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.34 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.931, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
11164, 6136, 4196
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.161, 1.03
No. of reflections6136
No. of parameters375
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.83 (3)2.15 (3)2.952 (3)161 (3)
N2—H2N···O10.79 (3)2.22 (3)2.982 (3)164 (3)
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009c). Acta Cryst. E65, o3275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds